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Abstract

A common obstacle preventing the rapid deployment of
supervised machine learning algorithms is the lack of
labeled training data. This is particularly expensive to
obtain for structured prediction tasks, where each train-
ing instance may have multiple, interacting labels, all
of which must be correctly annotated for the instance to
be of use to the learner. Traditional active learning ad-
dresses this problem by optimizing the order in which
the examples are labeled to increase learning efficiency.
However, this approach does not consider the difficulty
of labeling each example, which can vary widely in
structured prediction tasks. For example, the labeling
predicted by a partially trained system may be easier
to correct for some instances than for others.

We propose a new active learning paradigm which re-
duces not only how many instances the annotator must
label, but also how difficult each instance is to anno-
tate. The system also leverages information from par-
tially correct predictions to efficiently solicit annota-
tions from the user. We validate this active learning
framework in an interactive information extraction sys-
tem, reducing the total number of annotation actions by
22%.

Introduction

Supervised machine learning algorithms require a set of
fully labeled training examples for accurate and robust per-
formance. Unfortunately, for many tasks, this labeled data is
costly and time-consuming to obtain.

Active learning is a framework that aims to reduce this
burden, typically by optimizing the order in which the ex-
amples are labeled (Cohn, Ghahramani, & Jordan 1995;
Lewis & Catlett 1994). For instance, one might order the ex-
amples such that those with the least confident predictions
are labeled first. By seeing the most valuable examples early
in training, the algorithm can learn more efficiently.

Most active learners are evaluated by plotting a “learning
curve” that displays the learner’s performance on a held-out
data set as the number of labeled examples increases. An ac-
tive learner is considered successful if it obtains better per-
formance than a traditional learner given the same number
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of labeled examples. Thus, active learning expedites annota-
tion by reducing the number of labeled examples required to
train an accurate model.

However, this paradigm assumes each example is equally
difficult to annotate. While this assumption may hold in tra-
ditional classification tasks, in structured classification tasks
it does not. For example, consider an information extrac-
tion system that labels segments of free text with tags corre-
sponding to entities of interest. An annotated example might
look like the following:

<name> Jane Smith </name>

<title> CEO </title>

<company> Unicorp, LLC </company>

Phone: <phone> (555)555-5555 </phone>

To label this example, the user must not only specify
which type of entity each token is, but also must determine
the start and end boundaries for each entity. Clearly, the
amount of work required to label an example such as this
will vary between examples, based on the number of en-
tities. However, this effort is not reflected by the standard
evaluation metrics from active learning. Since our goal is to
reduce annotation effort, it is desirable to design a labeling
framework that considers not only how many instances the
annotator must label, but also how difficult each instance is
to annotate.

Additionally, unlike in traditional classification tasks, a
structured prediction system may be able to partially label
an example, which can simplify annotation. In the above ex-
ample, the partially-trained system might correctly segment
the title field, but mislabel it as a company name. We would
like to leverage these partial predictions to reduce labeling
effort.

We propose a framework to address these shortcomings
for machine learning applied to information extraction. We
first provide a way to quantify the number of actions a user
must perform to label each training example, distinguish-
ing between boundary and classification annotations. We
then demonstrate an interactive information extraction sys-
tem that minimizes the amount of effort required to train an
accurate extractor.

To expedite annotation for information extraction (IE), we
first note that the main difference between labeling IE exam-
ples and labeling traditional classification examples is the
problem of boundary annotation (or segmentation). Given



a sequence of text that is correctly segmented, choosing the
correct type for each entity is simply a classification task: the
annotator must choose among a finite set of labels for each
entity. However, determining the boundaries of each entity
is an intrinsically distinct task, since the number of ways to
segment a sequence is exponential in the sequence length.
Additionally, from a human-computer interaction perspec-
tive, the “clicking and dragging” involved in boundary anno-
tation generally requires more hand-eye coordination from
the user than does classification annotation.

With this distinction in mind, our system reduces annota-
tion effort in two ways. First, many segmentation decisions
are converted into classification decisions by presenting the
user with multiple predicted segmentations to choose from.
Thus, instead of hand segmenting each field, the user may
select the correct segmentation from the given choices.

Second, the system allows the user to correct partially la-
beled examples, and then constrains its predictions to respect
these corrections. This interaction further reduces the num-
ber of segmentation decisions the user must make: Correc-
tions to one part of the sequence often propagate to fix seg-
mentation errors in other parts of the sequence.

The resulting system allows the user to constrain the
predictions of the learner without manually annotating the
boundaries of incorrect segments. Very often, these con-
straints will allow the user to simply select the correct anno-
tation from among the provided choices. Thus, the annotator
can frequently label a record without explicitly annotating
the boundaries.

We demonstrate the performance of this framework in the
domain of contact record extraction. The task of the annota-
tor is to train a system that can accurately extract contact in-
formation (such as names and addresses) from unstructured
text. In particular, the model we use is a linear-chain condi-
tional random field (CRF) (Lafferty, McCallum, & Pereira
2001). The probabilistic foundations of CRFs make them
well-suited to the confidence estimation and correction prop-
agation methods required by our framework.

We present results demonstrating that our framework re-
duces the total number of annotation actions required to train
an IE system by 22%, and furthermore that it reduces the
number of boundary annotations by 46%, as compared with
competing methods.

By reducing the effort required to train an extractor, this
work can lead to more wide-spread acceptance of end-user
information extraction systems that incorporate machine
learning techniques.

Related Work
To the best of our knowledge, this is the first active learn-
ing framework that (1) is sensitive to the difficulty of la-
beling each training example and (2) uses partially labeled
instances to reduce this labeling difficulty.

Part of our framework can be viewed as a type of selective
sampling (Cohn, Atlas, & Ladner 1994), which proposes an
order in which to label the training instances such that learn-
ing is most efficient. In particular, ours is a certainty-based
method in that it prefers to label instances for which the sys-
tem has low confidence in its predictions (Lewis & Catlett

1994). Our work, however, incorporates user feedback to
more efficiently solicit annotated examples.

Methods for computing confidence estimates in natural
language tasks have been studied in domains such as text
classification (Gandrabur & Foster 2003), information ex-
traction (Scheffer, Decomain, & Wrobel 2001; Culotta &
McCallum 2004), and speech recognition (Gunawardana,
Hon, & Jiang 1998), although none of these consider label-
ing difficulty in their confidence estimates.

Thompson, Califf, & Mooney (1999) present an active
learning system for information extraction and parsing,
which are instances of structured learning tasks. While they
demonstrate the advantage of active learning for these tasks,
they require the annotator to fully label each training in-
stance, which is precisely what this paper aims to avoid.

Others have studied efficient ways to interactively train an
extraction system (Cardie & Pierce 1998; Caruana, Hodor,
& Rosenberg 2000); however, these methods do not use par-
tially labeled instances to reduce labeling effort. Partially
correct annotations are marked as incorrect.

This work can be viewed as an active learning exten-
sion to Kristjannson et al. (2004), which presents a frame-
work for interactive information extraction and describes
the details of correction propagation and confidence estima-
tion for CRFs. A CRF for contact record extraction is fully
trained and used to automatically populate a contact record
database. The interactive framework provides a minimal-
effort way to iteratively correct system errors until the pre-
dicted database is error-free. However, that work requires
that all corrections be manually provided by the user, in-
cluding segmentation decisions (with the exception of those
corrections enabled by correction propagation). Therefore,
it is not sensitive the amount of effort the user must invest
to correct each example. This paper presents a way to lever-
age correction propagation in an active learning setting to
directly reduce the number of segmentation labels the user
must provide, as well as a way to exploit multiple system
predictions to reduce overall labeling effort.

Additionally, Kristjannson et al. (2004) propose the Ex-
pected Number of User Actions (ENUA) measure to es-
timate the labeling effort to correctly enter all fields of a
record. This measure, however, does not address the distinc-
tion between boundary and classification labels. In particu-
lar, ENUA assumes it takes one action to segment and label
an entity. In this paper, we present measures that account for
the effort required for each of these actions.

The main contributions of this paper are (1) a new ac-
tive learning framework that incorporates the difficulty of
labeling each example, (2) a method to convert segmenta-
tion labeling into classification labeling using partially cor-
rect annotations, (3) a more detailed estimate of the number
of annotation actions required to label each example, and (4)
a mechanism for performing correction propagation when
corrections are given across multiple system predictions.

Annotation framework

We first provide a brief overview of the annotation frame-
work applied to IE. Given an IE learning algorithm L and



a set of unlabeled data U , the task is to iteratively solicit
annotations from the user and retrain the extractor.

At iteration t, the system operates as follows:

1. Rank each unlabeled instance by its confidence value
given by the current extractor Lt.

2. Select the least confident example u ∈ U to be labeled.

3. Present the user the top k labelings of u predicted by Lt.

4. If the correct labeling exists in the top k choices, allow the
user to select that labeling, and add u to the labeled data
set.

5. Otherwise, for any entity in these k predictions that is seg-
mented correctly but classified incorrectly, allow the user
to provide the correct type for this entity.

6. Based on these corrections, generate a new set of k predic-
tions, propagating these corrections to possibly fix other
errors.

7. If the correct labeling exists in the top k choices, allow
the user to select that labeling and add u to the labeled
dataset.

8. Otherwise, if the correct labeling still does not exist in
these k predictions, allow the user to manually correct one
of these incorrect k predictions with the true labeling.

Notice that the only step in which the user must manu-
ally segment entities is step 8. Steps 4 and 7 allow the user
to label the sequence by making a choice among k predic-
tions. Step 5 allows the user to provide correct entity types
to the learner, without manually segmenting fields. In step
6, the system performs constrained inference to generate a
new set of predictions that conform to the user’s corrections.
It is in this step that the system often automatically corrects
segmentation errors present in the first k choices.

This framework allows the user to rapidly and easily an-
notate examples and correct the system’s predictions, while
reducing the amount of effort spent labeling boundaries.

In the remaining sections, we describe in more detail the
components of this system. As some of these details are de-
pendent on the learner being used, we first briefly describe
CRFs, which we will use in our experiments.

Conditional Random Fields

The machine learning method we apply is a conditional
random field (CRF) (Lafferty, McCallum, & Pereira 2001),
a model successfully used in information extraction for
tasks such as named entity recognition. CRFs are undirected
graphical models that encode the conditional probability of
a set of output variables Y given a set of evidence variables
X. The set of distributions expressible by a CRF is specified
by an undirected graph G, where each vertex corresponds to
a random variable. If C = {{yc,xc}} is the set of cliques
determined by the edges in G, then the conditional probabil-
ity of y given x is

pΛ(y|x) =
1

Zx

∏

c∈C

φc(yc,xc; Λ)

where φ is a potential function parameterized by Λ and
Zx =

∑

y

∏

c∈C
φ(yc,xc) is a normalization factor. We as-

sume φc factorizes as a log-linear combination of arbitrary
features computed over clique c, therefore

φc(yc,xc; Λ) = exp

(

∑

k

λkfk(yc,xc)

)

The model parameters Λ = {λk} are a set of real-valued
weights typically learned from labeled training data by max-
imum likelihood estimation.

In the special case in which the designated output nodes
of the graphical model are linked by edges in a linear chain,
CRFs make a first-order Markov independence assumption
among output nodes, and thus correspond to finite state ma-
chines (FSMs). In this case CRFs can be roughly understood
as conditionally-trained hidden Markov models, with addi-
tional flexibility to effectively take advantage of complex
overlapping features.

Confidence estimation

A common form of active learning is certainty-based selec-
tive sampling (Lewis & Catlett 1994), which gives higher
priority to unlabeled examples for which the learner has
a low confidence in its predictions. Culotta & McCallum
(2004) describe the constrained forward-backward algo-
rithm to estimate the confidence of CRF predictions. This al-
gorithm calculates the probability that an entity (or an entire
sequence) has a particular labeling, which follows directly
from the semantics of undirected models: The probability
of the hidden states corresponding to an entity’s labeling is
the marginal probability of those hidden states given the ob-
served input. We refer the reader to Culotta & McCallum
(2004) for more details on this algorithm.

Using this method, we can assign a confidence estimate to
each unlabeled training example. By labeling the least con-
fident examples first, we can increase the CRF learning rate.

Selecting top predictions

To present the user with the top k predictions, we must ex-
tend the CRF inference algorithm to return k predictions,
instead of simply the top prediction. For linear-chain CRFs,
inference is performed using an analog of the Viterbi algo-
rithm, a dynamic program well-known for its use in infer-
ence in hidden Markov models (Rabiner 1989). There are
also well-established, efficient modifications to the Viterbi
algorithm that can calculate the top k optimal predictions,
often called n-best Viterbi (Schwartz & Chow 1990). This
algorithm can be viewed as a beam search through the space
of possible predictions. We apply this algorithm to inference
in CRFs to generate the k most probable predictions.

Correction propagation

In step 5, the annotator provides the true type for entities
that have been correctly segmented but incorrectly classi-
fied. The system must then produce the top k predictions
that conform to these new annotations.

Kristjannson et al. (2004) present the constrained Viterbi
algorithm, which modifies the traditional Viterbi algorithm



to prune from the search space those labelings that do not
agree with the given annotations.

The interesting capability of this algorithm is that by con-
straining the predicted label for one entity, the prediction
for another entity may change as well. As a simple ex-
ample, consider labeling the name “Charles Stanley” with
the fields FIRSTNAME and LASTNAME. If the system con-
fuses the first and last names, a naı̈ve correction system will
require two corrective actions. Using constrained Viterbi,
when the user corrects the FIRSTNAME field to be “Stan-
ley,” the system automatically changes the LASTNAME field
to “Charles.” Kristjannson et al. (2004) call this capability
correction propagation.

We extend this to our current task using an algorithm we
call n-best constrained Viterbi, which, as its name suggests,
combines n-best Viterbi with constrained Viterbi. This ex-
tension can be straight-forwardly implemented by constrain-
ing the n-best Viterbi algorithm to prune predictions that do
not agree with the annotations.

Using this algorithm, we enable the system to solicit cor-
rections for the classification of entities, which are then
propagated to correct both the classification and segmenta-
tion of other entities. In this way, we can reduce the amount
of effort expended on segmentation labeling.

Measuring annotation effort

To calculate the amount of effort required to label a training
example, we wish to abstract from the details of a particular
user interface, and instead quantify atomic user actions. In
the case of IE annotation, we define three atomic labeling
actions: START, END, and TYPE, corresponding to labeling
the start boundary, end boundary, and type of an entity.

Thus, labeling the input

<name> Jane Smith </name>

<title> CEO </title>

requires 2 START, 2 END, and 2 TYPE actions. The goal
of our annotation framework is to reduce the total number of
annotation actions.

We can see that a partially labeled example can require
fewer annotation actions. For example, consider the follow-
ing partially labeled record:

<name> Jane </name> Smith

<company> CEO </company>

This requires one END action to fix the ending boundary
of “Jane,” and one TYPE action to change “CEO” from a
company to a title. Thus, using the partial labeling has re-
duced the total number of required actions from 6 to 2.

By presenting the user with k predictions, we introduce
another action: If one of the k predictions is correct, the user
must choose this prediction. We call this action CHOICE.

When simulating corrections from the annotator, we accu-
mulate the number of times each action is performed. In the
first round, when the user corrects the types of correctly seg-
mented fields, the only action incurred is the TYPE action. If
none of the k constrained predictions are correct, then (and
only then) the user must perform the segmentation actions
START and END.

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0  200  400  600  800  1000  1200

f1

training size

least-confidence
random

Figure 1: Testing label F1 as a function of training set size.
LEASTCONFIDENCE labels the least confident instances
first, while RANDOM labels the instances in a random order.

It will generally be the case that some actions are more
expensive than others. For example, as mentioned earlier,
START and END actions may require more hand-eye coordi-
nation than TYPE actions. A cost-sensitive approach could
take this into account; however, in these experiments, we as-
sume each atomic action has unit cost.

Experiments

Using the fully annotated collection of extracted contact
records from Kristjannson et al. (2004), we simulate our
annotation framework and measure the performance of the
CRF with respect to the number of actions required to train
it.

For training and testing 2187 contact records (27,560
words) were collected from web pages and e-mails and 25
classes of entities were hand-labeled.1 Some data came from
pages containing lists of addresses, and about half came
from disparate web pages found by searching for valid pairs
of city name and zip code.

The features used in the CRF consisted of capitalization
features, 24 regular expressions over the token text (e.g.
CONSTAINSHYPHEN), and offsets of these features within
a window of size 5. We also used 19 lexicons, including
“US Last Names,” “US First Names,” “State names,” “Ti-
tles/Suffixes,” “Job titles,” and “Road endings.” Feature in-
duction was not used in these experiments.

We use 150 examples to train an initial CRF, 1018 to sim-
ulate user annotation, and 1019 to evaluate performance.

We first show that traditional active learning is benefi-
cial in this domain. Figure 1 plots the average label F1 ver-
sus training size where the order in which instances are

1The 25 fields are: FIRSTNAME, MIDDLENAME, LASTNAME,
NICKNAME, SUFFIX, TITLE, JOBTITLE, COMPANYNAME, DE-
PARTMENT, ADDRESSLINE, CITY1, CITY2, STATE, COUN-
TRY, POSTALCODE, HOMEPHONE, FAX, COMPANYPHONE, DI-
RECTCOMPANYPHONE, MOBILE, PAGER, VOICEMAIL, URL,
EMAIL, INSTANTMESSAGE



START + END TYPE CHOICE START + END + TYPE TOTAL

BASELINE 1345 999 519 2444 2963
k = 1 1342 1078 639 2420 3059
k = 2 977 916 719 1893 2612
k = 3 827 870 748 1697 2445
k = 4 722 837 766 1559 2325

Table 1: Number of actions to label 1018 examples. By converting segmentation actions into classification actions, we can
reduce the total number of annotation actions by 22%.
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Figure 2: Testing label F1 as a function of the total number
of annotation actions. At k = 4, performance plateaus with
roughly 800 fewer actions than the baseline.
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Figure 3: Testing label F1 as a function of the total number
of segmentation actions. The interactive system with k = 4
requires just over half the number of segmentation actions
of the baseline.

labeled is either random (RANDOM) or by order of least-
confidence (LEASTCONFIDENCE). Note that here each la-
beled instance must be manually labeled by the annotator.
This figure demonstrates that the order in which examples
are labeled can affect learning efficiency.

However, we desire a more explicit measure of labeling
effort, so we examine how F1 varies with the number of an-
notation actions. The next set of experiments all label the
training examples in order of least-confidence. We compare
two competing methods. BASELINE presents the user with
the top prediction, and the user must hand annotate all cor-
rections. The other method is the learning framework ad-
vocated in this paper, which presents the user with k possi-
ble segmentation, and interactively solicits label corrections.
We vary k from 1 to 4. Constrained inference and correction
propagation are used in one round of interactive labeling.

Figure 2 compares these methods, measuring the total
number of annotation actions required for each F1 value.
The interactive framework outperforms the baseline consis-
tently. On average, interactive labeling with k = 4 requires
22% fewer actions than BASELINE.

Note that k = 1 closely tracks the BASELINE perfor-
mance. This suggests that when we restrict the user correc-
tions to TYPE errors only, there are not enough errors cor-
rected by correction propagation to overcome the additional
cost of a round of user interaction. This is further confirmed
by the fact that performance increases with k.

To demonstrate the reduction in segmentation label-
ing, Figure 3 displays the number of segmentation actions
(START or END) needed to achieve a particular F1 value. On
average across the sampled F1 values, interactive labeling
with k = 4 requires 42% fewer segmentation actions.

Note the steep learning curve of the interactive method.
This suggests that the CRF’s poor segmentation perfor-
mance early in training is quickly overcome. The result is
that after a small number of actions, annotator can reduce
the number of boundary labels needed to train the CRF, and
instead mostly provide TYPE annotation.

Table 1 displays the total number of actions required to
label all the unlabeled data. Note that BASELINE incurs a
CHOICE action if the correct labeling is the top choice.

The results in Table 1 agree with the trends in Figures 2
and 3. Note that the increase in CHOICE actions is expected,
since there are many instances where the correct labeling is
in the top k choices. The advantage of this framework is that
the cost incurred by these CHOICE actions are outweighed by
the reduction in other actions that they enable. Note also that
this reduction in effort is manifest even assuming all actions



incur the same cost. If we assume that boundary annotation
is more costly than TYPE annotation, these difference will
be even more pronounced.

Discussion

It is invariably difficult to simulate the effort of a user’s in-
teraction with a system; ultimately we would like to perform
user studies to measure labeling time exactly. While the pro-
posed metrics make few assumptions about the user inter-
face, there are certainly some costs we have not considered.
For example, the current metrics do not explicitly account
for the time required to read a labeling. However, the action
CHOICE, which is incremented whenever a user picks the
correct labeling among the top k predictions, can be seen
to encompass this action. Placing a higher cost on CHOICE

can account for the reading effort, possibly altering the op-
timal value of k. Indeed, picking the best value of k can be
achieved by first choosing a relative cost for reading, then
performing simulations.

Also note that this work can be seen as a way to facil-
itate the wide-spread use of machine learning information
extraction algorithms. End-user machine learning systems
often require additional training examples to personalize the
system to the user’s data (for example, Apple Inc.’s train-
able junk mail filter). The easier it is for an end-user to train
a system, the more likely it is that the system will be well-
received, frequently used, and be given enough training data
to provide high accuracy performance. This “learning in the
wild” capability can lead to end-users more rapidly adopting
learning technologies to perform information extraction on
their own data.

Conclusions

We have described an active learning framework that explic-
itly models the effort required to label each example, and
have demonstrated that it can reduce the total number of an-
notation actions to train an information extraction system by
22%.

From these results, we can conclude that methods aiming
to reduce labeling effort can benefit from considering not
only how many examples an annotator must label, but also
how much effort is required to label each example.
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