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Abstract

Discriminatively-trained probabilistic models

are very popular in NLP because of the lat-

itude they afford in designing features. But

training involves complex trade-offs among

weights, which can be dangerous: a few highly-

indicative features can swamp the contribution

of many individually weaker features, caus-

ing their weights to be undertrained. Such a

model is less robust, for the highly-indicative

features may be noisy or missing in the test

data. To ameliorate this weight undertrain-

ing, we propose a new training method, called

feature bagging, in which separate models are

trained on subsets of the original features, and

combined using a mixture model or a prod-

uct of experts. We evaluate feature bagging

on linear-chain conditional random fields for

two natural-language tasks. On both tasks, the

feature-bagged CRF performs better than sim-

ply training a single CRF on all the features.

1 Introduction

Discriminative methods for training probabilistic models

have enjoyed wide popularity in natural language pro-

cessing, such as in part-of-speech tagging (Toutanova et

al., 2003), chunking (Sha and Pereira, 2003), named-

entity recognition (Florian et al., 2003; Chieu and Ng,

2003), and most recently parsing (Taskar et al., 2004).

A discriminative probabilistic model is trained to maxi-

mize the conditional probability p(y|x) of output labels

y given input variables x, as opposed to modeling the

joint probability p(y,x), as in generative models such as

the Naive Bayes classifier and hidden Markov models.

The popularity of discriminative models stems from the

great flexibility they allow in defining features: because

the distribution over input features p(x) is not modeled,

it can contain rich, highly overlapping features without

making the model intractable for training and inference.

In NLP, for example, useful features include word bi-

grams and trigrams, prefixes and suffixes, membership in

domain-specific lexicons, and information from semantic

databases such as WordNet. It is not uncommon to have

hundreds of thousands or even millions of features.

But not all features, even ones that are carefully engi-

neered, improve performance. Adding more features to a

model can hurt its accuracy on unseen testing data. One

well-known reason for this is overfitting: a model with

more features has more capacity to fit chance regulari-

ties in the training data. In this paper, however, we focus

on another, more subtle effect: adding new features can

cause existing ones to be underfit. Training of discrimi-

native models, such as regularized logistic regression, in-

volves complex trade-offs among weights. A few highly-

indicative features can swamp the contribution of many

individually weaker features, even if the weaker features,

taken together, are just as indicative of the output. Such

a model is less robust, for the few strong features may be

noisy or missing in the test data.

This effect was memorably observed by Dean Pomer-

leau (1995) when training neural networks to drive vehi-

cles autonomously. Pomerleau reports one example when

the system was learning to drive on a dirt road:

The network had no problem learning and then

driving autonomously in one direction, but

when driving the other way, the network was

erratic, swerving from one side of the road to

the other. . . . It turned out that the network

was basing most of its predictions on an easily-

identifiable ditch, which was always on the

right in the training set, but was on the left

when the vehicle turned around. (Pomerleau,

1995)

The network had features to detect the sides of the road,

and these features were active at training and test time,

although weakly, because the dirt road was difficult to

detect. But the ditch was so highly indicative that the

network did not learn the dependence between the road

edge and the desired steering direction.



In this paper, we examine a novel way to avoid fea-

ture undertraining in discriminative sequence models. We

train separate models for groups of competing features—

in the driving example, one model with the ditch features,

and one with the side-of-the-road features—and then av-

erage them into a single model.

We test these methods on conditional random fields

(CRFs) (Lafferty et al., 2001), which is the class of

discriminatively-trained undirected models. On two

natural-language tasks, we show that feature bagging per-

forms significantly better than training a single CRF with

all available features.

2 Conditional Random Fields

Conditional random fields (CRFs) (Lafferty et al., 2001)

are undirected graphical models that are discriminatively

trained. Let G be an undirected graphical model over ran-

dom vectors y and x. As a typical special case, y = {yt}
and x = {xt} for t = 1, . . . , T , so that y is a label-

ing of an observed sequence x. For a given collection

C = {{yc,xc}} of cliques in G, a CRF defines the con-

ditional probability of an assignment to labels y given the

observed variables x as:

pΛ(y|x) =
1

Z(x)

∏

c∈C

Φ(yc,xc), (1)

where Φ is a potential function and the partition function

Z(x) =
∑

y

∏

c∈C Φ(yc,xc) is a normalization factor

over all possible label assignments.

We assume the potentials factorize according to a set

of features {fk}, which are given and fixed, so that

Φ(yc,xc) = exp

(

∑

k

λkfk(yc,xc)

)

(2)

The model parameters are a set of real weights Λ = {λk},

one weight for each feature.

Many applications have used the linear-chain CRF, in

which a first-order Markov assumption is made on the

hidden variables. In this case, the cliques of the condi-

tional model are the nodes and edges, so that there are

feature functions fk(yt−1, yt,x, t) for each label transi-

tion. (Here we write the feature functions as potentially

depending on the entire input sequence.) Feature func-

tions can be arbitrary. For example, a feature function

fk(yt−1, yt,x, t) could be a binary test that has value 1 if

and only if yt−1 has the label “adjective”, yt has the label

“proper noun”, and xt begins with a capital letter.

Linear-chain CRFs correspond to finite state machines,

and can be roughly understood as conditionally-trained

hidden Markov models (HMMs). This class of CRFs

is also a globally-normalized extension to Maximum En-

tropy Markov Models (McCallum et al., 2000) that avoids

the label bias problem (Lafferty et al., 2001).
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Figure 1: Effect of a single strong feature drowning out

weaker features in logistic regression on synthetic data.

The x-axis indicates the strength of the strong feature. In

the top line, the strong feature is present at training and

test time. In the bottom line, the strong feature is missing

from the training data at test time.

Note that the number of state sequences is exponential

in the input sequence length T . In linear-chain CRFs, the

partition function Z(x), the node marginals p(yi|x), and

the Viterbi labeling can be calculated efficiently by vari-

ants of the dynamic programming algorithms for HMMs.

3 Weight Undertraining

In the section, we give a simple demonstration of weight

undertraining. In a discriminative classifier, such as

a neural network or logistic regression, a few strong

features can drown out the effect of many individually

weaker features, even if the weak features are just as

indicative put together. To demonstrate this effect, we

present an illustrative experiment using logistic regres-

sion, because of its strong relation to CRFs. (Conditional

random fields are in fact the generalization of logistic re-

gression to sequence data.)

Consider random variables x1 . . . xn, each distributed

as independent standard normal variables. The output

y is a binary variable whose probability depends on all

the xi; specifically, we define its distribution as y ∼
Bernoulli(logit(

∑

i xi)). The correct decision boundary

in this synthetic problem is the hyperplane tangent to the

weight vector (1, 1, . . . , 1). Thus, if n is large, each xi

contributes weakly to the output y. Finally, we include

a highly indicative feature xS = α
∑

i xi + N (µ =



0, σ2 = 0.04). This variable alone is sufficient to deter-

mine the distribution of y. The variable α is a parameter

of the problem that determines how strongly indicative

xS is; specifically, when α = 0, the variable xS is ran-

dom noise.

We choose this synthetic model by analogy to Pomer-

leau’s observations. The xi correspond to the side of

the road in Pomerleau’s case—the weak features present

at both testing and training—and xS corresponds to the

ditch—the strongly indicative feature that is corrupted at

test time.

We examine how badly the learned classifier is de-

graded when xS feature is present at training time but

missing at test time. For several values of the weight pa-

rameter α, we train a regularized logistic regression clas-

sifier on 1000 instances with n = 10 weak variables. In

Figure 1, we show how the amount of error caused by

ablating xS at test time varies according to the strength

of xS . Each point in Figure 1 is averaged over 100

randomly-generated data sets. When xS is weakly in-

dicative, it does not affect the predictions of the model at

all, and the classifier’s performance is the same whether

it appears at test time or not. When xS becomes strongly

indicative, however, the classifier learns to depend on it,

and performs much more poorly when xS is ablated, even

though exactly the same information is available in the

weak features.

4 Feature Bagging

In this section, we describe the feature bagging method.

We divide the set of features F = {fk} into a collec-

tion of possibly overlapping subsets F = {F1, . . . FM},

which we call feature bags. We train individual CRFs

on each of the feature bags using standard MAP training,

yielding individual CRFs {p1, . . . pM}.

We average the individual CRFs into a single com-

bined model. This averaging can be performed in several

ways: we can average probabilities of entire sequences,

or of individual transitions; and we can average using the

arithmetic mean, or the geometric mean. This yields four

combination methods:

1. Per-sequence mixture. The distribution over label

sequences y given inputs x is modeled as a mixture

of the individual CRFs. Given nonnegative weights

{α1, . . . αm} that sum to 1, the combined model is

given by

pSM(y|x) =
M
∑

i=1

αipi(y|x). (3)

It is easily seen that if the sequence model is de-

fined as in Equation 3, then the pairwise marginals

are mixtures as well:

pSM(yt, yt−1|x) =
M
∑

i=1

αipi(yt, yt−1|x). (4)

The probabilities pi(yt, yt−1|x) are pairwise

marginal probabilities in the individual mod-

els, which can be efficiently computed by the

forward-backward algorithm.

It is because of Equation 4 that we can efficiently

compute the maximum-probability state sequence

in the mixture model. Because the sequence mix-

ture is still a linear-chain, it can be written in

terms of transition probabilities as pSM(y|x) =
∏

t pSM(yt|yt−1,x). And each of these transition

probabilities can be easily computed by dividing

Equation 3 by the single-node marginal pSM(yt−1|x).

So we can efficiently compute the maximum-

probability state sequence in the combined model by

first running forward-backward on each of the indi-

vidual models, combining the pairwise marginals as

in Equation 4, computing the transition probabilities

for the mixture, and then using the standard Viterbi

algorithm.

The mixture weights can be selected in a variety of

ways, including equal voting, as in traditional bag-

ging, or EM.

2. Per-sequence product of experts. The distribution

over label sequences y given inputs x is modeled

as a product of experts (Hinton, 2000). In a prod-

uct of experts, instead of summing the probabilities

from the individual models, we multiply them to-

gether. Essentially we take a geometric mean in-

stead of an arithmetic mean. Given nonnegative

weights {α1, . . . αm} that sum to 1, the product

model is

p(y|x) ∝
M
∏

i=1

(pi(y|x))
αi . (5)

The combined model can also be viewed as a condi-

tional random field whose features are the log prob-

abilities from the original models:

p(y|x) ∝ exp

{

M
∑

i=1

αi log pi(y|x)

}

(6)

By substituting in the CRF definition, it can be seen

that the model in Equation 6 is simply a single CRF

whose parameters are a weighted average of the

original parameters. So feature bagging using the

product method does not increase the family of mod-

els that are considered: standard training of a single



CRF on all available features could potentially pick

the same parameters as the bagged model.

Nevertheless, in Section 5, we show that this feature

bagging method performs better than standard CRF

training.

The previous two combination methods combine the

individual models by averaging probabilities of en-

tire sequences. Alternatively, in a sequence model

we can average probabilities of individual transitions

pi(yt|yt−1,x). Computing these transition proba-

bilities requires performing probabilistic inference in

each of the original CRFs, because pi(yt|yt−1,x) =
∑

y\yt,yt+1
p(y|yt−1,x).

This yields two other combination methods:

3. Per-transition mixture. The transition probabilities

are modeled as

pTM(yt|yt−1,x) =
M
∑

i=1

αipi(yt|yt−1,x) (7)

Intuitively, the difference between per-sequence and

per-transition mixtures can be understood genera-

tively. In order to generate a label sequence y given

an input x, the per-sequence model selects a mix-

ture component, and then generates y using only

that component. The per-transition model, on the

other hand, selects a component, generates y1 from

that component, selects another component, gener-

ates y2 from the second component given y1, and so

on.

4. Per-transition product of experts. Finally, we can

combine the transition distributions using a product

model

pSP(yt|yt−1,x) ∝
M
∏

i=1

p(yt|yt−1,x)αi (8)

Each transition distribution is thus—similarly to the

per-sequence case—an exponential-family distribu-

tion whose features are the log transition proba-

bilities from the individual models. Unlike the

per-sequence product, there is no weight-averaging

trick here, because the probabilities p(yt|yt−1,x)
are marginal probabilities.

Considered as a sequence distribution p(y|x),
the per-transition product is a local-normalized

maximum-entropy Markov model (McCallum et al.,

2000). It would not be expected to suffer from label

bias, however, because each of the features take the

future into account; they are marginal probabilities

from CRFs.

Those are the four combination methods we propose.

Although for concreteness we describe them in terms of

sequence models, they may be generalized to arbitrary

graphical structures.

5 Results

We evaluate feature bagging on two natural language

tasks, named entity recognition and noun-phrase chunk-

ing. The purpose of the named entity recognition task

is to identify all of the named entities corresponding to

people, locations, organizations and other miscellaneous

entities. We use the standard CoNLL 2003 English data

set, which is taken from Reuters newswire and consists

of a training set of 14987 sentences, a development set of

3466 sentences, and a testing set of 3684 sentences. For

noun-phrase chunking the goal is to extract base noun

phrases from sentences. We use the standard CoNLL

2000 data set, which consists of 8936 sentences for train-

ing and 2012 sentences for testing, taken from Wall Street

Journal articles annotated by the Penn Treebank project.

As is standard, we compute precision and recall for

both tasks based upon the chunks (or named entities for

CoNLL 2003) as

P =
# correctly labeled chunks

# labeled chunks

R =
# correctly labeled chunks

# actual chunks

We report the harmonic mean of precision and recall as

F1 = (2PR)/(P + R).

For both tasks, we use per-sequence product-of-experts

feature bagging with two feature bags which we manu-

ally choose based on prior experience with the data set.

For each experiment, we report two baseline CRFs, one

trained on union of the two feature sets, and one trained

only on the features that were present in both bags, such

as lexical identity and regular expressions.

For the named entity task, we use two feature bags

based upon character ngrams and lexicons. Both bags

contain a set of baseline features, such as word identity

and regular expressions (Table 4). The ngram CRF in-

cludes binary features for character ngrams of length 2,

3, and 4 and word prefixes and suffixes of length 2, 3, and

4. The lexicon CRF includes membership features for a

variety of lexicons containing people names, places, and

company names. The combined model had 2,342,543

features. The mixture weight α is selected using the de-

velopment set.

For the chunking task, the two feature sets were se-

lected based upon part of speech and lexicons. Again,

a set of baseline features was used, similar to the regular

expressions and word identity features used on the named



Model F1

Per-sequence Product of Experts 86.61

Per-transition Product of Experts 86.58

Per-sequence Mixture 86.46

Per-transition Mixture 86.42

Table 1: Reults of various bagging methods on the

CoNLL 2003 Named Entity Task.

entity task (Table 4). The first bag also includes part-of-

speech tags generated by the Brill tagger and the conjunc-

tions of those tags used by Sha and Pereira (2003). The

second bag uses lexicon membership features for lexi-

cons containing names of people, places, and organiza-

tions. In addition, we use part-of-speech lexicons gener-

ated from the entire Treebank, such as a list of all words

that appear as nouns. These lists are also used by the Brill

tagger (Brill, 1994). There were 536,203 features used in

the combined model. The mixture weight α is selected

using 2-fold cross validation.

In both data sets, the bagged model performs better

than the single CRF trained with all of the features. For

the named entity task, bagging improves performance

from 85.45% to 86.61%, with a substantial error reduc-

tion of 8.32%. This is lower than the best reported results

for this data set, which is 88.76% (Florian et al., 2003),

but our model can still be improved by the inclusion of

more extensively engineered features, such as the ones

described in (Chieu and Ng, 2003). For the chunking

task, bagging improved the performance from 94.34% to

94.77%, with an error reduction of 7.60%. In both data

sets, the improvement is statistically significant (McNe-

mar’s test; p < 0.01).

On the chunking task, the bagged model also outper-

forms the models of Kudo and Matsumoto (2001) and

Sha and Pereira (2003), the best previously reported re-

sults on this data set. Although we used lexicons that

were not included in the previous models, the additional

features actually did not help the original CRF. It was

only with feature bagging that these lexicons improved

performance.

Finally, we compare the four bagging methods of Sec-

tion 4: pre-transition mixture, pre-transition product of

experts, and per-sequence mixture. On the named en-

tity data, all four models performed in a statistical tie,

with statistically significant difference between their re-

sults (Table 1).

6 Previous Work

Within classification, there is literature on combining

models trained on feature subsets. Ho (1995) creates

an ensemble of decision trees by randomly choosing a

feature subset on which to grow each tree using stan-

dard decision tree learners. Other work along these lines

Model F1

Single CRF(Base Feat.) 81.52
Single CRF(All Feat.) 85.45

Combined CRF 86.61

Table 2: Results for the CoNLL 2003 Named Entity

Task. The bagged CRF performs significantly better than

a single CRF with all available features (McNemar’s test;

p < 0.01).

Model F1

Single CRF(Base Feat.) 89.60
Single CRF(All Feat.) 94.34
(Sha and Pereira, 2003) 94.38
(Kudo and Matsumoto, 2001) 94.39

Combined CRF 94.77

Table 3: Results for the CoNLL 2000 Chunking Task.

The bagged CRF performs significantly better than a sin-

gle CRF (McNemar’s test; p < 0.01), and also better than

previously published results.

include Bay’s (1998) using nearest-neighbor classifiers,

and more recently Bryll et al (2003). Also, in Breiman’s

work on random forests (2001), ensembles of random de-

cision trees are constructed by choosing a random feature

at each node. This literature mostly has the goal of im-

proving accuracy by reducing the classifier’s variance.

In contrast, O’Sullivan et al. (2000) specifically focus

on increasing robustness by training classifiers to use all

of the available features. Their algorithm FeatureBoost

is analogous to AdaBoost, except that the meta-learning

algorithm maintains weights on features instead of on in-

stances. Feature subsets are automatically sampled based

on which features, if corrupted, would most affect the

ensemble’s prediction. They show that FeatureBoost is

more robust than AdaBoost on synthetically corrupted

UCI data sets. Their method does not easily extend to se-

quence models, especially natural-language models with

hundreds of thousands of features.

We are not aware of previous work on feature sub-

spaces for ensembles of sequence models. Altun, Hof-

mann, and Johnson (2003) describe a boosting algorithm

for sequence models, but they boost instances, not fea-

tures. In fact, the main advantage of their technique is

increased model sparseness, whereas in this work we aim

to fully use more features to increase accuracy and ro-

bustness.

7 Conclusion

Discriminatively-trained probabilistic models have had

much success in applications because of their flexibil-

ity in defining features, but sometimes even highly-



wt = w
wt begins with a capital letter
wt contains only capital letters
wt is a single capital letter
wt contains some capital letters and some lowercase
wt contains a numeric character
wt contains only numeric characters
wt appears to be a number
wt is a string of at least two periods
wt ends with a period
wt contains a dash
wt appears to be an acronym
wt appears to be an initial
wt is a single letter
wt contains punctuation
wt contains quotation marks
Pt = P

All features for time t + δ for all δ ∈ [−2, 2]

Table 4: Baseline features used in all bags. In the above

wt is the word at position t, Pt is the POS tag at position

t, w ranges over all words in the training data, and P
ranges over all chunk tags supplied in the training data.

The “appears to be” features are based on hand-designed

regular expressions.

indicative features can fail to increase performance. We

have shown that this can be due to feature undertrain-

ing, where highly-indicative features prevent training of

many weaker features. One solution to this is feature bag-

ging: repeatedly selecting feature subsets, training sepa-

rate models on each subset, and averaging the individual

models.

On large, real-world natural-language processing

tasks, feature bagging significantly improves perfor-

mance, even with only two feature subsets. Areas for fu-

ture work include automatically determining the feature

subsets.
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