
Content-based search in peer-to-peer networks

ABSTRACT
Gnutella, a well-known P2P system, uses resources inefficiently
when directly applied to information retrieval problems. In this
paper we propose an efficient search mechanism that extends the
standard Gnutella protocol to support content-based retrieval in
P2P networks. The idea is to estimate locally the relevance of
peers when they receive query messages. Only those peers esti-
mated as relevant will retrieve the query and send response
messages back to the source. Based on a large real testbed
evaluation, we show that our method improves the tradeoff be-
tween the quality of retrieval and resources consumed while
preserving most advantages of standard Gnutella.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Search proc-
ess;H.3.4[Systems and Software]:Distributed Systems,
Performance Evaluation

General Terms

Algorithms, Performance, Design, Experimentation

Keywords
Search, Content-based, Peer-to-peer, Retrieval,

1. INTRODUCTION
Peer-to-Peer (P2P) networks are a powerful architecture
for sharing computing resources and data. In the strictest
definition, each peer has the functionality of both server
and client, and accordingly, can both provide and request
information. The decentralized nature of P2P systems can
be an advantage over client-server architectures. First, they
tend to be more fault-tolerant as there is no single point-of-
failure. Second, processing, network traffic, and data stor-
age can be balanced over all peers, which enables the
network to scale well with the number of peers. These ad-
vantages come with the cost of requiring a more

complicated strategy to locate specific resources.

Because they may support a large number of peers and
have no central index, efficient search in a P2P system can
be a challenge. In general, peers can locate resources or
content by propagating queries through the network and
then waiting for results from peers with relevant results.
Many specific strategies have been proposed. The simplest
approach is taken by the Gnutella [1] protocol, which
broadcasts query messages to each neighbor, hop-by-hop
across the network within some distance from the source.
Although it is not efficient in terms of network bandwidth,
this technique is simple, robust, and has a minimum re-
quirement on cooperation and consistency among peers.
For example, it allows arbitrary network topologies, and
each peer stores no information regarding the state of oth-
ers.

Distributed Hash Tables (DHT) (e.g., [2]) are more effi-
cient in terms of network bandwidth, but scale poorly with
the number of terms (i.e., keys) indexed per document. If
the entire filename is one key, then the cost of indexing
content is cheap; indexing documents based on terms that
appear in the content itself is impossible with a DHT.
Therefore, Internet-based digital libraries of text documents
cannot be supported with DHTs or Gnutella, though it is
still desirable to support a sophisticated semantic-based
search with a P2P architecture.

Some techniques, such as SETS [3], try to reorganize the
topology of network so that topic-related peers are close to
each other. By taking advantage of a rigid topology, net-
work traffic can be reduced. In other techniques, such as
the localized search mechanism proposed by Kalogeraki, et
al [4], each node maintains an index or a profile of its
neighbors’ content that is used rank its neighbors. Search is
then restricted to what are believed to neighbors with rele-
vant results.

The cost of those approaches, like in DHTs is increased
coordination among peers, which must be sustained as
peers join and leave, and change their content. Moreover,
each peer has an increase storage cost to participate in the
system.

In this paper we propose an efficient search mechanism
that extends standard Gnutella protocol to support content-

Yun Zhou W. Bruce Croft Brian Neil Levine

yzhou@cs.umass.edu croft@cs.umass.edu brian@cs.umass.edu

Dept. of Computer Science , University of Massachusetts, Amherst, MA 01003

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

based retrieval in P2P networks. Our approach is for peers
themselves to estimate their relevance to each query they
receive. If they judge themselves to have a relevant re-
sponse, peers send a response messages directly back to the
source. Our approach eliminates coordination that other
protocols incur during membership or content changes, and
it reduces the number of responses that a source receives to
a tunable amount. Although our approach does not directly
lower the number of queries received by each peer, our use
of a random topology allows us to localize queries so that
they do not reach every peer in the system.

We evaluated our approach on a large testbed with thou-
sands of peers. We found that the tradeoff between the
quality of retrieval and resources consumed is greatly im-
proved while most advantages of standard Gnutella are
preserved. For example, according to our experiments,
Gnutella consumes more than three times the network
bandwidth required by our approach for the same level of
recall.

The rest of the paper is organized as follows: Section 2
describes related work. Section 3 introduces our resource-
efficient algorithm for content-based search in P2P net-
works. We present our testbed and evaluation
methodologies in Sections 4 and 5. Experimental results
are shown in Section 6. Section 7 summarizes the conclu-
sions of this paper and discusses future work.

2. RELATED WORK

Search in peer-to-peer networks is a problem rich in previ-
ous work.

As we stated, Gnutella [5] takes the simplest possible ap-
proach to search. A peer forwards query messages to all of
its neighbors until some distance from the source is
reached. Since the query routing policy in Gnutella treats
each peer equally regardless of queries, Gnutella is very
inefficient in network bandwidth.

Other approaches improve the efficiency of routing queries
by storing information about other peers’ content. For ex-
ample, Kalogeraki, et al [4] proposed storing profiles of the
past query behavior of each neighbor to improve the future
search efficiency. This approach is not robust since it as-
sumes that users would submit similar queries. Yang, et al
[6] proposed a technique where each peer maintains an
index of other peers’ resources who are within some num-
ber of hops. Maintaining such an index is costly if topology
or membership changes are frequent. One advantage of our
method is that each node is fully decentralized and does not
need to store other peers’ information.

Another idea to improve search efficiency in P2P networks
is to reorganize the topology of networks [7] [3]. For in-

stance, Mayank, et al [3] propose maintaining a topology
where peers grouped together if they have libraries of simi-
lar topics; queries are then routed only to the closest
clusters. Although the search algorithm can take advantage
of the reorganized topology to improve efficiency, the ap-
proach suggests some trade-offs. First, placing peers
together based on topic may degrade network performance
if juxtapose peers have poor bandwidth between them. Sec-
ond, maintenance costs does not scale well with mem-
bership changes. And finally, in the quality of the clusters,
which depends on the characteristics of collections of
peers, has a large affect on the success of the reorganized
topology [3].

Lu, et al [8] addresses the problem of content-based re-
trieval in hybrid P2P architectures. In contrast to pure P2P
systems where all nodes are equal and no functionality is
centralized, hybrid P2P architectures introduce directory
nodes responsible for regionally centralized directory ser-
vices. In [8] a directory node, also known as super peer,
keeps pruned indices of its neighboring leaf nodes and use
a KL-divergence-based similarity between query and col-
lection to rank those leaf nodes. Query messages are only
forwarded to top ranked leaf nodes. In our approach each
peer locally decides its relevance to the query by calculat-
ing the same KL-divergence-based similarity. The
advantage of our approach is that there are no directory
nodes that are costly to maintain.

Distributed IR research assumes a central sever-client ar-
chitecture where the central server has direct access to the
indices of all collections in clients. One of distributed IR
problems most related to this paper is resource selection,
that is, how to pick the most relevant collections.

The CORI resource selection algorithm [9] uses a Bayesian
inference network model in the INQUERY system to rank
collections. Although it is stable and effective, it is hard to
integrate this method to search engines other than
INQUERY. Xu et al[10] proposed a method where collec-
tions are ranked by Kullback-Leibler divergence between
query language model and collection model. In [11] Luo Si
et al used the very similar approach for resource selection.
Both methods estimate language models by word fre-
quency. The only differences are in details on how to
estimate the language models. In our experiments we use
the same approach to estimate the relevance of a collection
given a query.

3. SEARCH IN P2P NETWORKS
In this section, we first define our search problem and de-
tail our assumptions. Then, we introduce our efficient
search algorithm, which is an extension of the Gnutella
approach.

3.1 Problem definitions and assumptions
In a P2P network each peer has the same role and the com-
munication between any two nodes is symmetric. Such a
network can be viewed as an undirected graph. Each node
represents one peer in the network. If peer A directly con-
nects to peer B then there is a logical edge between the two
corresponding nodes. In that case, A is called the neighbor
of B and vice versa. In this paper, we also assume that the
network graph can be arbitrary as long as it is fully con-
nected and we do not modify the topology.

Each peer is assigned a local document collection on which
some IR search engine runs. Peers return top-ranked docu-
ments as the result for a given query. For simplicity, we
assume each search engine is optimal, that is, it returns all
of relevant documents it has. The queries considered here
are in natural language style such as, “information about
what manatees eat”.

The peer who submits a query to the network is called the
source of the query. The source can only send the query
message to its neighbors and the query message is propa-
gated over the network by their sending to their neighbors.
The routing protocol decides to which neighbor the query
message is sent and when to stop sending it. The peer re-
ceiving the query message, if it decides to answer the
query, will run the search engine and send back the re-
sponse message containing retrieved documents for the
query. Here we assume that the response message is sent
back directly to the source.

3.2 The efficient search mechanism: extend-

ing the Gnutella protocol
A naive application of Gnutella to content-based retrieval
would flood query messages within some predefined search
depth limit and all peers receiving the query message do
retrieval and reply to the source. By doing so, a lot of net-
work bandwidth is wasted since only a few peers have
documents relevant to a given query.

Our goal is to achieve a desired level of recall as efficiently
as possible while preserving the advantages of Gnutella,
which includes the lack of coordination among nodes. In a
random graph, peers that have relevant documents are ran-
domly distributed across the network. Thus, on average, the
more peers that are visited by a query, the more relevant
documents the source peer may receive; and consequently,
the more bandwidth that is consumed. We cannot achieve a
sufficient recall level by only visiting a small number of
nodes in our defined problem. There is an unavoidable
trade-off between the quality of retrieval and the network
bandwidth. We are interested in how to minimize this
trade-off. Since a peer is visited only when it receives the
query message, it is difficult to reduce the number of query
messages if a reasonable recall level is required. However,

the response message, which is much larger than the query
message, can be used more efficiently.

We modify Gnutella such that, when receiving query mes-
sages, only peers estimated as relevant reply to the source.
No matter estimated as relevant or not, all peers receiving
query messages still forward query messages to all of their
neighbors until a distance from the source is reached. At
each peer receiving the query message, we calculate
P(Q|C), the probability of generating query, Q, from the
collection, C, of a peer. Then we set a threshold. Peers with
P(Q|C) above the threshold are regarded as relevant. Only
relevant peers will retrieve the query against their collec-
tions and send back the source retrieval results.

Even though our approach floods query messages, it is still
resource-efficient. The reasons for this are two-fold. First,
the size of query message is much smaller than the size of
response message that contains retrieval results. Response
messages are well utilized in our algorithm. Secondly, in
traditional server-client architecture or hybrid P2P architec-
ture, a central server or a super peer is responsible for
calculating the relevance of a larger number of neighboring
peers in order to rank them. In our approach such a re-
source-consuming computation is divided over individual
peers, which is desirable because of the decentralized na-
ture of P2P networks.

This probability, P(Q|C), is computed as follows [11]

(|) { (|) (1) (|) }

(,)
(|) ,

| | | |

(,)
(|)

| | | |

q Q

P Q C P q C P q G

q C
w h e r e P q C

C

q G
P q G

G

λ λ
∈

= + −

=

=

∏

where C is the local collection of a peer and G is the global
collection that can be obtained from some large general-
purpose English collection. #(q,C) and #(q,G) denote the
total counts of the term q in the collection C and G respec-
tively. ||C|| and ||G|| denote the total counts of all terms in
the collection C and G, respectively. P(q|G) can be seen as
a global information and can remain stable for different
collections as long as they are large enough and general-

purpose. λ is the smoothing parameter and in section 6 we

vary λ to investigate its effect on performance.

P(Q|C) was proposed by Xu and Croft [10] for the resource
selection problem in distributed IR. P(Q|C) measures the
similarity between the query model and the collection
model. So the larger the P(Q|C) is, the more likely the col-
lection is relevant.

Given P(Q|C), we need to set a threshold to make a binary
decision: relevant or not. Here we define the original
threshold as

t = P (q | G)
q∈Q

∏

for a query Q. It represents the likelihood for a query Q to
be generated from a general and large English corpus. In
section 6 we vary the threshold to see its effect on perform-
ance.

In addition to the local collection frequency P(q|C), which
is already in the local index , each peer also needs to store
the global collection frequency P(q|G). Since usually the
query language only covers a quite small part of the vo-
cabulary of the global collection, the vocabulary of global
collection can be greatly pruned to save space on each peer.
We also notice that P(Q|C) can be cheaply calculated by
simply looking up query terms in the two collection fre-
quency tables. All of these factors make the computation of
P(Q|C) efficient and feasible.

4. EXPERIMENTAL SETTINGS
We use TREC web corpus WT10G [12] as our test collec-
tion. This corpus has many properties of real Web data,
such as a realistic distribution of the number of documents
per web site. There are about 16.9 million documents in
WT10G. In this section, we describe how our testbed was
set up, the network topology, and the query set we used.

4.1 Testbed Setup
We group documents in WT10G into more than ten thou-
sand collections according to their IP addresses. Each IP
address corresponds to one peer. Table 1 shows the number
of peers, and the number of documents per peer, where the
number of documents is binned into four ranges. For ex-
ample, there are 6,188 peers with a collection size of
between 5 and 29 documents.

N(the #
of
docs)

[5,29] [30,59] [60,99] More
than
100

The #
of peers

6188 1951 1068 2305

Table 1. document-peer distribution in WT10G

Many peers have libraries with only a few documents; we
select only those peers that have at least 30 documents.
Thus we use 5,324 peers, and a total of 16.1 million docu-
ments in all. Each peer has one subset where all documents
are from the same IP address. Our testbed covers most of
documents in WT10G and has a large number of nodes.

4.2 Network Topology
The connections between peers were generated randomly.
Since recent studies have shown that Internet graphs follow
power laws [13], to make our experiments more real, we
adopt the Power-Law Out-Degree algorithm in [14] to gen-
erate such a random graph. Peers are assigned randomly to
nodes in a one-to-one correspondence and there are 5,324
nodes.

4.3 Query Set
We use 50 title queries from TREC 2001 web ad hoc topics
that have relevance judgments from the TREC corpus [16].
According to our statistics, 4,603 peers do not have any
relevant documents for any query in the query set. So rele-
vant documents are distributed over a very small number of
peers, which makes locating them difficult in a random
topology.

5. EVALUATION METHODOLOGY
In P2P networks, we want to minimize resources consumed
for a fixed level of retrieval quality. In this paper, resources
we are interested in are network bandwidth and query proc-
essing cost. We measure retrieval quality with two metrics:
recall and a modified version of Mean Reciprocal Rank
(MRR). We evaluate our approach in the following three
ways: query-processing efficiency, network efficiency, and
a modified version of MRR.

5.1 Query-processing efficiency
Here the query-processing cost is referred to as the cost
consumed by the search engine on individual peers. As-
suming each peer uses the same search engine, query-
processing cost can be measured by the number of peers
required to do retrieval given a query. We are interested in
this measure because many effective retrieval algorithms
are both time and space consuming and peers may receive a
lot of queries at the same time. On the other hand, in a real
P2P system, given a query, many peers do not contain any
relevant documents. In order to utilize the computing re-
sources of each peer as efficiently as possible, we introduce
query-processing efficiency. Given a query, if we assume N
peers are searched and M out of N peers need to perform
retrieval on their collections, then the recall level, R, is the
number of relevant documents in those M peers over the
total number of relevant documents in the network. The
query processing efficiency is measured by the average
ratio of (R/M).

5.2 Network bandwidth efficiency
The efficiency of network bandwidth is measured by the
average bandwidth consumed at a certain recall level.
Given a query, we assume the cumulative recall after N
peers are searched is R, and M out of N peers need to reply
the source, the bandwidth consumed at recall level R is
calculated as:

Bandwidth= N*S1+M*S2,

where S1 denotes the size of the query message and is set
to 100 bytes in our experiments; S2 denotes the size of the
response message. We assume each response message con-
tains 10 documents with the size of 1,000 bytes and the
response message header with the size of 100 bytes. So S2
is set to 10,100 bytes in our experiments.

5.3 MRR
Above, we use recall to measure retrieval performance.
Mean reciprocal rank (MRR) is another metric to measure
retrieval performance when high retrieval accuracy is the
primary concern. In information retrieval systems, typically
the user receives a ranked list and in some cases the user
only needs one relevant document, which he hopes is
ranked as high as possible. Question Answering (QA) sys-
tems only require one correct answer and are given no
credit for multiple correct answers [15]. In these cases, the
rank of the first relevant document is more important than
how many documents are relevant in the ranked list. So
MRR, which is defined as the inverse of the rank of the
first relevant document, is a better metric for evaluating
high accuracy retrieval.

MRR as defined in information retrieval cannot be directly
used in our problem since we do not rank peers. Accord-
ingly, we introduce a modified version of MRR. The search
process in our approach described in Section 3.2 can be
viewed as a breadth-first search and furthermore can be
simulated by a queue. In such a queue, those peers replying
the source consist of a returned list. MRR in this paper is
defined as the inverse of the position of the first relevant
node in a returned list. For example, suppose the search
queue is P1, P2, P3, P4, P5 and only P2, P4 and P5 reply
to the source. We also assume P1, P4 and P5 are relevant
peers; that is, they are peers that have one or more relevant
documents given a query. The returned list is P2, P4, P5
and the MRR is ½ since P4 is the first relevant peer. If
there is no relevant peer in a returned list, the MRR will be
set to 0. MRR is bounded between 0 and 1. In the optimal
case where only relevant peers reply to the source, the
MRR should always be 1.

6. EXPERIMENTAL RESULTS
In this section, we show results for our three evaluation
methodologies. Since every peer can post a query, for each
query we randomly pick 100 nodes from the network as the
sources and average them. In our experiments, we are only
interested in cases where only a part of the network is
searched, which is common in real P2P systems.

6.1 Results for query-processing efficiency
We first investigate the effect the smoothing parameter
lambda has on the performance. We use centralized archi-
tecture and standard Gnutella as our baseline. In Figure 1,
the line labeled “Central mode” denotes the accumulative
recall when all peers are directly connected to the central
server and the server ranks peers according to P(Q|C) de-
fined in Section 3.2 and retrieves peers in that order.
“Gnutella” denotes the naive application of Gnutella to
content-based retrieval where each peer receiving the query
message will reply the source. Gnutella can be seen as the
special case of our approach when every node is considered

as relevant. In Figure 1 our algorithm uses the original
threshold values defined in section 3.2, with lambda set to
0.2, 0.5, and 0.8, respectively. These three lambda settings
represent the three cases: heavy smoothing, medium
smoothing, and light smoothing with the global collection
model.

In Figure 1 and 2 each point is actually the average number
over a set of queries and we require that there should be at
least 90% of queries (45 queries) for each point. If some
points are not averaged over all queries, the corresponding
curve may not be continuous.

In our experiments we use title queries. The query terms
are distributed over only a few peers, the higher the lambda
is, the more a peer relies on the occurrence of exact query
terms to be judged as relevant. In that case, the number of
peers above threshold is decreased when lambda is in-
creased. That’s why the curve with “lambda=0.8” has a
fewer number of retrieved node than does the curve with
“lambda=0.2”.

Figure 1: query-processing efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800

The number of nodes retrieved

a
c

c
u

m
u

la
ti

v
e

 r
e

c
a

ll

A: Central mode

B: Lambda=0.8

C: Lambda=0.5

D: Lambda=0.2

E: Gnutella

A

B
C

D

E

Figure 2:query-processing efficiency cont.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150

the number of nodes retrieved

a
c
c
u

m
u

la
ti

v
e
 r

e
c
a
ll

Figure 1 shows that our approach is significantly better
than Gnutella no matter how lambda is set. This is because
our approach can intelligently estimate the relevance of
each peer. Secondly, a higher lambda is helpful for improv-
ing query-processing efficiency. Lastly, a higher lambda
has the risk that some of the queries may not have a high
recall even when the whole network is searched.

In Figure 2, “Optimal mode” denotes evaluation of
Gnutella where only peers who really have relevant docu-
ments are retrieved and reply to the source. “Optimal
mode” shows us the case when prediction of the relevance
of peers is 100% accurate, so it can provide us with a theo-
retical upper bound on recall when a certain number of
nodes are retrieved. “Central mode” is the same as in Fig-
ure 1 with only the first 150 nodes plotted. “Original
threshold” is the same as “Lambda=0.5” in figure 1 with
only the first 150 nodes plotted. “Thresh-
old_1”and“Threshold_3” are different thresholds in our
algorithm while lambda is kept to 0.5. In “Threshold_1”

the threshold is set to
0.1e (that is 2.72) times the original

threshold. Similarly, ”Threshold_3” is
3.0e times the origi-

nal threshold .

From figure 2 we can see that a high threshold is very help-
ful for improving the ratio of the number of retrieved node
over recall. However, there is some trade-off. The higher
the threshold is, the fewer the number of peers above the
threshold. So the highest recall could be very low, as in
experiments for “Threshold_3”, where the threshold is set
too high.

Figure 3:network-bandwidth efficiency

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

0 0.0

2

0.0

4

0.0

6

0.0

8

0.1 0.1

2

0.1

4

0.1

6

0.1

8

accumulative recall

th
e
 s

iz
e
 o

f
c
o

n
s
u

m
e
d

m
e
s
s
a
g

e
s
(B

y
te

s
)

Figure 4:network-bandwidth efficiency cont.

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

accumulative recall

th
e
 s

iz
e
 o

f
c
o

n
s
u

m
e
d

 m
e
s
s
a
g

e
s

(B
y
te

)

A: Optimal mode

B: Central mode

C: Threshold_1

D: Original threshold

E: Threshold_3

A: Gnutella

B: Lambda=0.2

C: Lambda=0.5

D: Lambda=0.8

E: Optimal mode

A: Original threshold

B: Threshold_1

C: Threshold_2

D: Threshold_3

E: Optimal mode

A

B

D

C

E

A

C

D

B

E

D

A

B

C

E

Table 2 MRR results: vary lambda

lambda 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MRR 0.074 0.076 0.078 0.081 0.085 0.092 0.098 0.10 0.12 0.14

Mess. con-
sumed

(M bytes)

1.62 1.54 1.50 1.42 1.35 1.28 1.19 1.11 1.02 0.96

Table 3 MRR results: increase threshold

Multiple of
orig.thre.(Log
scale)

1.0 2.0 3.0 4.0 5.0 5.5 6.0 7.0

MRR 0.15 0.16 0.18 0.21 0.24 0.25 0.19 0.15

Mess.size

(M bytes)

1.0 1.2 1.5 1.9 2.2 2.4 2.6 2.8

6.2 Results for network-bandwidth efficiency

Network bandwidth is a valuable resource in networks. We
always want to locate as many relevant peers as possible
within bounded network bandwidth

First we show what effect the smoothing parameter lambda
has on network bandwidth efficiency. In figure 3 we adopt
“Gnutella” and “Optimal mode” as our baselines.
“Gnutella” and “optimal mode” are defined as in Section
6.1. We keep the original threshold for “lambda=0.2”,
“lambda=0.5” and “lambda=0.8”.

From figure 3 we can gain the following insights: (1) our
approach, no matter how the lambda is set, can greatly im-
prove network bandwidth efficiency compared to Gnutella.
(2) High lambda is helpful for improving network band-
width efficiency. However, we noticed that a high lambda
decreases the recall as discussed in section 6.1.

Figure 4 shows how increasing the threshold affects net-
work bandwidth efficiency. In figure 4, “Original
threshold” is the same as “lambda=0.5” in figure 3.
Lambda is kept to 0.5 for “Thresh-
old_1”,“threshold_2”and“threshold_3”,
where“Threshold_1”,“threshold_2”and“threshold_3”are

0.1e ,
2.0e and

3.0e times the original threshold respectively.

From figure 4 we can see that an appropriate threshold is
important for performance. Network bandwidth efficiency
is improved when the threshold is increased within some
range. However, when it is set too high, as in “thresh-
old_3”, it hurts efficiency. When the threshold is very high,
few or none of the peers will be estimated as relevant by
our approach. In this case, network-bandwidth is wasted
since we need to search a larger part of the network to
reach the same level of recall.

6.3 MRR Results
Table 2 shows the results as lambda increases and the
threshold is kept to original one as defined in 3.2. In table 2
the first row is lambda, the second row is the MRR defined
in 5.3, the third row is the size of messages consumed
when a certain MRR is reached. To calculate the size of
consumed messages, we use the same assumption de-
scribed in 5.2 and assume that the search process will stop
if one relevant peer is found or some pre-defined search
depth is reached. We can see that the case with lambda=1.0
leads to the best MRR and the lowest size of consumed
messages. Lambda=1.0 means no smoothing at all and
given a query only peers including all query terms will be
estimated as relevant by our algorithm. No smoothing helps

here because we use title queries that typically consist of
only a few words.

Table 3 shows the results when threshold increases and
lambda is still kept to 1.0. The first row shows multiplies of
the original threshold in log scale. For example, 5.0 in the

first row means
5.0e times the original threshold. The sec-

ond and the third row have the same meaning as in Table 2.

From Table 3 we can see that MRR increases with the in-

creasing of threshold until
5.5e times original threshold

which gives the best MRR value. The size of the consumed
message also increases when threshold increases because
more peers will be visited.

7. CONCLUSIONS AND FUTURE WORK
We proposed an efficient search algorithm by extending
the Gnutella protocol. The idea is to estimate the relevance
of peers locally when receiving query messages. Only
those peers deemed as relevant will retrieve the query and
send response messages back to source. Based on evalua-
tion of a large real testbed, we show that the tradeoff
between the quality of retrieval and the resources con-
sumed is greatly improved over Gnutella while simplicity,
robustness and the autonomy of peers are maintained.

We also notice that the collection language model P(Q|C) is
far from being the perfect indicator of the relevance of
peers. For the future work, P(Q|C) may be improved by
trying different smoothing techniques such as Dirichlet
smoothing. We are also interested in other methods that
may help to predict the relevance well in P2P systems.

8. ACKNOWLEDGMENTS
We thank Steve Cronen-Townsend, Vanessa Murdock and
Xiaoyong Liu for their comments on this work. This work
was supported in part by the Center for Intelligent Informa-
tion Retrieval and in part by SPAWARSYSCEN-SD grant
number N66001-02-1-8903 . Any opinions, findings and
conclusions or recommendations expressed in this material
are the author(s) and do not necessarily reflect those of the
sponsor.

9. REFERENCES
[1]The Gnutella protocol specification v4.0
http://www9.limewire.com/developer/gnutella_protocol_v4
.0.pdf

[2]S. Ratnasamy,et al. A scalable content-addressable net-
work In ACM SIGCOMM ’01,Auguest 2001

[3] M. Bawa, G. S. Manku, P. Raghavan. SETS: Search
enhanced by topic segmentation. In proceedings of the 26th
annual international ACM SIGIR conference, 2003

[4] V. Kalogeraki, D.Gunopulos,D.Zeinalipour-Yazti. A
local search mechanism for peer-to-peer networks. In pro-
ceedings of the ACM CIKM 02 conference ,2002
[5] http://www.gnutella.com/
[6] B. Yang, H. Garcia-Molina. Efficient search in Peer-to-
Peer Networks. In Proc. Intl. Conf. On Distributed Com-
puting Systems (ICDCS), Vienna, Austria, 2002.

[7]] H. Zhang, W.B.Croft and B.N. Levine. Efficient to-
pologies and search algorithms for peer-to-peer content
sharing. In Univ. of Massachusetts,Amherst, CIIR technical
report IR-314,August,2003

[8] J. Lu, J. Callan. Content-based retrieval in hybrid peer-
to-peer networks” In proceedings of the ACM CIKM 03
conference ,2003

[9]J. Callan “Distributed information retrieval” In
W.B.Croft ,editor,Advances in information retrieval . Klu-
wer Academic Publishers. (pp.127-150)
[10]J. Xu, W.B. Croft. Cluster-based language models for
distributed retrieval In proceedings of the 22th annual in-
ternational ACM SIGIR conference, 1999

[11] L. Si, R. Jin, J. Callan, P. Ogilvie. Language modeling
framework for resource selection and results merging In
proceedings of the ACM CIKM 02 conference ,2002
[12] http://es.csiro.au/TRECWeb/wt10g.html
[13] M. Faloutos, P.Faloutsos, C. Faloutos On power-law
relationships of the internet topology. In FIGCOMM,1999

[14] C. Palmer and J. Steffan Generating network topolo-
gies that obey power law. In proceedings of GLOBECOM
‘2000.
[15] J. Lin and B. Katz. Question answering techniques for
the world wide web. In Tutorial presentation at
EACL,2003

[16] http://trec.nist.gov/data/topics_eng/topics.501-550.txt

