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Abstract

In information extraction, we often wish

to identify all mentions of an entity, such

as a person or organization. Tradition-

ally, a group of words is labeled as an

entity based only on local information.

But information from throughout a doc-

ument can be useful; for example, if

the same word is used multiple times,

it is likely to have the same label each

time. We present a CRF that explicitly

represents dependencies between the la-

bels of pairs of similar words in a doc-

ument. On a standard information ex-

traction data set, we show that learn-

ing these dependencies leads to a 13.7%

reduction in error on the field that had

caused the most repetition errors.

1 Introduction

Most natural-language systems solve many prob-

lem instances in their lifetime. Traditionally,

these instances are solved separately, that is, the

data is assumed to be independent and identically

distributed. But often this assumption does not

hold. There is much current interest in collectively

making related classification decisions, using de-

pendencies between decisions to increase perfor-

mance. In Web page classification, for example,

Taskar et al. (2002) model the fact that pages that

hyperlink to each other are more likely to have

the same type, resulting in increased classification

performance.

Within information extraction, one important

type of error occurs on repeated mentions of the

same field. For example, we often wish to iden-

tify all mentions of an entity, such as a person or

organization, because each mention might contain

different useful information. Furthermore, these

mentions tend to use similar terms. We can take

advantage of this fact by favoring labelings that

treat repeated words identically, and by combining

features from all occurrences so that the extraction

decision can be made based on global information.

However, most extraction systems, whether prob-

abilistic or not, do not take advantage of this de-

pendency, instead treating the separate mentions

independently.

Recently, Bunescu and Mooney (2004) use a

relational Markov network (Taskar et al., 2002) to

collectively classify the mentions in a document,

achieving increased accuracy by learning depen-

dencies between similar mentions. In their work,

however, candidate phrases are extracted heuristi-

cally, which can introduce errors if a true entity

is not selected as a candidate phrase. Ideally, we

would like to perform collective segmentation and

labeling simultaneously, so that the system can

take into account dependencies between the two

tasks. This can be done naturally using probabilis-

tic sequence models.

Traditional probabilistic sequence models, such

as HMMs, are generative, in the sense that they

represent a joint probability distribution p(y,x).
Because this includes a distribution p(x) over the

input features, it is difficult to use arbitrary, over-

lapping features while maintaining tractability. A



solution to this problem is to model instead the

conditional distribution p(y|x), which is all that

is needed for classification anyway. Because the

model is conditional, dependencies among the fea-

tures in x do not need to be explicitly repre-

sented. Popular conditional models include max-

imum entropy classifiers (Berger et al., 1996) and

conditional random fields (Lafferty et al., 2001).

Conditionally-trained models have been shown to

perform better than generatively-trained models

on many tasks, including document classification

(Taskar et al., 2002), part-of-speech tagging (Rat-

naparkhi, 1996), extraction of data from tables

(Pinto et al., 2003), segmentation of FAQ lists

(McCallum et al., 2000), and noun-phrase seg-

mentation (Sha and Pereira, 2003).

To perform collective labeling, we need to rep-

resent dependencies between distant terms in the

input. But this reveals a general limitation of se-

quence models, whether generatively or condition-

ally trained. Sequence models usually make a

Markov assumption among labels, that is, that any

label yt is independent of all previous labels given

its immediate predecessors yt−k . . . yt−1. That is,

such models represent dependence only between

nearby nodes—for example, between bigrams and

trigrams—and cannot represent the higher-order

dependencies that arise when identical words oc-

cur throughout a document.

In the paper we present a conditional model

that collectively segments a document into men-

tions and classifies the mentions by entity type,

taking into account probabilistic dependencies be-

tween distant mentions. Although n-gram se-

quence models cannot represent long-distance de-

pendencies, more general graphical models can,

by adding edges between the labels of similar

words. We introduce the skip-chain CRF, which

is a CRF whose structure is a linear chain with ad-

ditional connections between all pairs of similar

words, as shown in Figure 2.

Even though the limitations of n-gram models

have been widely recognized within natural lan-

guage processing, long-distance dependencies are

difficult to represent in generative models, because

full n-gram models have too many parameters if n
is large. We avoid this problem by selecting which

skip edges to include based on the input string.
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Figure 1: Graphical representation of linear-chain

CRF. Although the hidden nodes can depend on

observations at any time step, for clarity we have

shown links only to observations at the same time

step.
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Figure 2: Graphical representation of skip-chain

CRF. Identical words are connected because they

are likely to have the same label.

This kind of input-specific dependence is difficult

to represent in a generative model, which needs

to generate the input. In other words, conditional

models have been popular because of their flexibil-

ity in allowing overlapping features; in this paper,

we take advantage of their flexibility in allowing

input-specific model structure.

Because our model contains many overlapping

loops, exact inference is intractable. For some of

our documents, a single probability table in the

junction tree would require over 4 GB of memory.

Instead, we perform approximate inference us-

ing a schedule for loopy belief propagation called

tree reparameterization (TRP) (Wainwright et al.,

2001).

We evaluate our model on a standard infor-

mation extraction data set of e-mail seminar an-

nouncements. In the field type on which a linear-

chain CRF had the most repetition errors, which is

speaker name, we show that learning these depen-

dencies with a skip-chain CRF leads to a 13.7%

reduction in error. Failure analysis confirms that

the reduction in error is due to increased recall on

the repeated field mentions.



2 Linear-chain CRFs

Conditional random fields (CRFs) (Lafferty et al.,

2001) are undirected graphical models that encode

a conditional probability distribution using a given

set of features. CRFs are defined as follows. Let G
be an undirected model over sets of random vari-

ables y and x. As a typical special case, y = {yt}
and x = {xt} for t = 1, . . . , T , so that y is a

labeling of an observed sequence x.

If C = {{yc,xc}} is the set of cliques in G,

then CRFs define the conditional probability of a

state sequence given the observed sequence as:

pΛ(y|x) =
1

Z(x)

∏

c∈C

Φ(yc,xc), (1)

where Φ is a potential function and the partition

function Z(x) =
∑

y

∏

c∈C Φ(yc,xc) is a nor-

malization factor over all state sequences for the

sequence x. We assume the potentials factorize

according to a set of features {fk}, which are

given and fixed, so that

Φ(yc,xc) = exp

(

∑

k

λkfk(yc,xc)

)

(2)

The model parameters are a set of real weights

Λ = {λk}, one weight for each feature.

Most applications use the linear-chain CRF, in

which a first-order Markov assumption is made on

the hidden variables. A graphical model for this

is shown in Figure 1. In this case, the cliques

of the conditional model are the nodes and edges,

so that there are feature functions fk(yt, yt+1,x, t)
for each label transition. (Here we write the fea-

ture functions as potentially depending on the en-

tire input sequence.) Feature functions can be ar-

bitrary functions of their arguments. For example,

a feature function fk(yt, yt+1,x, t) could be a bi-

nary test that has value 1 if and only if yt has the

label OTHER, yt+1 has the label SPEAKER, and xt

begins with a capital letter.

3 Skip-chain CRFs

3.1 Model

Linear-chain CRFs cannot represent dependencies

between distant occurrences of similar words. In

this paper, we extend linear-chain CRFs by adding

probabilistic connections between similar words,

that is, adding edges between them in an undi-

rected linear-chain model such as Figure 2. We

call these additional edges skip edges. Skip edges

can represent dependence between distant nodes,

so that similar words can be labeled similarly.

Also, the features on skip edges can incorporate

information from the context of both endpoints, so

that if the label of one endpoint is more certain, it

can influence the label of the other.

First, there is the choice of which skip edges to

include. We may choose simply to connect iden-

tical words, but more generally we could can any

pair of words that we believe to be similar, for ex-

ample, pairs of words that belong to the same stem

class, or have small edit distance. Of course, if we

simply connected all possible words, inference in

the model would require summing over all possi-

ble state sequences; no efficient dynamic program-

ming algorithm would be available. So we need to

use similarity metrics that result in a sufficiently

sparse graph. In this paper, we focus on named-

entity recognition, so we connect pairs of identical

capitalized words.

This model can be formally defined by adding a

second type of potential to the linear-chain model.

For an instance x, let I = {(u, v)} be the set of

all pairs of sequence positions for which there are

skip edges. Then we can write the probability of a

label sequence y given an input x and parameters

Λ as

pΛ(y|x) =
1

Z(x)

T−1
∏

t=0

Φ(yt, yt+1,x, t)

∏

(u,v)∈I

Ψ(yu, yv,x, u, v), (3)

where Φ is the potential over linear-chain edges,

and Ψ is the potential over skip edges. We assume

that each of the potentials factorize according to a

set of features fk so that

log Φ(yt, yt+1,x, t) =
∑

k

λkfk(yt, yt+1,x, t)

(4)

log Ψ(yu, yv,x, u, v) =
∑

k

λ′
kf

′
k(yu, yv,x, u, v).

(5)



Note that each type of clique has its own set of

features and weights.

For the short distance edges, we factorize our

features as

fk(yt, yt+1,x, t) = pk(yt, yt+1)qk(x, t) (6)

where pk(yt,c) is a binary function on the assign-

ment, and qk(x, t) is a function solely of the in-

put string, which we call an input feature. In gen-

eral qk(x, t) can depend on arbitrary positions of

the input string. For example, a useful feature for

NER is qk(x, t) = 1 if and only if xt+1 is a capi-

talized word.

For the skip edges, we factorize our features in

in a way that is similar but allows us to combine

distant features in the sequence. More specifically,

we factorize the features for the skip edges as

f ′
k(yu, yv,x, u, v) = p′k(yu, yv, u, v)q′k(x, u, v)

(7)

The input features q′k(x, u, v) can combine infor-

mation from the neighborhood of yu and yv. For

example, one useful feature is q′k(x, u, v) = 1 if

and only if xu = xv = “Booth” and xv−1 =
“Speaker:”. This can be a useful feature if the

context around xu, such as “Robert Booth is man-

ager of control engineering. . . ,” may not make

clear whether or not Robert Booth is presenting

a talk, but the context around xv is clear, such as

“Speaker: Robert Booth.” 1

3.2 Inference

The inference problem is, given an input string x,

to compute marginal distributions p(yi|x) or the

most likely (Viterbi) labeling arg maxy p(y|x).
Computing marginals is needed for parameter es-

timation, and the Viterbi labeling is used to label

a new sentence. In linear-chain CRFs, exact in-

ference can be performed efficiently by variants

of the standard dynamic-programming algorithms

for HMMs.

In skip-chain CRFs, inference is much more dif-

ficult. Because the loops can be long and over-

lapping, exact inference is intractable for the data

we consider in the next section. Exact inference

1This example is taken from an actual error made by a
linear-chain CRF on the seminars data set. We present results
from this data set in Section 4.

requires time exponential in the size of a graph’s

junction tree. For the seminars data, 29 of the 485

instances have a maximum clique size of 10 or

greater, and 11 have a maximum clique size of 14

or greater. (The worst instance has a clique with 61

nodes.) For reference, representing a single poten-

tial over 14 nodes requires more memory than can

be addressed in a 32-bit architecture. Thus, exact

inference is not practical for skip-chain CRFs.

Instead, we perform approximate inference us-

ing the loopy belief propagation algorithm. Loopy

belief propagation is an iterative method that is

not guaranteed to converge, but has been found to

be reasonably accurate in practice (Murphy et al.,

1999). We use an asynchronous tree-based sched-

ule known as TRP (Wainwright et al., 2001).

Loopy belief propagation is a generalization of

the forward-backward algorithm for HMMs and

linear-chain CRFs, a fact which provides intu-

ition about the skip-chain CRF model. In the

forward-backward algorithm, probabilistic infor-

mation flows only between neighboring nodes, via

the α and β recursions. In a skip-chain CRF, be-

lief propagation passes messages not only between

neighboring nodes, as in forward-backward, but

also along the long distance edges, propagating

probabilistic information from distant sequence

locations.

3.3 Parameter Estimation

Given training data D = {x(i),y(i)}N
i=1, we esti-

mate model parameters Λ = {λk} by maximum a

posteriori (MAP) estimation. We optimize the the

posterior probability

log p(Λ|D) ∝ log p(D|Λ) + log p(Λ) (8)

= L(Λ) + log p(Λ), (9)

where L(Λ) is the log likelihood

L(Λ) =
∑

i

log pΛ(y(i) | x(i)). (10)

The derivative of the likelihood with respect to

one of the short-distance parameters λk is

∂L

∂λk

=
∑

i

Ck(y
(i),x(i)) − Ek(y

(i),x(i)) (11)



where Ck and Ek are constraints and expectations

given by

Ck(y
(i),x(i)) =

∑

t

fk(~y
(i)
t , ~y

(i)
t+1, x

(i), t) (12)

Ek(y
(i),x(i)) =

∑

t

∑

~yt,~yt+1

pΛ(~yt, ~yt+1 | x
(i))

fk(~yt, ~yt+1, x
(i), t) (13)

The derivative ∂L
∂λ′

k

with respect to the long-

distance parameters is similar, with λ′
k replacing

λk and f ′
k replacing fk.

To reduce overfitting, we define a prior p(Λ)
over parameters. We use a spherical Gaussian

prior with mean µ = 0 and covariance matrix

Σ = σ2I , so that the gradient becomes

∂p(Λ|D)

∂λk

=
∂L

∂λk

−
λk

σ2
.

See Peng and McCallum (2004) for a comparison

of different priors for linear-chain CRFs.

The function p(Λ|D) is convex, and can be

optimized by any number of techniques, as in

other maximum-entropy models (Lafferty et al.,

2001; Berger et al., 1996). In the results below,

we use L-BFGS, which has previously outper-

formed other optimization algorithms for linear-

chain CRFs (Sha and Pereira, 2003; Malouf,

2002).

4 Results

We evaluate skip-chain CRFs on a collection

of 485 e-mail messages announcing seminars at

Carnegie Mellon University. The messages are

annotated with the seminar’s starting time, ending

time, location, and speaker. This data set is due to

Dayne Freitag (Freitag, 1998), and has been used

in much previous work.

Often the fields are listed multiple times in the

message. For example, the speaker name might

be included both near the beginning and later on,

in a sentence like “If you would like to meet with

Professor Smith. . . ” It can be useful to find both

such mentions, because different information can

be in the surrounding context of each mention: for

example, the first mention might be near an insti-

tution affiliation, while the second mentions that

Smith is a professor.

wt = w
wt matches [A-Z][a-z]+
wt matches [A-Z][A-Z]+
wt matches [A-Z]
wt matches [A-Z]+
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]
wt appears in list of first names,

last names, honorifics, etc.
wt appears to be part of a time followed by a dash
wt appears to be part of a time preceded by a dash
wt appears to be part of a date
Tt = T

qk(x, t + δ) for all k and δ ∈ [−4, 4]

Table 1: Input features qk(x, t) for the seminars

data. In the above wt is the word at position t, Tt is

the POS tag at position t, w ranges over all words

in the training data, and T ranges over all part-of-

speech tags returned by the Brill tagger. The “ap-

pears to be” features are based on hand-designed

regular expressions that can span several tokens.

Field Linear-chain Skip-chain

stime 12.6 17

etime 3.2 5.2

location 6.4 0.6

speaker 30.2 4.8

Table 3: Number of inconsistently mislabeled

tokens, that is, tokens that are mislabeled even

though the same token is labeled correctly else-

where in the document. Learning long-distance

dependencies reduces this kind of error in the

speaker and location fields. Numbers are averaged

over 5 folds.

We evaluate a skip-chain CRF with skip edges

between identical capitalized words. The motiva-

tion for this is that the hardest aspect of this data

set is identifying speakers and locations, and cap-

italized words that occur multiple times in a semi-

nar announcement are likely to be either speakers

or locations.

Table 1 shows the list of input features we used.

For a skip edge (u, v), the input features we used

were simply the disjunction of the input features

at u and v, that is,

q′k(x, u, v) = qk(x, u) ⊕ qk(x, v) (14)

where ⊕ is binary or. All of our results are av-

eraged over 5-fold cross-validation with an 80/20



System stime etime location speaker overall

BIEN (Peshkin and Pfeffer, 2003) 96.0 98.8 87.1 76.9 89.7
Linear-chain CRF 97.5 97.5 88.3 77.3 90.2
Skip-chain CRF 96.7 97.2 88.1 80.4 90.6

Table 2: Comparison of F1 performance on the seminars data. The top line gives a dynamic Bayes net

that has been previously used on this data set. The skip-chain CRF beats the previous systems in overall

F1 and on the speaker field, which has proved to be the hardest field of the four. Overall F1 is simply the

average of the F1 scores for the four fields.

split of the data. We report results from both a

linear-chain CRF and a skip-chain CRF with the

same set of input features.

We calculate precision and recall as2

P =
# tokens extracted correctly

# tokens

R =
# tokens extracted correctly

# tokens

As usual, we report F1 = (2PR)/(P + R).
Table 2 compares a skip-chain CRF to a linear-

chain CRF and to a dynamic Bayes net used in pre-

vious work (Peshkin and Pfeffer, 2003). The skip-

chain CRF does much better than all the other sys-

tems on speaker, which is the label for which the

skip edges would be expected to make the most

difference. On the other fields, however, the skip-

chain CRF does slightly worse (less than 1% ab-

solute F1).

We expected that the skip-chain CRF would

do especially well on the speaker field, because

speaker names tend to appear multiple times in a

document, and a skip-chain CRF can learn to la-

bel the multiple occurrences consistently. To test

this hypothesis, we measure the number of incon-

sistently mislabeled tokens, that is, tokens that are

mislabeled even though the same token is clas-

sified correctly elsewhere in the document. Ta-

ble 3 compares the number of inconsistently mis-

labels tokens in the test set between linear-chain

and skip-chain CRFs. For the linear-chain CRF,

on average 30.2 true speaker tokens are inconsis-

tently mislabeled. Because the linear-chain CRF

mislabels 121.6 true speaker tokens, this situation

2Previous work on this data set has traditionally measured
precision and recall per document, that is, from each docu-
ment the system extracts only one field of each types. In this
paper we discuss the problem in which we wish to extract all
the mentions in a document, so we cannot compare with this
previous work.

includes 24.7% of the missed speaker tokens. So

treating repeated tokens consistently would seem

to especially benefit recall on speaker.

In fact, on the speaker field, skip-chain CRFs

show a dramatic decrease in inconsistently misla-

beled tokens, from 30.2 to 4.8. Because of this,

skip-chain CRF has much better recall on speaker

tokens than the linear-chain CRF (70.0 R linear

chain, 76.8 R skip chain). This explains the in-

crease in F1 between between linear-chain and

skip-chain CRFs, for the two have similar preci-

sion (average 86.5 P linear chain, 85.1 skip chain).

On the location field, on the other hand, where

we might also expect skip-chain CRFs to perform

better, there is no benefit. We explain this by ob-

serving in Table 3 that inconsistent misclassifica-

tion occurs much less frequently in this field.

5 Summary

We have demonstrated that modeling long-

distance dependencies can be used to obtain more

accurate information extraction. Because our

model is conditional, its structure is free to depend

on the input string. In this paper, we connected

pairs of identical words, on the assumption that

they would tend to have the same label.

The framework for inference and learning is

similar to Relational Markov Networks (Taskar et

al., 2002) and Dynamic CRFs (Sutton et al., 2004).

Like skip-chain CRFs, RMNs vary their graphical

structure based on the input data, but in practice

RMNs have been used for classification instead of

sequence labeling. DCRFs, on the other hand, are

sequence models, but the skip-chain CRF model

is not a DCRF, because usually different long-

distance edges are used for each input string.

The skip-chain CRF can also be viewed as

performing extraction while taking into account



a simple form of coreference information, since

the reason that identical words are likely to have

similar tags is that they are likely to be coref-

erent. Thus, this model is a step toward joint

probabilistic models for extraction and data min-

ing as advocated by McCallum and Jensen (2003).

An example of such a joint model is the one of

Wellner et al. (2004), which jointly segments cita-

tions in research papers and predicts which cita-

tions refer to the same paper.
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