
UMass at TDT 2004

Margaret Connell, Ao Feng, Giridhar Kumaran, Hema Raghavan, Chirag Shah, James Allan
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts

Amherst, MA 01003�
connell,aofeng,giridhar,hema,chirag,allan ✁ @cs.umass.edu

1. INTRODUCTION
The Center for Intelligent Information Retrieval at UMass Amherst

submitted runs for all four tasks, namely, Hierarchical Topic Detec-

tion, Topic Tracking, New Event Detection and Link Detection. In

this paper, we describe our models, experiments during training and

our results on all the four tasks.

2. HIERARCHICAL TOPIC DETECTION
This task replaces Topic Detection in previous TDT evaluations.

Since it is the first year we have HTD, there are not any existing re-

sults to compare to. We used the vector space model as the baseline,

did bounded clustering to reduce time complexity and had some

simple parameter tuning.

2.1 Model description
Topic Detection classifies stories into different topics, but HTD

requires more than that. Is there any other entities between a story

and a topic? [10] views a topic as a structure of inter-related events,

which gives us a good hint for this new task.

Experiments in [10] show that time locality is a very useful at-

tribute in event organization, and it can also help to solve the com-

plexity problem in TDT2004. The TDT-5 collection contains 407,503

stories in three different languages, and the running time for tradi-

tional clustering algorithms, which take ✂☎✄✝✆✟✞✡✠ , is not acceptable

for such a huge collection. Since we know that stories in the same

event tend to be close in time, we only need to compare a story to

its “local” stories instead of the whole collection.

The algorithm we use has two steps, bounded 1-NN for event

formation and bounded agglomerative clustering for building the

hierarchy. In the first step, all stories in the same original language

and from the same source are taken out and time ordered. Sto-

ries are processed one by one and each incoming story is compared

to a certain number of stories before it. This number is approxi-

mately the number of stories in a token file and the value is 100 for

the baseline run. If the similarity (cosine similarity of tf-idf term

vectors) of the current story and the most similar previous story is

larger than a given threshold (0.3 in the baseline run), the current

story will be assigned to the event that the most similar previous

Submission to TDT 2004 workshop

story belongs to. Otherwise, a new event is created.

After the first step, there is a list of events for each source/language

class. The events within each class are sorted by time order accord-

ing to the time stamp of the first story. Then we do a bounded

agglomerative clustering for the events, which works as following.

Take a certain number of events (the number is called WSIZE,

default value 120) from the sorted events list. At each iteration,

find the closest event pair and combine the later event to the earlier

one. This process continues for (BRANCH-1)WSIZE/BRANCH

iterations so the number of clusters left is WSIZE/BRANCH. Take

the first half out and get WSIZE/2 new events and agglomeratively

cluster until WSIZE/BRANCH clusters are left. The process con-

tinues before all events are clustered. Then number of clusters left

will be one BRANCH-th of the events number. [1] shows how to

get the optimal branching factor. For the evaluation cost parameters

this year, the optimal value is around 3, so we take BRANCH=3 in

the baseline run.

Now we have a list of clusters, and they can be clustered again

using the bounded agglomerative clustering algorithm shown above.

This process continues until the number of clusters is smaller than

a given value, which is proportional to the square root of the num-

ber of stories in that class. Then all clusters in the same language

but from difference sources are combined, sorted by time order and

a single round of clustering is performed. Finally clusters from

all languages are mixed and clustered until only one cluster is left,

which becomes the root node of the hierarchy.In the multi-lingual

experiment, we used the machine translation for Arabic and Man-

darin stories to simplify the similarity calculation.

There are some clusters each containing only one story. Since

stories in non-leaf nodes are allowed in the evaluation, such a clus-

ter is replaced by the corresponding story, which is beneficial for

the travel cost.

2.2 Training
The TDT-4 collection is the closest to TDT-5 in time, so we use

it as the training corpus. TDT-4 contains both newswire and broad-

cast stories, while TDT-5 has only newswire. In order to make them

comparable, we take only the newswire stories from the TDT-4 cor-

pus, which includes NYT, APW, ANN, ALH, AFP, ZBN and XIN.

A lot of parameters were tuned in the training set.

☛
BRANCH: the average branching factor in the bounded ag-

glomerative clustering algorithm. It determines the height of

the whole hierarchy.

☛
Threshold: the threshold in event formation to decide if a

new event will be created.

☛
STOP: the agglomerative clustering algorithm in each source

stops when the number of clusters is smaller than ☞✍✌✏✎✒✑✔✓ ✕✗✖✙✘✛✚✢✜✢✣ .

It controls when to mix the clusters from different sources.

☛
WSIZE: the maximal window size in agglomerative cluster-

ing. It is used to reduce the time complexity or the agglom-

erative clustering will take forever.

☛
NSTORY: Each story will be compared to at most NSTORY

stories before it in the 1-NN event clustering. This idea comes

from the time locality in event threading.

☛
SIM: the similarity function when comparing two term vec-

tors.

Preliminary experiments show that cluster sizes vary a lot using

this algorithm. Among the clusters very close to the root node,

some contains thousands of stories while a lot of clusters are sin-

gletons. Both 1-NN and agglomerative clustering algorithms favor

large clusters. To make the hierarchy more balanced, we modified

the similarity calculation to give smaller clusters more chances.

✖✁�✄✂ ✄✆☎✞✝✠✟ ✖✙✘☛✡ ✜✌☞✎✍✏☎✞✝✠✟ ✖✙✘☛✡ ✜✎✑ ✠✓✒ ✖✁�✄✂ ✄✆✔✕☞✖✍✏✔✗✑ ✠✘ ☎✞✝✠✟ ✖✙✘☛✡ ✜✌☞ ✘✚✙✜✛ (1)

Here ✖✁�✢✂ ✄✆✔✕☞✎✍✏✔✗✑ ✠ is the similarity of the cluster centroids,
✘ ☎✁✝✣✟ ✖✙✘☛✡ ✜✗☞ ✘

is the number of stories in the first cluster (events are time ordered

according to the first story), and
✛

is a constant to control how much

favor smaller clusters can get.
✛

is also one of the parameters tuned

in the training set.

2.3 Results
This year we submitted three runs for each condition: UMASSv1,

UMASSv12 and UMASSv19. UMASSv1 is our baseline run, and

the parameters in this run are shown below.

KNN bound The number of previous stories compared to each in-

coming story in the KNN algorithm. Default value is 100.

SIM Similarity function. Cosine similarity of cluster centroid (or

simply story vector for story comparison).

WEIGH Vector weighing scheme. Here we use idf, ✤✦✥★✧✩✒✝ ✚✫✪ ✄ ✄✄✬ ✙✮✭✗✯ ✰ ✠☛✱✖✥★✧ ✠☛✱✖✝ ✚✲✪ ✄✄✬ ✙ ☞✢✠ , where N is the number of

stories in the collection, and DF is the number of stories the

term appears in.

THRESH Threshold for KNN. Default 0.30.

WSIZE Maximal number of clusters in agglomerative clustering.

It is 120 in the baseline run.

BRANCH Average branching factor. We take 3, as it is the opti-

mal value with the evaluation parameters.

STOP The constant which decides when clusters from different

sources are mixed. It is 5 here.

UMASSv12 is very similar to UMASSv1 except that the simi-

larity function is normalized by the cluster size(see equation 1,
✛ ✒✭

). And the only difference between UMASSv19 and UMASSv12

is that WSIZE increases to 240 in UMASS19. Table 1 shows the

performance of the three runs in TDT-4, and Table 2 contains the

results in the official TDT-2004 submission.

We do not use the normalized travel cost because there are two

different versions of normalization schemes. The normalization

factor of the old scheme is the expected travel cost to reach a leaf

node in a minimal spanning tertiary tree. And the new scheme as-

sumes a 1-level DAG.

system TDT-4 mul,eng

output ✳✵✴✷✶☛✸ ✳✹✸✻✺✏✼✚✽✷✶✿✾
UMASSv1 0.6522 226.47

UMASSv12 0.5344 38.98

UMASSv19 0.4761 37.61

Table 1: UMASS HTD trained in TDT-4

system TDT-5 eng,nat TDT-5 mul,eng

output ✳✵✴✷✶☛✸ ✳✹✸✻✺✏✼✚✽✞✶✿✾ ✳✵✴✞✶✿✸ ✳✹✸✻✺✏✼✚✽✞✶❀✾
UMASSv1 0.4412 206.01 0.3287 166.35

UMASSv12 0.3822 59.51 0.3175 109.57

UMASSv19 0.3204 56.00 0.2910 176.27

Table 2: UMASS HTD in TDT-2004

The old one in the evaluation plan is a very strict scheme. If

a system does not pay enough attention to the branching factor, it

will be penalized a lot. Like CHUK and ICT, they will get nor-

malized travel cost of 15 and 30 respectively in the mul,eng run, if

we use the old normalization scheme. However, TNO did a very

good job. Its normalization cost is still around 1 even with the old

normalization.

The new one is much easier to achieve. But it is so easy that any

normal hierarchy can beat it and the normalized travel cost does

not make much sense. Even if you have very large travel cost like

2000, it is still below 0.1 after normalization. Since travel cost is

much smaller than detection cost, it will encourage everybody to

focus on detection cost. While overlapping clusters is allowed, it

will probably lead to highly overlapping clusters. We will get the

power set when coming to the extreme case. I do not think it is the

result we want to see when starting HTD.

So, in my opinion, I prefer the old normalization scheme. But

some changes are needed to make detection cost and travel cost

comparable. First, the normalized travel cost (using the old scheme)

is much larger than detection cost, so we can set a smaller weight

for it, like 0.1 or even smaller. Second, binary tree wins this year

with the maximal height over 40, but most real systems do have

such a deep hierarchy. I suggest we increase CTITLE and decrease

CBRANCH to push the optimal branching factor to about 5.

UMass did not do very well in this year’s evaluation, mainly

because of the high detection cost. These factors may be useful

to improve the performance.

☛
Small branching factor can reduce both detection cost and

travel cost. With smaller branching factor, we get more clus-

ters with different granularities, and have more chance to

match the topic. And the optimal branching factor of 3 shows

the advantage of small branching factor in reducing travel

cost. Experiments with limited branching factor proved this

assumption.

☛
Assigning one story to multiple clusters can decrease miss

rate dramatically. TNO observed it in their experiments.

☛ The assumption of temporal locality is useful in event thread-

ing [10], but it does not seem to work for topics. More ex-

periments after the submission show larger window size can

improve performance.

☛
The source-language-all clustering hierarchy assumes sto-

ries from the same source are more likely to be in the same

topic, but it makes the result worse. Removing this restric-

tion shows some improvement over the submitted runs.

In this year’s submission, TNO is much better than other par-

ticipants on both detection cost and travel cost. And it is the only

participant that allows one story to be assigned to more than one

clusters, which may be very useful to reduce the detection cost. Its

binary tree may be another reason for the small detection cost.

3. TOPIC TRACKING

3.1 Creating a training Newswire corpus
We created a subset of the TDT4 corpus that emulates the char-

acteristics of the TDT5 corpus as close as possible. It was made

known to the participants a priori that 50% of the topics in TDT5

had English only stories in the test set and the rest of the topics had

multi-lingual stories. To emulate these statistics, we first sorted the

TDT4 topics by the number of test stories from English sources.

We collected top 15 topics that had the highest number of English

test-stories as our English only topics. We removed all non-English

stories from these topics. From the remaining topics in TDT4, we

sampled 15 topics as follows. For each topic, we estimated the

standard deviation in the number of stories from each language and

chose the top 15 ones that had the least standard deviation and also

that had a minimum number of stories from each language. These

topics are expected to contain nearly equal proportion of test-stories

from all languages and hence are expected to imitate the multi-

lingual topics in the test corpus. Here, the idea was that given no

information on the language specific distribution of stories in the

multi-lingual topics of TDT5 corpus, it is safest to assume uniform

distribution. In all, we formed 30 training topics, 15 of which are

English-only topics and the rest, multi-lingual.

3.2 Unsupervised Tracking
In the topic tracking task a small number, ✬ ✘ , of training stories

is given for a particular topic. The topic is represented by a cen-

troid, which is an average of the vector representatives of the train-

ing stories. Incoming stories are compared to the centroid for the

topic. If the cosine similarity of the story to the centroid exceeds the

YES/NO threshold, then the story is considered as ”on-topic”, oth-

erwise ”off-topic”. As in the linking task, different thresholds were

chosen for each condition. They were determined by experiments

run on the newswire subsample of the TDT4 corpus as explained

in the previous section or on the TDT-3 training data.

For the TDT 2004 tracking task, we submitted five runs for the

required conditions (✬ ✌ ✒ ☞). All tracking runs used a deferral of

one. Our tracking system had five parameters: the model, the trans-

lation condition, the number of terms in the vector, the YES/NO

threshold value and whether or not adaptation was carried out.

Like Story Link detection we experimented with two models –

the traditional vector space model, and relevance models. Adap-

tation allows the addition of the incoming story to the topic rep-

resentation and recomputes the topic centroid. Adaptation uses an

additional threshold which determines whether a new story is sim-

ilar enough to the centroid to be added to the topic. A new centroid

is computed from the story vectors each time a new story is added

to the topic. For adaptation the number of terms added to the model

when it is updated is a variable parameter.

Since stories exist in English, Arabic and mandarin, and there

are English translations for the English and mandarin, when we

compare two Chinese stories or two Arabic stories, we have the

means to compare them in their native language or in their trans-

lated form. The translation condition indicates whether the com-

parisons are made in English or in the native language.

We submitted the following runs:

1. TF-IDF(UMASS-4): This method uses a vector space model.

Cross-language similarities were calculated using the pro-

vided English translations and the incrementally updated cor-

pus statistics. The vector length was constrained to 1000

terms. Centroids were not adapted. The YES/NO threshold

was 0.06. The threshold were trained on a specially sampled

portion of the TDT4 corpus as explained in section 3.1.

2. TFIDF + adaptation (UMASS-1): This method was similar

to the baseline case described above, but included adapta-

tion. We have seen in experiments with TDT-3 that adapta-

tion can degrade performance when the vector has as many

as 1000 terms. This happens because adaptation may allow

the inclusion of new stories that stray from the topic and in-

clude confusing terms. We therefore limited the number of

terms in the centroid to the top 100 highest weighted terms

rather than 1000 terms. At the maximum, 100 stories could

be added to the centroid vector. For the required conditions

(manual transcription and ✬ ✘ ✒ ☞) the adapting threshold

was 0.4 and the YES/NO threshold was 0.06. These num-

bers were obtained by training on the training data obtained

as explained in section 3.1.

3. TF-IDF + Language specific comparisons + adaptation:

(UMASS-2)

In this run we chose to make comparisons of stories in their

native language whenever possible. However as the training

stories were English, at the start, as stories arrived they had

to be compared with the English training stories. When a

Chinese story or an Arabic story that was highly similar to

the centroid vector (English) arrives it was used to seed a

Chinese or Arabic centroid vector as is explained below.

For a given training story (i.e. ✬ ✘ ✒ ☞) the system created

two centroid vectors, one centroid for the whole collection,

called a global centroid and another for the native English

stories. If an incoming story was native English then the sys-

tem calculated the similarity with the English centroid, oth-

erwise the system calculated the similarity with the global

centroid. Initially there was no centroid for native Arabic or

Mandarin stories. To determine whether to start a new Ara-

bic or Mandarin centroid for a topic, we use the the global

threshold for that topic. That threshold is the average sim-

ilarity over all pairs of stories in the global centroid. If the

global centroid only has one story, the threshold is set to 0.5,

based on experiments with TDT-3 data. If the similarity be-

tween an incoming story and the global centroid is greater

than this threshold then the incoming story becomes the new

native centroid. Once a native topic centroids have been es-

tablished, the adaptation threshold is computed to be the av-

erage similarity over all pairs of stories in the native centroid,

or .5 if there is only one. The threshold thus changes when-

ever a story is added to a centroid.

The incoming native English stories were compared in En-

glish and the ✘ ✁✄✂ ✤✦✥★✧ statistics were incrementally updated

using stories taken from native English sources. In this case

the last story considered in the update was the incoming story.

Only the top weighted 100 terms of a vector were considered

and a maximum of 100 stories could be added to the centroid

vector.

For the required conditions the YES/NO threshold was 0.06

and the adaptation threshold was initialized to 0.5. These

thresholds were trained on the specially sampled portion of

the TDT4 corpus (refer section 3.1. We also submitted a run

with a YES/NO threshold of 0.084, which was our system

from last year.

4. Relevance Models + adaptation (UMASS-5)

Our application of Relevance Models to topic tracking was

somewhat different. We wanted to take advantage of the

streaming nature of the tracking task and re-cast Relevance

Models in terms of unsupervised topic adaptation. Let ✌ de-

note the topic being tracked and let ☞ be a subsequent story

in the stream. The similarity of of ☞ to the topic is mea-

sured as the asymmetric clarity-adjusted divergence of their

language models:

☞ ✸✻✺✁� ✄✝✌ ✍ ☞ ✠ ✒ ✂
✄
✑✗✄✆☎ ✘ ✌ ✠✞✝✠✟☛✡ ✑✗✄✆☎ ✘ ☞ ✠

✑✗✄✆☎ ✘ ☞✍✌ ✠ (2)

Here ✑✗✄✆☎ ✘ ☞✍✌ ✠ is the background probability of ☎ , ✑✗✄✆☎ ✘ ☞ ✠
is the language model of the story and ✑✗✄✆☎ ✘ ✌ ✠ refers to the

Relevance Model of the topic ✌ . Because of computational

constraints we chose not to estimate a Relevance Model for

✑✗✄✆☎ ✘ ☞ ✠ , instead using smoothed maximum-likelihood (ML)

estimates. ✑✗✄✆☎ ✘ ✌ ✠ on the other hand was constructed in-

crementally in the following fashion. We start by setting

✑✏✎ ✄✒✑ ✴ ✠ ✒ ✓✔✖✕ if ✗ is one of the ✬ ✸ training documents

and zero otherwise. We initialize ✑✗✄✆☎ ✘ ✌☎✠ according to equa-

tion (8) but using ✑ ✎ ✄✒✑ ✴ ✠ instead of ✑✗✄✒✑ ✴ ✘ ✘ ✠ . Then, we

start tracking, and if the similarity ☞ ✸✻✺✁� ✄✝✌ ✍ ☞ ✠ of some story

☞ exceeds a pre-defined threshold ✙✫✼✁✴ , we update the topic

model. The update involves setting ✑✏✚✜✛✣✢ ✄✒✑ ✴ ✠ ✒ ✓✔✖✕✥✤ ✚ ✛✣✢ if

✗ is one of the original ✬ ✸ training stories, or one of the ✆ ✼✁✴
stories which scored above the adaptation threshold ✙ ✼✁✴ . We

keep ✑ ✚ ✛✣✢ ✄✒✑ ✴ ✠ at zero for all other documents and recom-

pute ✑✗✄✆☎ ✘ ✌ ✠ using equation (8) with ✑✏✚✜✛✣✢ ✄✒✑ ✴ ✠ . We do not

allow more than ✆ ✼✁✴ ✒ ☞ ✭✖✭ adaptations.

The above systems are enhancements on several years of TDT track-

ing research ([9],[2])

3.2.1 Results

The graph in figure 1 shows the det curves for UMASS-2, UMASS-

4 and UMASS-5 on the training corpus which consists of Newswire

stories sampled as in section 3.1. We find little improvement due to

adaptation in the TF-IDF model. The det curve for relevance model

is in general better, but this is not reflected much in the min cost.

3.3 Supervised Tracking
In supervised tracking, the assumption is that you are given ✬ ✸

stories as training stories and the test stories arrive in a stream. For

each test story the system has to output a confidence score and a

decision just as in unsupervised tracking. However, for every story

that is delivered the assumption is that the user reads it immediately

and provides a relevance judgment immediately.

For evaluation, in addition to being evaluated on Min-cost we

were to be evaluated on the T11SU metric from the TREC filtering

runs. For supervised tracking runs we used a lot of approaches from

unsupervised tracking, with certain modifications based on the fact

that relevance judgments are obtained for every document that is

delivered.

90

80

60

40

20

10

5

2

1
908060402010521.5.2.1.05.02.01

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

Unsup 1DB No Adapt Topic Weighted Curve Nt=1

Unsup 1DB No Adapt TW Min DET Norm(Cost) = 0.1974

Unsup 4DB Adapt Topic Weighted Curve Nt=1

Unsup 4DB Adapt TW Min DET Norm(Cost) = 0.1888

Unsup 1DB RM Topic Weighted Curve Nt=1

Unsup 1DB RM TW Min DET Norm(Cost) = 0.1831

Figure 1: Det curve: Unsupervised tracking results

3.3.1 Adaptation

Unlike unsupervised tracking in supervised tracking there is no

danger of adapting to documents that are false alarms. In super-

vised tracking we adapt if it is above the YES/NO threshold (that

is, the document is delivered) and the document is relevant to the

topic. Here also, we adapt using the top 100 terms.

3.3.2 Evidence of the advantages of supervision

1. Impact of Supervision on Min-cost As a first experiment

we constructed a supervised version of UMASS-1 (TF-IDF

+ adaptation), called UMASS-1’ and compared this to our

best performing unsupervised system. We get DET curves

corresponding to figure 2, which clearly demonstrates the

impact of supervision.

90

80

60

40

20

10

5

2

1
908060402010521.5.2.1.05.02.01

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

Sup 1DB TF-IDF Adapt Topic Weighted Curve Nt=1

Sup 1DB TF-IDF Adapt TW Min DET Norm(Cost) = 0.0956

Unsup 1DB RM Topic Weighted Curve Nt=1

Unsup 1DB RM TW Min DET Norm(Cost) = 0.1831

Figure 2: Det curve: From supervised to Unsupervised

2. Impact of Language Specific comparisons in supervised

learning We now study the effect of the native language hy-

pothesis by creating a supervised version of UMASS-2 (TF-

IDF + native models+ adaptation), called UMASS-2’. The

det curve comparing UMASS-1’ and UMASS-2’ is shown in

figure 3.

3.3.3 Negative Feedback

In supervised tracking we obtain judgments for every document

delivered. Thus, we get judgments for both hits and false alarms.

We can thus adapt to negative feedback in a scheme like Rocchio.

90

80

60

40

20

10

5

2

1
908060402010521.5.2.1.05.02.01

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

Random Performance

Sup 1DB Adapt Topic Weighted Curve Nt=1

Sup 1DB Adapt TW Min DET Norm(Cost) = 0.0956

Sup 4DB Topic Weighted Curve Nt=1

Sup 4DB TW Min DET Norm(Cost) = 0.0470

Figure 3: Det curve: Native Language comparisons

✳ ✒ ✳ ✙✁� ✥ (3)

where ✳ is the centroid vector, ✥ is the document that has been

delivered.
� ✒ ☞ if the document is on topic and

� ✒✄✂ ✭✗✯ ✰ if the

document is off topic.

We found negative feedback useful for improving on the T11SU

metric.

3.3.4 Incrementing the threshold

For some of our runs we played with the idea of incrementing the

threshold when the system was doing badly. Basically, if the sys-

tem was delivering a large number of non-relevant documents to the

user we incremented the threshold. More specifically, if the ratio of

relevant to non-relevant documents delivered fell below 0.1 we in-

cremented the threshold. We found that incrementing the threshold

helped improve the T11SU cost.

3.3.5 Systems submitted

In all, we submitted 5 runs for the official evaluation. In all cases,

training was done using the specially sampled newswire portion of

the TDT4 corpus as described.

1. Relevance Models (UMASS-2): This is the identical system

as UMASS-5 for Unsupervised tracking, except that adapta-

tion is only on the basis of relevant documents.

2. Relevance Models + Increase thresholds (UMASS-1): This

is the identical system as the one described above. In ad-

dition, the YES/NO threshold is incremented by 0.1 as de-

scribed above when ✑✗✄ ✁ ✛ ✝ ✖✫✡☎✂ ✛ ✝ ✛ ✜✲✂ ✠✝✆ ✭✌✯ ☞ .
3. TF-IDF + adaptation + negative feedback + increase thresh-

old (UMASS-3) This is the vector space system with 1 database

as in UMASS-1 for unsupervised tracking. In addition, neg-

ative feedback and increase of thresholds as described above

are implemented.

4. TF-IDF + adaptation + language specific comparisons (UMASS-

4) This is identical to UMASS-2 for unsupervised tracking

(that is, a vector space model with 4 databases is used), ex-

cept that adaptation is done only on relevant stories.

5. TF-IDF + adaptation + language specific comparisons +

negative feedback + increase threshold (UMASS-7) This

is identical to UMASS-4 described above, except that neg-

ative feedback and increase of YES/NO thresholds was im-

plemented.

On the training set it seemed like UMASS-1 and UMASS-2 per-

formed reasonably well on both metrics (T11SU and MinCost).

Results are discussed in the next section.

3.3.6 Results and Discussion

The following table shows the MinCost and T11SU for the de-

velopment set (3.1) and for the test set, i.e the TDT5 data. We find

that systems that perform well on one metric do not perform well

on the other.

System T11SU Mincost T11SU MinCost

Dev Dev Test Test

UMASS1 0.722 0.097 0.610 0.052

UMASS2 0.705 0.047 0.192 0.042

UMASS3 0.534 0.366 0.667 0.183

UMASS4 0.684 0.366 0.626 0.244

UMASS7 0.524 0.466 0.642 0.245

The highest T11SU on the TDT5 set is obtained using UMASS-

3. Four of five of our systems obtained reasonably high T11SU

utilities and 2 of our systems have quite low Min costs. UMASS-1

(although not the best system on either one of the metrics) seems

to have done well on T11SU utility and on Mincost as well.

3.4 Baseline runs
We represent a story as a vector in term-space, where a coordi-

nate represents the weight of a particular term in the story [4]. This

weight is calculated using the usual ✌ ✧ ✯ ✤✦✥★✧ product [3], where

✌ ✧ is defined as

✌ ✧ ✒ ✘ ✁ ✱ ✄✝✘ ✁ ✙ ✭✗✯ ✰ ✙ ☞ ✯ ✰✟✞ ✥✡✠✛ ✔ ✪☞☛☎✠ ✠ (4)

where ✘ ✁
is the number of times a given term occurs in a story

(row term frequency), ✥✡✠ is the document length, and
✛ ✔ ✪ ☛ ✠ is

the average length of the documents. ✤✦✥★✧ is found using the fol-

lowing formula.

✤✦✥★✧ ✒ ✝ ✚✲✪ ✄ ✄✄✬ ✙ ✭✗✯ ✰ ✠☛✱✲✥★✧ ✠
✝ ✚✫✪ ✄✄✬ ✙ ☞✡✠ (5)

where ✥★✧ is the number of stories in the collection that contain

one or more occurrences of the terms, and ✬ is the total number

of stories in the collection. Both these parameters ✬ and ✥★✧ are

calculated incrementally with a deferral limit, i.e., ✬ and ✥★✧ are

computed from the total number of documents seen so far up to the

time of the deferral period. For all our runs, we used deferral one.

We start the tracking task by creating a cluster of ✬ ✘ training sto-

ries given for a particular topic. All our runs are based on ✬ ✘✓✒ ☞ ,
i.e., considering only one story for the training. Therefore, the cen-

troid of this cluster will be the same as the vector representation of

the training story. In case of our baseline, which does no adapta-

tion, this cluster will never change.

Incoming stories are compared with the centroid of the training

cluster for measuring the similarity. We use cosine as the similar-

ity function, which simply measures the inner product of the two

vectors. Each vector is normalized to unit length, and has an iden-

tical number of terms. The terms are decrementally ranked by their

weights. If the number of unique terms exceeds a given vector

length, then the system will select the top number of terms for the

centroid and the incoming story vectors.

For our baseline run, we used single database, where all the sto-

ries were in English. The original Arabic and Mandarin stories

were translated by provided machine translators. All the stories

were lowercased and reduced to a root form by Krovetz’s stem-

mer [8], which is a dictionary-based stemmer. Stop-words were

removed using the standard InQuery stop-words list.

4. NEW EVENT DETECTION

4.1 Basic Model
We used the cosine similarity (Equation 6) metric to determine

the similarity of a story with each story that arrived earlier. The

belief in novelty of the story was taken to be its similarity with its

closest neighbor in the past.

☞ �✢✂ ✄✆✗✕✍✥✗ � ✠ ✒
✁ ✄ ☎ ✡✫�✆✪✄✂ ✘ ✄✆☎ ✍ ✗ ✠ ✞ ☎ ✡✚�✆✪✄✂ ✘ ✄✆☎ ✍ ✗ � ✠☎ ✁ ✄ ☎ ✡✚�✄✪✄✂ ✘ ✄✆☎ ✍ ✗ ✠ ✞

☎ ✁ ✄ ☎ ✡✚�✆✪✄✂ ✘ ✄✆☎ ✍ ✗ � ✠ ✞
(6)

where

☎ ✡✚�✆✪✄✂ ✘ ✄✆☎ ✍ ✗ ✠ ✒ ✘ ✁ ✞ � ✗ ✁

✘ ✁ ✒ ✝ ✟ ✡ ✄✝✘✿✡ ✜✖✂ ✁ ✜✎✡✝✆✲✟ ✡✚☎ ✣ ✙ ☞ ✯ ✭ ✠
�✒✗ ✁ ✒ ✝ ✟☛✡ ✄ ✄✆✗ ✚✲☎✚✳ ✚✲✟ ✆ ✘ ✙ ☞✢✠☛✱ ✄✆✗ ✚✲☎✞✟ ✂✮✡ ✆ ✘ ✁ ✜✖✡✞✆ ✙ ✭✌✯ ✰ ✠ ✠

4.2 Preprocessing
We used version 1.9 of the open source Lemur system1 to tok-

enize the data, remove stop words, stem and create document vec-

tors. We used the 418 stop-words included in the stop list used by

InQuery [7], and the K-stem stemming algorithm [8] implemen-

tation provided as part of Lemur. Named entities were extracted

using BBN Identifinder[5].

All collection-wide statistics are incremental [6]: we start with

an empty collection and update statistics as the stories arrive.

A maximum decision deferral period of 10 source files was used,

and the threshold for YES/NO decisions was set to 0.2. Each model

run on a TDT collection was trained using English newswire sto-

ries from previous TDT collections. For example, we used English

newswire stories from TDT2, TDT3, and TDT4 for training the

model used for runs on TDT5.

4.3 Systems fi elded

4.3.1 UMass1

In this model, for each story S the overlap of named entities and

non named-entities with the six closest matching stories (Table 3)

was measured. Using these scores as further evidence,the original

confidence score AllSimS1 assigned to the story was modified.

The final confidence score for story S was calculated using the

formula given below.☞ ✯ � ✁ ✄✠✟ ✝✻✝✝☞ �✄✂ ☞✵☞☛✡ ✭✗✯ ☞ ✠ �✑ ✯ � ✁ ✄✄✬ ✌ ☞ �✄✂ ☞✵☞☛✡ ✆ ✚✖✬ ✌ ☞ �✄✂ ☞✵☞✢✠ �☞✌✯ ☎ ✆ ✘✍✌ ☞ ✭✎ ✯ � ✁ ✄✄✬ ✌ ☞ �✄✂ ☞ ✑✑✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✍✌ ☎ ✆ ✘ ✂ ☞✰✦✯ � ✁ ✄✄✬ ✌ ☞ �✄✂ ☞ ☞ ✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✍✌ ☎ ✆ ✘ ✂ ☞✒ ✯ � ✁ ✄✄✬ ✌ ☞ �✄✂ ☞ ✎ ✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✍✌ ☎ ✆ ✘ ✂ ☞✓ ✯ � ✁ ✄✄✬ ✌ ☞ �✄✂ ☞ ✰ ✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✍✌ ☎ ✆ ✘ ✂ ☞✔ ✯ � ✁ ✄✄✬ ✌ ☞ �✄✂ ☞ ✒ ✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✍✌ ☎ ✆ ✘ ✂ ☞✕ ✯ ✜✖✡ ✘✿✟ ✜✢✆ ✄ ✄✆☎ ✆ ✘✏✱ ✰✌✯ ✭ ✠ ✞ ✟ ✝✻✝✝☞ �✄✂ ☞✵☞✡✠
✓ http://www.cs.cmu.edu/˜lemur

Stories most Cosine similarity computed using

similar to All terms Only named Terms excluding

Story S in document entities named entities

S1 AllSimS1 NESimS1 noNESimS1

S2 AllSimS2 NESimS2 noNESimS2

S3 AllSimS3 NESimS3 noNESimS3

S4 AllSimS4 NESimS4 noNESimS4

S5 AllSimS5 NESimS5 noNESimS5

S6 AllSimS6 NESimS6 noNESimS6

Table 3: Features used to determine the final confidence score

for a story S. The stories S1 to S6 are ordered in terms of de-

creasing cosine similarity to S.

90

80

60

40

20

10

5

2

1
908060402010521.5.2.1.05.02.01

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

False Alarms probability (in %)

UMass1 system run on TDT3

Random Performance

Baseline Topic Weighted Curve

TW Min DET Norm(Cost) = 0.5931

Topic Weighted Curve using system UMass1

TW Min DET Norm(Cost) = 0.5277

Figure 4: DET curves comparing the performance of baseline

cosine system and UMass1.

☞ ✭✌✯ ✁✫✡✫✝✝✖✚✡ �☞✎☞ ✯ ☎ ✆ ✘✍✌ ☞ ✭☞✫✑ ✯ � ✁ ✄✝✆ ✚✎✬ ✌ ☞ �✄✂ ☞ ✑✑✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✖✌ ☎ ✆ ✘ ✂ ☞☞ ☞✌✯ � ✁ ✄✝✆ ✚✎✬ ✌ ☞ �✄✂ ☞ ☞ ✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✖✌ ☎ ✆ ✘ ✂ ☞☞ ✎ ✯ � ✁ ✄✝✆ ✚✎✬ ✌ ☞ �✄✂ ☞ ✎ ✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✖✌ ☎ ✆ ✘ ✂ ☞☞ ✰✦✯ � ✁ ✄✝✆ ✚✎✬ ✌ ☞ �✄✂ ☞ ✰ ✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✖✌ ☎ ✆ ✘ ✂ ☞☞ ✒ ✯ � ✁ ✄✝✆ ✚✎✬ ✌ ☞ �✄✂ ☞ ✒ ✏ ✭✗✯ ☞✢✠ ☎ ✆ ✘✖✌ ☎ ✆ ✘ ✂ ☞☞ ✓ ✯ ✜✖✡ ✘✿✟ ✜✢✆ ✄ ✄✆☎ ✆ ✘✏✱ ✰✌✯ ✭ ✠ ✞ ✟ ✝✻✝✝☞ �✄✂ ☞✵☞✡✠☞ ✔ ✯ ✁☞ ✕ ✯ ✡✲✝ ✖✫✡ �✑ ✭✌✯ ✜✖✡ ✘✿✟ ✜✢✆ ✄✠✟ ✝✻✝ ☞✓�✄✂ ☞✹☞✡✠✑✌☞ ✯ ✁
The formula is designed to boost the confidence scores of old

stories, and leave the new story confidence scores untouched. A

large number of old stories have low confidence scores due to rea-

sons like documents being on multiple topics, the topic being dif-

fuse, and so on. Step 1. first checks if the original confidence score

is low enough to warrant further investigation. Since it is possi-

ble that stories on a topic are linked together by named entities or

non-named entities (or both), Step 2. is designed to detect which

of the two groups of terms form the link between stories. Once this

is done, the original confidence score is doubled. Steps 4. to 9.

and 12. to 16. check to see if there are more stories that share a

very high degree of similarity either due to named entities, or non-

named entities. If this is not the case, then the confidence scores are

slowly reduced back to the original value. All the numerical values

in the formula were obtained from training data.

Figure 4 shows the performance of UMass1 on TDT3. Table 4

summarizes the performance of the four systems on the TDT5 col-

lection.

Table 4: Summary of the performance of UMass systems on the

TDT5 collection.

UMass1 UMass2 UMass3 UMass4

Topic Weighted 0.8790 0.8387 0.8479 0.9213

Minimum Cost

4.3.2 UMass2

Each story was compared with all the stories preceding it. The

highest cosine similarity was returned as the confidence score that

a story was old.

4.3.3 UMass3

Each story was compared with a maximum of 25000 preceding

stories that had the highest coordination match. The highest cosine

similarity was returned as the confidence score that a story was old.

4.3.4 UMass4

UMass4 is similar to UMass1, except that it considers the five

closest matches, and uses a different formula. The rationale is how-

ever the same.�✂✁☎✄✝✆✟✞✠✞☛✡☞�✍✌✎✡✑✏✓✒✕✔✗✖ ✘✚✙✜✛✢✤✣✦✥★✧✪✩�✫✁✬✄✍✭✯✮✰✡✱�✍✌✎✡★✲✓✳✴✔✗✖ ✏✵✙✜✶✸✷✓✄ ✣✦✹ ✭✎✮✓✡☞�✝✌✺✡☞✲✻✳✕✔✗✖ ✔✽✼✾✙ ✢✤✣✦✥★✧✿✢✤✣✦✥✽❀ ✏�✫✁✬✄✍✭✯✮✰✡✱�✍✌✎✡★❁✓✳✴✔✗✖ ✏✵✙✜✶✸✷✓✄ ✣✦✹ ✭✎✮✓✡☞�✝✌✺✡☞❁✻✳✕✔✗✖ ✔✽✼✾✙ ✢✤✣✦✥★✧✿✢✤✣✦✥✽❀ ✏�✫✁✬✄✍✭✯✮✰✡✱�✍✌✎✡☞✘✰✳✴✔✗✖ ✏✵✙✜✶✸✷✓✄ ✣✦✹ ✭✎✮✓✡☞�✝✌✺✡✱✘❂✳✕✔✗✖ ✔✽✼✾✙ ✢✤✣✦✥★✧✿✢✤✣✦✥✽❀ ✏�✫✁✬✄✍✭✯✮✰✡✱�✍✌✎✡★✼✓✳✴✔✗✖ ✏✵✙✜✶✸✷✓✄ ✣✦✹ ✭✎✮✓✡☞�✝✌✺✡☞✼✻✳✕✔✗✖ ✔✽✼✾✙ ✢✤✣✦✥★✧✿✢✤✣✦✥✽❀ ✏❃✵❄❅✥✂❆❇❃✵✣ ✄✜✄ ✢✤✣✦✥❉❈ ✘❊✖ ✔✾✙●❋❍✆■✞☛✞☛✡☞�✝✌✺✡✑✏✵✙❄ ✞✝❏ ❄ ✛❃✵❄❅✥✂❆❇❃✵✣ ✄✍✆■✞☛✞☛✡✱�✍✌✺✡✑✏✵✙❑
5. LINK DETECTION

For the TDT 2004 link detection cross-lingual task we used our

existing TDT system to see how it performed on the new TDT5

data. Two methods of story representation and similarity measure

were run. The first was the vector-space model with cosine similar-

ity and the second relevance modeling. These models and further

references are fully documented in [2] and [9].

To compare two stories for link detection with cosine similarity,

we used the same vector-space TDT system that we have used in

previous years. Each story is represented as a vector of terms with

✘ ✁ ✂ � ✗ ✁
term weights:

� ✗ ✁ ✒ ✝ ✚✫✪ ✄ ✄✄✬ ✙ ✭✌✯ ✰ ✠☛✱ ✗ ✁ ✠
✝ ✚✫✪ ✄✄✬ ✙ ☞✡✠ (7)

where ✘ ✁
is the number of occurrences of the term in the story,✬ is the total number of documents in the collection, and ✗ ✁

is

the number of documents containing the term. Collection statistics✬ and ✗ ✁
were computed incrementally, based on the documents

already in the stream within a deferral period after the test story

arrives. The deferral period for link detection was 10.

Relevance Models is a statistical technique for estimating lan-

guage models from small samples of text. Suppose
✘

is a short

string of text and ✳ is a large collection of documents, the language

model for
✘

is estimated as:

✑✗✄✆☎ ✘ ✘ ✠✓✒ ✂
✴✾▲◆▼ ✑✗✄✆☎ ✘ ✑ ✴ ✠✛✑✗✄✒✑ ✴ ✘ ✘ ✠ (8)

A Relevance Model is a mixture of language models ✑ ✴ of

every document ✗ in the collection. The document models ✑ ✴
are weighted by the posterior probability of producing the query

✑✗✄✒✑ ✴ ✘ ✘ ✠ . The posterior is computed as follows:

✑✗✄✒✑ ✴ ✘ ✘ ✠ ✒ ✑✗✄✆✗ ✠❇❖✕P ▲❊◗ ✑✗✄ ✆ ✘ ✑ ✴ ✠✁ ✴❅❘✂▲◆▼ ✑✗✄✆✗ � ✠ ❖✴P ▲❊◗ ✑✗✄ ✆ ✘ ✑ ✴❙❘ ✠ (9)

The effect of equation (9) is that it assigns high weights to doc-

uments ✗ that are most likely to have generated
✘

. A Relevance

Model can be interpreted as a massive query expansion technique.

To apply relevance modeling to story link detection we represent

each story with a small number of terms, find the relevance model

for each story and measure the similarity of the two models. Ev-

ery story was pruned to 10 terms. The terms are those with the

lowest probability of occurring by chance when picking 10 words

randomly from the collection, ✳ . To do this we use the hypergeo-

metric distribution.

✑❯❚❲❱ ✼ ✚ ❚ ✶ ✄✠✟ ✄ ✠ ✒
❳ ✳ ✄

✟ ✄❩❨ ❳ ✘ ✳ ✘ ✂ ✳ ✄✘ ✟ ✘ ✂ ✟ ✄❬❨❳ ✘ ✳ ✘✘ ✟ ✘ ❨ (10)

Where
✘ ✟ ✘

is the length of story ✟ , ✟ ✄ is number of times the word

☎ occurs in ✟ ,
✘ ✳ ✘

is the size of collection ✳ and ✳ ✄ is the total

number of times ☎ occurs in ✳ .

Collection statistics ✳ and ✳ ✄ are computed incrementally, based

on the documents already in the stream within a deferral period af-

ter the test story arrives. The deferral period for link detection was

10.

Once we have the estimated Relevance Models for stories A

and B, similarity between the models is measured by symmetrized

clarity-adjusted divergence.

☞ ✾ ✚ � ✄✠✟ ✍❪❭ ✠ ✒ ✂
✄

✑✗✄✆☎ ✘ ✘❴❫ ✠✜✝ ✟ ✡ ✑✗✄✆☎ ✘ ✘❛❵ ✠
✑✗✄✆☎ ✘ ☞✍✌ ✠

✙ ✂
✄

✑✗✄✆☎ ✘ ✘❴❵ ✠ ✝ ✟☛✡ ✑✗✄✆☎ ✘ ✘ ❫ ✠
✑✗✄✆☎ ✘ ☞✍✌ ✠ (11)

✑✗✄✆☎ ✘ ✘❛❫ ✠ refers to the relevance model estimated for story ✟ , and

✑✗✄✆☎ ✘ ☞✍✌ ✠ is the background (General English) probability of ☎ ,

computed from the entire collection ✳ , within the deferral period.

The ROI post-processing experiments tried in 2003 were omitted

in 2004.

Another important issue in multi-language link detection is how

best to compare stories. Comparisons can be made with all sto-

ries in English, using the provided machine-translated versions of

Mandarin and Arabic stories. An alternative is to compare two sto-

ries in the original language whenever possible. This choice was

based on the belief that a similarity measure is more accurate when

possible errors in translation are avoided. When both stories in the

pair were originally in English the similarity comparison was done

in English. The comparison was done in Chinese when both were

in Chinese and the comparison was done in Arabic the when both

stories were Arabic. Otherwise cross-language comparisons were

done in English. Corpus statistics were incrementally updated sep-

arately for each language.

English stories were lower-cased and stemmed using the kstem

stemmer. Stop words were removed. Native Arabic stories were

converted from Unicode UTF-8 to windows (CP1256) encoding,

then normalized and stemmed with a light stemmer. Stop words

were removed. Native Mandarin stories were converted from Uni-

code UTF-8 to gb. They were stopped with a list of Chinese stop

words and a set of stopping rules. Bigrams were then made of char-

acter pairs.

The submissions were:

1. baseline (umass/1D-costfidf): This run used the vector-space

model with all stories machine-translated into English. Each

vector was constrained to the 1000 highest terms. Both story

vectors were weighted using the tf*idf weighting scheme.

The YES/NO threshold was determined by training on the

newswire portion of the TDT4 corpus and was set at 0.0929.

The deferral period was 10.

2. relevance model English (umass/1D-rm): This run used the

language model approach with all stories machine-translated

into English. The number of words in each story was pruned

using a hypergeometric distribution. The YES/NO threshold

was determined by training on the newswire portion of the

TDT4 corpus and was set to 0.1096 . The deferral period

was 10.

3. native language comparisons (umass/4D-costfidf): This run

used the vector space model, but stories were compared in

their native language whenever possible. The YES/NO thresh-

old was determined by training on the newswire portion of

the TDT4 corpus and was set at 0.0840. The deferral period

was 10.

4. native language comparisons, relevance model (umass/4D-

rm): This run used the language model approach, but stories

were compared in their native language whenever possible.

The number of words in each story was pruned using a hyper-

geometric distribution with the collection in the appropriate

language. The YES/NO threshold was determined by train-

ing on the newswire portion of the TDT4 corpus and was set

at 0.0910. The deferral period was 10.

Figure 5 shows the comparative performance of the four submit-

ted conditions on the TDT-4 newswire data. Relevance modeling

improves performance over the vector-space model and compar-

isons with native language stories, when possible, improves perfor-

mance over comparisons with all stories in English. There is a clear

picture that both relevance modeling and the use of native language

comparisons improves performance, reinforcing our findings on the

TDT-3 data.

Minimum Cost Cost

Detection Algorithm TDT-4 TDT-5 TDT-5

Cosine tfidf (1D) 0.2260 0.1083 0.1667

Relevance Model (1D) 0.2066 0.1143 0.1732

Cosine tfidf (4D) 0.1890 0.1155 0.1318

Relevance Model (4D) 0.1743 0.0957 0.1270

Table 5: Performance of different algorithms on the Link De-

tection. Adjudicated results

1

2

5

10

20

40

60

80

90

.01 .05.1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

False Alarm probability (in %)

link tdt4

1D_cos
1D_rm
4D_cos
4D_rm
Random Performance

Figure 5: Det curve: for story Link Detection TDT-4 newswire

training data

1

2

5

10

20

40

60

80

90

.01 .05.1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

False Alarm probability (in %)

tdt5 link adjud

1D_cos_adjud
1D_rm_adjud
4D_cos_adjud
4D_rm_adjud
Random Performance

Figure 6: Det curve: for story Link Detection adjudicated TDT-

5 data

Both the table 5 and the figure 6 show a somewhat different pat-

tern on TDT-5 than on TDT-4. The Minimum cost is lower over-

all in TDT-5. The Relevance Model (4D) with native languages

outperforms the others as in TDT-4. Because it is not clear from

the graph that using native languages with the vector-space model

was a win, we were suspicious of the results. Upon further inves-

tigation we found that when we used a Chinese segmenter on the

native Mandarin stories prior to stopping and transforming them to

bigrams, native language comparisons do improve performance. It

is also not clear that relevance modeling in general is a win. It looks

like at low thresholds it is not.

Our choices for TDT-5 YES/NO thresholds , which were based

on TDT-4 training runs, were too low. Table 6 shows the minimum

cost and the corresponding threshold for each of the four runs on

the revised data. A graph of the four submitted conditions with the

native Mandarin stories revised can be seen in Figure 7. One can

see native language comparisons give better results than English-

only comparisons, both in the vector-space model and the relevance

model case. However on TDT-5, the relevance model does not out-

perform the vector-space model at high recall where the probability

of miss becomes low.

1

2

5

10

20

40

60

80

90

.01 .05.1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

False Alarm probability (in %)

link tdt5 revised adjud

1D_cos_adjud
1D_rm_adjud
4D_cos_fix_adjud
4D_rm_fix_adjud
Random Performance

Figure 7: Det curve revised: for story Link Detection adjudi-

cated TDT-5 data

Minimum Cost Threshold

Detection Algorithm TDT-5 TDT-5

Cosine tfidf (1D) 0.1083 0.1486

Relevance Model (1D) 0.1143 0.2058

Cosine tfidf (4D) 0.0965 0.1284

Relevance Model (4D) 0.0982 0.1590

Table 6: Revised performance of different algorithms on the

Link Detection. Adjudicated results

Acknowledgments

This work was supported in part by the Center for Intelligent Infor-

mation Retrieval, in part by SPAWARSYSCEN-SD grant number

N66001-02-1-8903. Any opinions, findings and conclusions or rec-

ommendations expressed in this material are the author(s) and do

not necessarily reflect those of the sponsor.

6. REFERENCES

[1] J. Allan, A. Feng, and A. Bolivar. Flexible intrinsic

evaluation of hierarchical clustering for tdt. In In the Proc. of

the ACM Twelfth International Conference on Information

and Knowledge Management, pages 263–270, Nov 2003.

[2] James Allan, Alvaro Bolivar, Margaret Connell, Steve

Cronen-Townsend, Ao Feng, Fangfang Feng, Giridhar

Kumaran, Leah Larkey, Victor Lavrenko, and Hema

Raghavan. Umass tdt 2003 research summary. In

Proceedings of TDT2003 evaluation, unpublished, 2003.

[3] James Allan, Jamie Callan, Fangfang Feng, and D. Malin.

Inquery and trec-8. In Proceedings of TREC-8, 1999.

[4] James Allan, H. Jin, M. Rajman, C. Wayne, D. Gildea,

V. Lavrenko, R. Hoberman, and D. Caputo. Topic-based

novelty detection. In summer workshop at CLSP, 1999.

[5] Daniel M. Bikel, Richard L. Schwartz, and Ralph M.

Weischedel. An algorithm that learns what’s in a name.

Machine Learning, 34(1-3):211–231, 1999.

[6] Thorsten Brants, Francine Chen, and Ayaman Farahat. A

system for new event detection. In Proceedings of the 26th

Annual International ACM SIGIR Conference on Research

and Development in Informaion Retrieval, pages 330–337.

ACM Press, 2003.

[7] James P. Callan, W. Bruce Croft, and Stephen M. Harding.

The INQUERY retrieval system. In Proceedings of

DEXA-92, 3rd International Conference on Database and

Expert Systems Applications, pages 78–83, 1992.

[8] Robert Krovetz. Viewing morphology as an inference

process. In Proceedings of the 16th Annual International

ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 191–202. ACM Press, 1993.

[9] Leah Larkey, Fangfang Feng, Margaret Connell, and Victor

Lavrenko. Language-specific models in multilingual topic

tracking. In Proceedings of SIGIR 2004, pp. 402-409,

Sheffield England, 2004.

[10] Ramesh Nallapati, Ao Feng, Fuchun Peng, and James Allan.

Event threading within news topics. In ACM Thirteenth

International Conference on Information and Knowledge

Management, 2004.

