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1 Terabyte

1.1 Model

The retrieval model implemented in the Indri search engine is

an enhanced version of the model described in [30], which com-

bines the language modeling [35] and inference network [38]

approaches to information retrieval. The resulting model al-

lows structured queries similar to those used in INQUERY [4]

to be evaluated using language modeling estimates within the

network, rather than tf.idf estimates. Figure 1.1 shows a graph-

ical model representation of the network. As in the original

inference network framework, documents are ranked according

to P (I|D, α, β), the belief the information need I is met given

document D and hyperparameters α and β as evidence.

Due to space limitations, a general understanding of the in-

ference network framework is assumed. See [30] and [38] to

fill in any missing details.

1.1.1 DOCUMENT REPRESENTATION

Typically, in the language modeling framework, a document is

represented as a sequence of tokens (terms). Based on this se-

quence, a multinomial language model over the vocabulary is

estimated. However, it is often the case that we wish to model

more interesting text phenomenon, such as phrases, the absence

of a term, etc. Here, we represent documents as multisets of bi-

nary feature vectors. The features can be nearly any interesting

binary observation of the underlying text. The features used to

represent documents in our model are discussed later.

We assume that there is a single feature vector for each po-

sition within a document, although in general this need not be

the case. Such a model moves away from modeling text towards

modeling features of text. Throughout the remainder of this pa-

per we refer to such models as language models, although they

really are better described as language feature models.

1.1.2 LANGUAGE MODELS

Since our event space is now binary we can no longer estimate

a single multinomial language model for each document. In-

stead, we estimate a multiple-Bernoulli model for each docu-

ment, as in Model B of [31]. This overcomes the theoretical

issues encountered in [30]. Note that the multiple-Bernoulli

model imposes the assumption that the features (ri’s) are inde-

pendent, which of course may be a poor assumption depending

on the feature set.

We take a Bayesian approach and impose a multiple-

Beta prior over the model (θ). Thus, P (D|θ) ∼
MultiBernoulli(θ) and P (θ|α, β) ∼ MultiBeta(α, β). Our

belief at node θ is then:

P (θi|D, α, β) =
P (D|θi)P (θi|αi, βi)∫
θi

P (D|θi)P (θi|αi, βi)

= Beta(#(ri, D) + αi, |D| − #(ri, D) + βi)

for each i where #(ri, D) is the number of times feature ri is

set to 1 in document D’s multiset of feature vectors.

We estimate such a model for the entire document. Addition-

ally, we estimate field specific models for a number of HTML

fields. To do so, we treat all of the text in a document that ap-

pears within a given field as a pseudo-document. For example,

a model can be estimated for all of the text that appears within

the h1 tags of a document. More details of the specific fields

we explored are given in Subsection 1.4.

1.1.3 REPRESENTATION NODES

The ri nodes correspond to document features that can be rep-

resented in an Indri structured query. Indri implements exactly

those operators available in INQUERY [4]. They are single

terms, #N (ordered window N ), and #uwN (unordered window

N ). See [30] for more details. The belief at a given representa-

tion node is computed as:

P (ri|D, α, β) =

∫
θi

P (ri|θi)P (θi|D, αi, βi)

= E[θi]

=
#(ri, D) + αi

|D| + αi + βi

Furthermore, selecting αi = µP (ri|C) and βi = µ(1 −
P (ri|C)) we get the multiple-Bernoulli model equivalent of the

multinomial model’s Dirichlet smoothing [42] estimate:

P (ri|D, α, β) =
#(ri, D) + µP (ri|C)

|D| + µ

where µ acts as a tunable smoothing parameter.

1.1.4 QUERY NODES

The query node operators are soft probabilistic operators. All

of the query operators available in INQUERY are also available
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in Indri, with the addition of a weighted version of the #and

operator named #wand. The operators are #combine (same as

#and), #weight (same as #wand), #or, #not, #sum, #wsum, and

#max. See [30] for the details of how beliefs are computed at

the query nodes.

Since we are using language modeling probabilities within

the network, the #wsum operator no longer makes sense and the

the #combine (#and) and #weight (#wand) operators are more

appropriate [30]. In fact, it can be shown that the Indri query

#combine( q1 . . . qN ) using the estimates just described returns

exactly the same ranked list as the query q1 . . . qN using the

traditional (multinomial with Dirichlet smoothing) query like-

lihood model.

1.2 Test Platform

We ran our index builds and our queries in parallel on a cluster

of 6 identically configured machines (the machine configura-

tion is shown in Figure 2).

For the run involving anchor text, we ran an application on

a single machine that extracted all anchor text from the col-

lection. We discarded all in-site links, that is, all machines

that pointed to pages on the same machine as they originated

from. The remaining link text was associated with the desti-

nation page of each link. This process took more time than

indexing did, and it generated approximately 7GB of anchor

text.

1.3 Indri Retrieval Engine

We indexed the GOV2 collection using Indri, a new language

modeling retrieval engine developed at UMass based on the

Lemur project. The Indri engine was written to handle ques-

tion answering and web retrieval tasks against large corpora.

The engine is written in C++ and runs on Linux, Windows, So-

laris and Mac OS X. We used the Terabyte task as a proving

ground for this engine.

The indexing algorithm is quite similar to the one described

in [14], although it was developed before we had seen this pa-

per. In the early phases of development we had attempted to

store the vocabulary of the collection in a B-Tree data structure.

With caching, this method seemed to do well on collections of

up to 10GB, but after that point performance degraded dramati-

cally. We eventually changed the system to flush the vocabulary

during posting flushes, as in [14]. This technique dramatically

Figure 1: Indri’s inference network retrieval model.

CPU Intel Pentium 4 2.6GHz × 1

Bus speed 800MHz

OS Linux 2.4.20 (Red Hat 9)

Memory 2GB

Boot volume Western Digital 40G

(WD400EB-75CPF0)

Work volume Western Digital 250GB × 3

(WD2500JB-00EVA0)

RAID 0

Average write seek: 10.9ms

Average read seek: 8.9ms

Rotational speed: 7200rpm

Network 1Gb/s Ethernet (Intel 82540EM)

Figure 2: Machine configuration for Terabyte task (6 of these

machines were used) at a total cost of $9000 USD.

improved our indexing times.

The Indri indexing process creates a variety of data struc-

tures:

• A compressed inverted file for the corpus, including term

position information

• Compressed inverted extent lists for each field indexed in

the corpus

• A vector representation of each document, including term

position information and field position information

• A random-access compressed version of the corpus text

We found that flushing the vocabulary during posting flushes

complicated the creation of document vectors. These vectors

are compressed arrays of numbers, where each number corre-

sponds to some term in the collection. In initial development,

each term was assigned a fixed number when it was first seen in

the corpus. With vocabulary flushing, we were no longer able

to keep fixed term numbers throughout the indexing process.

We therefore write the document vectors out using temporary

term numbers. Once each term is assigned a final term number

during the final inverted list merge, we rewrite the document

vectors, exchanging the temporary term numbers for the final

numbers.

1.3.1 ANCHOR TEXT

For the anchor text run, we followed the model presented by

Ogilvie and Callan in [34]. In this model, different portions

of the document are considered to be different representations

of the same document. We used the heading fields (h1, h2, h3

and h4), the title, the whole text, and the anchor text of each

web page as these different representations. The Indri query

language enabled us to weight these different representations

during retrieval.

Let the set of pages in the corpus be C. For each document

d ∈ C, there is a (possibly empty) set of documents in C that

have links to d. Let this set of documents be L. We can par-

tition L into two sets, LI and LE , where LI consists of those

documents on the same server as d, and LE consists of those

documents on other servers. Let A(d) represent the text in links

from LE to d. We use A(d) as the anchor text model for d.
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In order to be able to use the anchor text model of a document

during retrieval, we created an anchor text harvesting program.

This anchor text harvester wrote out all the links in the collec-

tion into a separate anchor text only corpus. The program then

associated the anchor text for each link to the destination doc-

ument. Approximately 70% of the time for this process was

taken in parsing the corpus to find the text; the remaining 30%

was taken in associating the link text with the destination doc-

uments.

1.3.2 RETRIEVAL

Indri uses a document-distributed retrieval model when oper-

ating on a cluster. Each machine in the cluster runs a process

called a query server, which can perform queries against its lo-

cal collection. A process called the query director sends queries

out to the query servers for processing, and then merges the re-

sults.

In order to generate scores on a cluster that are identical to

those in a single collection, it is necessary for each cluster node

to use the same corpus statistics for term frequency and corpus

size. To do this, Indri starts every query by collecting statis-

tics from the query servers. The query director combines these

statistics to create a collection model for the query. These statis-

tics are then sent back to the query servers with the query itself

for final processing. This two-phase process allows Indri to

handle statistics collection for phrases in the same way that it

handles collection for terms.

On each query server, Indri scores documents in a document-

at-a-time manner. The literature suggests that this is not

the fastest way to perform retrieval, but we have found the

document-at-a-time method to be more straightforward for field

restricted query evaluation, and have therefore adopted it for all

queries.

The Indri engine does employ a variety of optimizations at

query time. Some of them were in place before we submitted

our TREC results, but some were implemented afterward. We

are including a second set of query times, run on the same hard-

ware as the first, to show improvements achieved with newer

optimizations.

In the results we reported at the deadline, our system used

1MB buffers on all term inverted lists in order to keep disk seek

overhead to an acceptable minimum. We processed all queries

into directed acyclic graphs before evaluation, which dramati-

cally cut down on the time necessary to evaluate the more com-

plicated adaptive window runs. We also incorporated a fast path

for frequency-only terms; that is, terms that can be scored based

on their frequency within the document, and without position

information. For these frequency terms, we read postings from

the inverted list in batches, and did not decompress the position

information.

Since the deadline, we have added two more optimizations.

The first is max score, described in [39]. This optimization

was in place before the deadline, but because of bugs in the

implementation was not actually working. The max score opti-

mization allows Indri to skip inverted list postings that we know

cannot be associated with a document in the top n positions of

the ranked list. Note that this optimization is rank and score

safe.

We have also implemented #weight operator folding. This

optimization removes unnecessary #weight and #combine

operators. For instance, a query such as #weight(

0.5 #combine( Bruce Croft ) 0.5 #combine(

James Allan ) ) is equivalent to #weight( 0.25

Bruce 0.25 Croft 0.25 James 0.25 Allan ).

However, our implementation of max score operates only on

the top level #weight operator. As such, #weight folding,

in concert with max score, gave us a large speedup in the query

expansion runs.

1.4 Runs

Five official runs were submitted for evaluation. We created

runs that vary from very simple (indri04QL) to very complex

(indri04FAW) with the aim of evaluating the efficiency and ef-

fectiveness of our system across a wide range of query types. In

order to emulate reality as close as possible, all queries were au-

tomatically constructed using only the title field from the topic.

The runs submitted were:

indri04QL – Query likelihood. For each topic we create an

Indri query of the form #combine( q1 . . . qN ), where Q =
q1, . . . , qN is the title portion of the topic.

indri04QLRM – Query likelihood + pseudo relevance feed-

back. For each topic, we construct a relevance model [25] from

the top 10 documents retrieved using the indri04QL query. The

original query is then augmented with the 15 terms with the

highest likelihood from the relevance model. The final form of

the Indri query is #weight(0.5 ( #combine( q1 . . . qN ) 0.5

#combine( e1 . . . e15 ) ), where e1 . . . e15 are the expansion

terms.

indri04AW – Phrase expansion. This run explores how we

can exploit Indri’s proximity operators to improve effective-

ness. We base our technique on the following assumption de-

scribed in [5]: query terms are likely to appear in close prox-

imity to each other within relevant documents.

For example, given the query “Green party

political views” (topic 704), relevant documents

will likely contain the phrases Green party and political views

within relatively close proximity to one another. Most retrieval

models ignore proximity constraints and allow query terms

to appear anywhere within a document, even if the words are

clearly unrelated. Let us treat a query as a set of terms Q
and define SQ = P(Q) \ {∅} (i.e. the set of all non-empty

subsets of Q). Then, our queries attempt to capture certain

innate dependencies between query terms via the following

assumptions on SQ:

1. Every s ∈ SQ that consists of contiguous query terms is

likely to appear as an exact phrase in a relevant document

(i.e. #1)

2. Every s ∈ SQ such that |s| > 1 is likely to appear (ordered

or unordered) within a reasonably sized window of text in

a relevant document (i.e. #uw4|s|).

These assumptions state that (1) exact phrases that appear

in a query are likely to appear as exact phrases within rele-

vant documents and that (2) all query terms are likely to appear
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within close (ordered or unordered) proximity to each other in

a relevant document. As a concrete example, given the query

“Prostate cancer treatments” (topic 710) our sys-

tem generates the following query:

#weight(

1.5 #combine( prostate cancer treatments )

0.1 #combine( #1( cancer treatments )

#1( prostate cancer )

#1( prostate cancer treatments ) )

0.3 #combine( #uw8( cancer treatments )

#uw8( prostate treatments )
#uw8( prostate cancer )

#uw12( prostate cancer treatments ) )

)

Queries constructed in this way boost the score of documents

that adhere to our assumptions. Experiments on the WT10g

collection with queries of this form performed significantly bet-

ter than traditional query likelihood queries.

indri04AWRM – Phrase expansion + pseudo relevance feed-

back. This run uses the query constructed from the indri04AW

run for pseudo relevance feedback. Here, 5 documents were

used to construct the relevance model and 10 expansion terms

were added to the query. For this run, we weighted the origi-

nal query 0.7 and the expansion terms 0.3 to yield a query of

the form #weight( 0.7 Qorig 0.3 #combine( e1 . . . e10 ) ),

where Qorig is the original query and e1 . . . e10 are the expan-

sion terms.

indri04FAW – Phrase expansion + document structure. Our

final run is a largely untested and purely experimental attempt

to make use of anchor text and document structure. As dis-

cussed earlier, the Indri search engine can index fields and can

evaluated complex queries containing certain field constructs.

Several past studies have found that anchor text and document

structure yields inconsistent improvements in effectiveness for

ad hoc web retrieval [12, 13, 17]. The results were obtained

using the WT10g collection, which is roughly 2.5% the size of

the GOV2 corpus. Therefore, we wish to explore whether these

results hold for this larger collection.

The queries constructed for this run make use of main body

text, anchor text, the title field, and header fields (h1, h2,

h3, h4). The queries constructed are of the form #weight(

0.15 Qinlink 0.25 Qtitle 0.10 Qheading 0.50 Qmainbody ),

where each Qfield is a phrase expansion query evaluated us-

ing the respective field language model. For example, Qinlink

is the phrase expansion query evaluated using a language model

built from all of the anchor text associated with a page.

All smoothing parameters, weights, and window sizes were

tuned using the WT10g collection and TREC topics 451-550

which were used for ad hoc web retrieval at TREC-9 and 10 [12,

13].

Table 1.4 gives a detailed summary of the runs. Each run

used an index built from the entire collection of 25,205,179

documents. Documents are stemmed with the Porter stemmer

and stopped using a standard list of 420 common terms. In the

table, indexing time is the number of minutes required to build

the index in parallel across the cluster. Therefore, this number

is the maximum time required by any single machine to index

its subcollection. Index size is the total size of the index on disk

run id index

time

(mins)

index

size

(GB)

avg.

query

time

(s)

struct?

indri04QL 355 224 1.36 no

indri04QLRM 355 224 26.0 no

indri04AW 355 224 6.5 no

indri04AWRM 355 224 39.4 no

indri04FAW 1300 226 52.2 yes

Table 1: Summary of runs.

including both the inverted file and compressed collection. Av-

erage query time is the average number of seconds required to

run a query (distributed across the cluster) and retrieve 20 doc-

uments. The last column denotes whether or not the run made

any use of any document structure, such as titles, headers, etc.

2 Novelty

2.1 Overview of Our Approaches for the Four Tasks

There are four tasks in this year’s novelty track and we partici-

pated in all of them. For the 50 topics in the 2004 track, each of

them has 25 relevant documents, and zero or more non-relevant

documents. Task 1 was to identify all relevant and novel sen-

tences, given the full set of documents for the 50 topics. Task 2

was to identify all novel sentences, given the full set of relevant

sentences in all documents. Task 3 was to find the relevant and

novel sentences in the remaining documents, given the relevant

and novel sentences in the first 5 documents only. Task 4 was to

find the novel sentences in the remaining documents, given all

relevant sentences from all documents and the novel sentences

from the first 5 documents.

We compared the statistics of the 2004 track with both 2002

and 2003 tracks, and have found that the statistics of the 2004

track is closer to the 2003 track. The comparison of the statis-

tics of the 2003 and 2004 novelty track data is shown in 2.

Therefore we decided to train our system with the 2003 data

when no training from this year’s track was available for Task

1 and Task 2, and used the training data from this year’s track

as it was available for Task 3 and task4. We have already de-

veloped an answer-updating approach to novelty detection [1],

which gave better performance in terms precision at low re-

call on both the 2002 and the 2003 novelty track data than the

baseline approaches reported in that work. However, we could

not use the answer-updating approach directly in the tasks of

this year’s novelty track because the evaluation measure used in

novelty track was the F measure, which is the harmonic mean

of precision and recall. Therefore, we used TFIDF techniques

with selective feedback for finding relevant sentences and con-

sidered the maximum similarity of a sentence to its previous

sentences and new named entities to identify novel sentences.

The detail descriptions about our approaches are elaborated in

the following subsections. Only the main approach for each

task will be reported in this paper even though multiple runs for

each topic were submitted to TREC from us.
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Feature Track 2003 Track 2004

Num. of Event Topics 28 25

Num. of Opinion Topics 22 25

Num. of Relevant Documents/Topic 25 25

Num. of Non-relevant Documents/Topic 0 11.16

Avg. Num. Sentences/Topic 797.4 1048.8

Table 2: Statistics comparison of 2003 and 2004 track data

2.2 Relevant Sentence Retrieval

For relevant sentence retrieval, our system treated sentences as

documents and used the words in the title fields of the topics

as queries. TFIDF techniques with pseudo feedback or selec-

tive pseudo feedback were used for finding relevant sentences

for Task 1 and TFIDF techniques with relevance feedback or

selective relevance feedback were used for Task3. Selective

pseudo feedback means pseudo feedback was performed on

some queries but not on other queries based on an automatic

analysis on query words across different topics. Basically, a

query with more focused query words that rarely appear in rel-

evant documents related to other queries is likely to have a bet-

ter performance without pseudo feedback. Selective relevance

feedback means whether to performance relevance feedback on

a query was determined by the comparison between the perfor-

mance with and without relevance feedback in the top five doc-

uments for this query because the judgment of the top five doc-

uments was given for Task 3. Short sentences, non-informative

sentences as well as non-normal sentences were removed in the

final results. Non-informative sentences are the sentences that

have less than n non-stopwords, where the best value of n is 3

(which was learned from the 2003 data). Sentences that have

less than m terms are short sentences, where the best value of

m is 7 from the 2003 data. Non-normal sentences refer to some

special formats for some purposes other than offering the in-

formation about the story discussed in a news story. In ad-

dition to short sentences, non-informative sentences and non-

normal sentences, sentences similar to given non-relevant sen-

tences were also removed for Task 3 when partial judgment was

available. Basically if the maximum similarity between a sen-

tence and given non-relevant sentences is greater than a preset

threshold (which was trained with the 2003 data), the sentence

was treated as non-relevant sentence and thus removed from the

result list.

The performance of finding relevance sentences using our

approaches on the 2003 and 2004 data for Task1 and Task 3 are

given in Table 3 and Table 4 respectively. There are three con-

clusions that can be drawn from the results. First, the F scores

of the original full set of sentences show that how difficult the

task is on different data set. It is clear to us that the task of find-

ing relevant sentences on the 2004 data is more difficult than

that on the 2003 data. Second, TFIDF techniques work well

for relevant sentences retrieval on both the 2003 and 2004 data

sets. Third, selective feedback gives better performance than

applying feedback on all queries on the two data sets.

2.3 Identifying Novel Sentences

Similarities of a sentence to its previous sentences and the oc-

currence of new named entities in the sentence are two main

factors considered in our approach to identifying novel sen-

tences. New named entities have been used successfully in our

answer-updating approach in novelty detection [27].

For Task 1 and Task3, our system started with the list of sen-

tences returned from the relevant sentences retrieval, which un-

avoidably contains many non-relevant sentences in addition to

relevant sentences. For Task 2 and Task 4, our system started

with the set of given relevant sentences only. In either case,

the cosine similarity between a sentence and each its previous

sentence was calculated. The maximum similarity of a sen-

tence to its previous sentences was used to eliminate redun-

dant sentences. Sentences with a maximum similarity value

greater than a preset threshold may be treated as redundant sen-

tences. The value of the same threshold for all topics was tuned

with the TREC 2003 track data when no training date from this

year’s was available. The value of the threshold for each topic

was trained with the training data when the judgment of the

top five documents was given for Task 3 and Task 4. In ad-

dition to the maximum similarity between a sentence and its

previous sentences, new named entities were also considered in

identifying novel sentences. A person’s name or an organiza-

tion in a sentence that did not appear in the previous sentences

may give new information about who was related to an event or

an opinion [27]. Therefore, a sentence with previously unseen

named entities was treated as novel sentences. About 20 types

of named entities were considered in our system, which in-

cluded PERSON, LOCATION, ORGANIZATION, DATE and

MONEY, etc. BBN’s IdentiFinder [2] and our approach [27]

were used for identifying named entities.

The performance of identifying novel sentences for Task 1,

Task 2, Task 3 and Task 4 on the 2004 novelty track data are

given in Table 5. The F-score on the starting set of sentences

(as described above) for each task establishes a bottom line for

performance of a novelty detection algorithm. The F-scores

were evaluated when we simply assumed all the sentences were

novel (without any novelty detection). Any successful novelty

detection approach should beat the F-score bottom-line for each

task. Table 4 shows that the F-scores of our approaches have

significant increases from the bottom lines for all the four tasks.

3 HARD

UMass explored four different sub-tasks in the course of HARD

2004: fixed-length passage retrieval, variable-length passage

retrieval, metadata, and clarification form feedback.

In order to allow these tasks to be studied, we established
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Approaches F-score (2003) F-score (2004)

0. The Original full set of sentences 0.5398 0.303

1. TFIDF models with pseudo feedback 0.6429 0.393 (CIIRT1R1)

2. TFIDF models with selective pseudo feedback 0.6593 0.395 (CIIRT1R2)

Table 3: Performance of finding relevant sentences in Task 1 on 2003 and 2004 data

Approaches F-score(2003) F-score(2004)

0. The Original full set of sentences 0.5271 0.306

1. TFIDF models with relevance feedback 0.6229 0.405 (CIIRT3R2)

2. TFIDF models with selective relevance feedback 0.6554 0.406(CIIR31R1)

Table 4: Performance of finding relevant sentences in Task 3 on 2003 and 2004 data

responsibilities for each sub-task. First, we generate a clarifi-

cation form and receive user feedback. Using the response, the

first clarification form module constructs a new, possibly mod-

ified query representation. Depending on the retrieval element,

the query representation is passed to either a passage retrieval

module or a document retrieval module. Both of these modules

return a ranked list of items (passages or documents). These

items are then re-ranked based upon the satisfaction of topic

metadata value. As a post-processing step, the ranked list is

further altered by feedback elicited from the clarification form.

3.1 Methods and Materials

3.1.1 COLLECTION PROCESSING

We processed the HARD collection differently for retrieval and

metadata classification. For both retrieval and classification,

only text between the <TITLE> and <TEXT> tags were han-

dled.

For retrieval, tokenization was based on non-alphanumeric

characters. If a token was not in a list of Acrophile [24]

acronyms, then it was down-cased. If a down-cased token was

in the libbow stopword list [29], then it was ignored. The

Krovetz stemmer [21] packaged with Lemur [1] was used to

stem all remaining down-cased words. The topics and related

text metadata where processed in the same manner with the ad-

ditional processing step that http:// URLs were automati-

cally stripped from the related text.

For metadata classification, contiguous digits were replaced

by a token representing a number. The paragraph tag, <P>,

was retained as a token. Quotation marks, “‘‘” and “’’”,

were converted to the double quote mark, “"”. Contractions

were pulled off and became their own tokens (n’t, ’s, ’d, ’m, ’ll,

’ve, and ’re). All punctuation was treated as separate tokens.

All remaining text was down-cased and broken at whitespace

boundaries.

3.1.2 TRAINING TOPICS

The LDC supplied training data consists of 21 topics. For each

topic, the LDC judged the top 100 documents returned by their

search system. We augmented the training topics with addi-

tional judgments by obtaining in-house judgments on an ad-

ditional 100 documents for each topic. This expanded set of

judgments was used for parameter tuning.

3.1.3 QUERY REPRESENTATION

A query model refers to a probability distribution over words

representing the user’s information need. In the simplest case,

we have the maximum likelihood query model based on the the

user’s title and description fields. Here, the we would process

the text according to section 3.1.1 and then form a maximum

likelihood language model using remaining terms as evidence.

3.1.4 RETRIEVAL USING LANGUAGE MODELS

A description of retrieval using language models is beyond the

scope of this document. We refer readers to the several papers

on the subject [6]. We used a modified version of the Lemur

language modeling toolkit to perform retrieval [1].

It has been shown that query likelihood and divergence rank-

ing using a maximum likelihood query model are equivalent

[23]. Therefore, without loss of generality, we confine our de-

scription to divergence-based retrieval. In this approach, we

take a query model, P (w|Q), and rank all documents in the

collection according to the Kullback-Leibler divergence with

P (w|Q),

score(D, Q) =
∑
w

P (w|Q) log
P (w|Q)

P (w|D)
(1)

Here, the document language model, P (w|D), may be esti-

mated using a number of different techniques [42]; smoothing

parameters used will be described whenever language model

retrieval is used.

In addition to the maximum likelihood query model pre-

sented in section 3.1.3, we also used relevance models for query

representation [25]. Relevance models are a form of massive

query expansion through blind feedback. Constructing a rel-

evance model entails first ranking the collection according to

the maximum likelihood query model. Some set of documents

at the top of this ranking become evidence for the relevance

model, P (w|R). If we call this set R, then the relevance model

is estimated according to,

P (w|R) =
∑
D∈R

P (w|D)
P (Q|D)∑

D′∈R P (Q|D′)
(2)

where the query likelihood score, P (Q|D), can be easily com-

puted from the divergence measure [33]. The relevance model

replaces the maximum likelihood query model in a second

round of document ranking.
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Approaches Starting set of sentences Identify novel sentences

F-scoreTask 1 (Ch%) 0.195 0.211(+8.2%)

F-scoreTask 2 (Ch%) 0.577 0.610(+5.7%)

F-scoreTask 3 (Ch%) 0.194 0.210(+8.2%)

F-scoreTask 4 (Ch%) 0.541 0.577(+6.7%)

Table 5: Performance of identifying novel sentences for Tasks 1-4

Ideally, we would include the entire collection in the set R
and, therefore, P (w|R) would have no terms with zero prob-

ability. However, computational limitations force us to let |R|
be fixed; that is, we only consider the top N documents. Fur-

thermore, we also truncate and normalize the relevance model

to include only the M terms with highest probability. The first

parameter, N , does not affect the estimation of the relevance

model since we are normalizing the query likelihoods. The

second parameter, M , requires a little explanation. First, we

compute the relevance model as in Equation 2. Second, we

order the terms in P (w|R) in decreasing order of probability.

Third, we select the top M terms from this ordering. Finally,

we normalize these term weights.

A relevance model captures behavior of the returned docu-

ments but throws away the original query. In order to main-

tain information in the original query model, we linearly in-

terpolate the relevance model with the original query model:

P ′(w|R) = λP (w|R) + (1 − λ)P (w|Q). For our runs where

we do this, we specify λ. In our experiments the relevance

model is truncated prior to interpolation with the query. De-

pending on the module, a second truncation and normalization

process is performed.

3.1.5 RETRIEVAL USING SUPPORT VECTOR MACHINES

Of the runs that UMass submitted, several runs involved the use

of support vector machines for passage or document retrieval

[32]. This technique applies discriminative models to informa-

tion retrieval. Previous work has demonstrated that the perfor-

mance of support vector machines on the document retrieval

task is on par with that of language models. Our document re-

trieval and passage retrieval experiments on HARD 2003 test

queries and HARD 2004 training queries showed that using

SVMs gave better results than traditional language models.

Support vector machines are a class of discriminative super-

vised learning models. SVMs used for classification create a

hyperplane that maximizes the margin from the training exam-

ples. The discriminant function used to separate the two classes

is given by: g(R|D, Q) = w•φ(f(D, Q))+b, where R denotes

the relevant class, D is a document, Q is a query, f(D, Q) is the

vector of features, w is the weight vector in kernel space that

is learned by the SVM from the training examples, • denotes

inner product, b is a constant and φ is the mapping from input

space to kernel space. The value of this discriminant function

is proportional to the distance between the document D and the

separating hyperplane in the kernel space.

The features are term-based statistics commonly used in in-

formation retrieval systems such as tf, idf and their combina-

tions as shown in Table 6. Each of the six features is a sum

over the query terms.

In order to provide a finer-grained weighting of query terms,

we incorporated the query models described in Section 3.1.3

into our features. These hybrid features are presented in Table

6. In all cases, retrieval was performed using the hybrid fea-

tures. However, unless otherwise noted, all models were built

using the regular features.

The corpora, queries and relevance judgments for TREC 1

and TREC 2 provided training data. All the documents marked

relevant for a query were used as positive training instances. An

equal number of negative instances were obtained by random

sampling of the remaining documents. These training instances

are represented in terms of their transformed feature vectors in

the kernel space. The support vector machine then learns the

hyperplane that separates the positive and negative training in-

stances with the highest margin. For our runs, we used a linear

kernel. Hence the hyperplane is drawn in the original feature

space. The equation of this hyperplane provides the discrimi-

nant function g(R|D, Q) that is subsequently used for scoring

documents (or fixed length passages).

The indexed elements (documents or passages) are treated

as instances in the feature space. For a test topic, Q, an in-

stance D is scored based on the value of the discriminant func-

tion g(R|D, Q). The instances are then ranked based on this

score.

3.1.6 BOOTSTRAPPING SVMS

Previous work has balanced classes by random sampling from

the negative training instances [32]. We propose another tech-

nique for instance sampling, which we refer to as bootstrap-

ping. This method differs from the random sampling technique

in the selection of negative training instances. All positive in-

stances are used for training as in the previously described sam-

pling method. In bootstrapping, negative instances are selected

in the following way. First, an initial SVM is created using

the technique described in section 3.1.5. Then, negative train-

ing instances are selected from only the negative examples mis-

classified by the initial SVM created in step 1. As many nega-

tive instances are selected as there are positive instances. This

training set is used to create an SVM boundary as described in

section 3.1.5.

Sampling from the set of misclassified negative documents,

as opposed to sampling from all the negatives, will produce a

set of negative training instances that are closer to the positive

instances in the feature space. The intuition is that this will

result in a boundary that is still good for ranking but has fewer

misclassified instances on the positive side.

3.2 Clarification Form Feedback

This year’s HARD track again permitted sites to request one

round of feedback from the topic creator. UMass studied four
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Features Hybrid Features

1
∑

qi∈Q∩D log(c(qi, D))
∑

w∈V P (w|Q) log(c(w, D))

2
∑n

i=1 log(1 + c(qi,D)
|D| )

∑
w∈V P (w|Q) log(1 + c(w,D)

|D| )

3
∑

qi∈Q∩D log(idf(qi))
∑

w∈V P (w|Q) log(idf(w))

4
∑

qi∈Q∩D(log( |C|
c(qi,C)))

∑
w∈V P (w|Q)(log( |C|

c(w,C)))

5
∑n

i=1 log(1 + c(qi,D)
|D| idf(qi))

∑
w∈V P (w|Q) log(1 + c(w,D)

|D| idf(w))

6
∑n

i=1 log(1 + c(qi,D)
|D|

|C|
c(qi,C))

∑
w∈V P (w|Q) log(1 + c(w,D)

|D|
|C|

c(w,C))

Table 6: Features in the discriminative models: c(w, D) represents the raw count of word w in document D, C represents the

collection, n is the number of terms in the query, |.| is the size-of function and idf(.) is the inverse document frequency. In the

case of the hybrid features, P (w|Q) refers to a query model as described in Section 3.1.3. We define log(0) = 0.

methods for eliciting user feedback. Different manifestations of

these methods appeared on our submitted clarification forms.

3.2.1 CLARIFICATION FORM SUBSECTIONS

Passages Although the three minute time limit constrained our

ability to request true document-level relevance judgments, we

assumed that the presentation the most relevant passages re-

trieved would serve as an acceptable surrogate. Specifically,

we performed SVM-based retrieval on a passage index com-

prised of 150-word overlapping passages. We used a linear

model trained on TREC collections 1 and 2. We then split the

top 15 document-unique passages into 25-word passages and

selected the passage which the SVM scored the highest. These

15 25-word passages were then presented to the user with the

document title and time stamp for feedback.

In addition to selecting the top 15 document-unique 150-

word passages, we also experimented with using agglomera-

tive clustering to remove redundancy from the passages pre-

sented. We used group-average, agglomerative clustering [28].

Term vectors were weighted according to a tf.idf scheme,

weight(xi) = xi/(log ((|C| + 1)/(0.5 + dfi))). Using these

vectors, a cosine measure was used to compute the similarity

matrix. We clustered clustered 200 150-word passages until

a threshold similarity of 0.6 was reached. At that point, the

largest 15 clusters were selected. The 15 150-word centroid

passages of these clusters were then split into 25-word passages

to be handled as above.

Query Reformulation Because the title and description subsec-

tions of the topic do not often serve as a good representation of

a realistic user query, we allowed users to modify the stopped

and stemmed version of their title and description query using

a free entry text box.

Extracted Entities Previous work has shown that user feed-

back of term lists tends to have little (and sometimes negative)

impact on retrieval performance [36]. We were interested in

exploring the potential advantage of using different types of

words as feedback candidates [22]. In particular, we were in-

terested in the use of proper names rather than arbitrary terms

as feedback sources. To accomplish this, we gathered the top

200 150-word passages after an initial retrieval and ran BBN’s

Identifinder across this set of passages [2]. We extracted the

person, place, and organization names from this run and nor-

malized the names by down-casing and removing punctuation

and spaces. After removing names such as “New York Times”,

“AFP”, and other source tags, we presented the user with the 15

most frequently occurring people, places, and organizations.

For each of these types of named entities, the user was also

presented with a text box in which enter named entities not in

the top 15 for that type.

Temporal Feedback Previous work has shown that some topics

demonstrate strong temporal structure [9, 26]. In order to elicit

temporal biases in the information need, we asked the user for

relevant months in the year spanned by the collection.

3.2.2 OFFICIAL CLARIFICATION FORMS

CF1 Our first clarification form included a list of 15 25-word

passages derived from the top 15 150-word passages, a query

reformulation text box, a free-text named entity text box, and a

temporal feedback interface.

CF2 Our second clarification form included a list of 15 25-

word passages derived from clustering, a query reformulation

text box, a free-text named entity text box, and a temporal feed-

back interface.

CF3 Our third clarification form included the list of 15 people,

15 places, and 15 organizations with free-entry for each entity

type, a temporal feedback interface, and a query reformulation

text box.

3.2.3 INCORPORATION OF RESPONSES

Passages Passage feedback was used in two ways. First, we

performed query expansion based upon the relevant passages.
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A query model was constructed by uniformly combining the

language models of the relevant documents. We selected the top

200 terms from this distribution and renormalized the weights.

This was our final query model for relevant passages. Secondly,

passage feedback was used in order to re-rank documents at the

end of the treatment. Specifically, we multiplied all final scores

by 1 if they were from a document marked relevant, 0 if from a

document marked non-relevant, and 0.5 otherwise.

Query Reformulation Whenever the user reformulated a query,

we discarded the original query and constructed a query model

from the new query strings.

Extracted Entities All relevant named entities or named enti-

ties entered in the free text box were combined to construct a

named entity query model.

Temporal Feedback Temporal feedback was used in order to

re-rank documents at the end of the treatment. Specifically,

we multiplied all final scores by 1 if they were from a month

marked relevant, 0 if from a month marked non-relevant, and

0.5 otherwise.

3.3 Fixed-Length Passage Retrieval

Passage retrieval was one of the issues that were studied as part

of the HARD track. The central goal of the track was to perform

high accuracy retrieval. Retrieving passages instead of whole

documents could potentially return less non-relevant text at the

top of the ranked list, thereby increasing the accuracy of the

search.

Previous work [3] on passage retrieval has shown that there

is no significant improvement in retrieval performance when

“real” passage boundaries are detected, using sentence bound-

aries or paragraph boundaries. Fixed length passages have been

shown to perform as well as passages extracted using heuristics

on document retrieval tasks [3]. We, therefore, decided to avoid

the overhead involved in creating a system that segments doc-

uments into passages “cleverly” and opted to use passages that

have a fixed word length.

We explored various approaches to passage retrieval. We

studied the performance of passage retrieval systems that used

query likelihood, relevance models and support vector ma-

chines. Passage retrieval using SVMs, described in 3.1.5 per-

formed better than the other systems. We also explored the

comparative utility of retrieving the best passages from top

ranked documents versus indexing overlapping passages and

scoring each of these independent of the document that the pas-

sage came from. The latter method gave higher precision on

our training data. Therefore, we scored pre-indexed passages

for our final run.

One of the issues that we had to resolve was the size of pas-

sages to be retrieved. Experiments on HARD 2003 test queries

indicated that retrieval using 100 word passages gave the best

results. This was the passage size that was used for all the fixed-

passage runs.

3.4 Variable-Length Passage Retrieval

One of the questions UMass explored through the passage re-

trieval portion of the HARD track was whether retrieving pas-

sages of different lengths could improve our ability to return

only the relevant portions of documents. In order to keep our

text index relatively small and maintain the theoretical possibil-

ity that any passage of any document could be retrieved by the

system, we chose to extract passages from highly ranked doc-

uments at the time of retrieval, rather than indexing particular

passages in advance.

Previous work has found no benefit to retrieving passages

of different lengths, compared to overlapping fixed-length pas-

sages [19, 3]. However, past studies have only evaluated pas-

sage retrieval by its ability to retrieve relevant documents, due

in part to the unavailability of passage-level relevance judg-

ments. Now that the HARD track has provided these judgments

and the evaluation is based on more fine-grained retrieval, we

decided to revisit this question.

3.4.1 EXTRACTING RELEVANT PASSAGES

Our method of extracting relevant passages from documents is

inspired by work by de Kretser and Moffat [7] that assigned a

relevance score to every word in a document. They used term

frequency within the query and inverse term frequency in the

corpus to determine the score of each word, and used several

different functions to determine how much query terms con-

tributed to the scores of surrounding words.

Our approach to selecting relevant passages is similar, in that

each term from an expanded query representation is assigned a

score which affects the scores of proximal words. However, the

scores we use are derived from language models, and the task

is somewhat different.

This process of extracting passages for a topic starts with the

top-ranked documents from some document run and a language

model representing the topic. Of the different topic models we

tried, the best-performing one was a mixture model between

the maximum likelihood representation of the original query

and the top 50 terms from the relevance model for the query, as

described in section 3.1.4.

We refer to the range of word positions in a document that

a particular query word affects as its region of influence. The

spread of a query term is the number of words before it and after

it that that query term influences. Thus, the size of the region

of influence is equal to (2 × spread) + 1. This method takes as

parameters the minimum spread and the maximum spread that

any particular query term can have. The weights of the topic

model are then linearly scaled to fall between these minimum

and maximum values. For all of our submitted runs that used

passages of varying lengths, the minimum spread was 1 and the

maximum spread was 25.

We extract any group of words that falls within the region of

influence of any query term as a passage, discarding passages

with fewer than 400 characters. Next we score the remaining

passages as described in the following section.

3.4.2 SCORING PASSAGES

We experimented with several methods for scoring passages

that fall into two basic classes. The first group used SVMs to

score passages. The second assigned scores equal to the neg-

ative relative entropy between the topic and passage language

models, but differed in how the passage was modeled.
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Metadata Pos. Neg. Total

Genre news-report 848 491 1339

Genre opinion-editorial 147 1192 1339

Genre other 344 995 1339

Geography US 590 758 1348

Table 7: Counts of human judgments collected for the genre

and geography metadata broken down by positive and negative

judgments.

Using the SVM models described in section 3.1.5 to score

the passages did not perform as well as other methods on the

training data, regardless of which topic representation we used.

This was surprising because this technique works quite well

with fixed-length passages. This could be a result of choosing

the wrong topic representation, a bug in the implementation, or

maybe the non-uniform passage lengths have an adverse effect.

For the class of relative-entropy-based measures, we tried

three different topic models. The first used Dirichlet smoothing

of the maximum-likelihood passage model with the collection

model as the background model. The second used Dirichlet

smoothing of the maximum-likelihood passage model with the

document model as the background. Neither of these methods

performed well on the training data.

The best-performing passage representation, used in

UMassVPMM and UMassCVC, was a mixture of the collec-

tion, document, and passage models.

p(w|ΘPSG) = λcp(w|ΘMLc
) + λdp(w|ΘMLd

)

+ λpp(w|ΘMLp
) (3)

ΘMLc
, ΘMLd

, and ΘMLp
are the maximum likelihood collec-

tion, document, and passage models respectively. The three

lambdas sum to 1. In our submitted runs, λc was 0.8, and the

other two parameters were 0.1.

Future work will investigate the possibility of using two dif-

ferent topic models for the passage extraction and passage scor-

ing stages of this technique.

3.5 Metadata

For metadata our approach was to take a ranked list of docu-

ments and rerank the list based on the topic’s metadata values.

For the genre and geography metadata values we trained classi-

fiers to determine to what degree a document satisfies the meta-

data value. Documents that better satisfy the metadata values

are moved up in the ranked list compared to those that do not

satisfy the metadata values.

3.5.1 DATA COLLECTION FOR CLASSIFIERS

We used several human annotators to obtain metadata judg-

ments on documents from the collection. The majority of the

judgments came from one of the authors. Table 7 shows the

breakdown of judgments obtained by humans for each meta-

data category.

To boost performance, we automatically extracted training

data from the corpus using the corpus’ existing metadata. The

AP wire, New York Times, and LA Times either contained ex-

plicit metadata in the <KEYWORD> element or was discernible

Metadata Pos. Neg. Total

Genre news-report 2603 2280 4883

Genre opinion-editorial 1633 3250 4883

Genre other 647 4236 4883

Geography US 1470 1451 2921

Table 8: Counts of judgments obtained by using the

<KEYWORD> element of the documents to automatically guess

a document’s genre and geography.

in some other manner. The number of judgments collected in

this mainly automatic fashion are shown in Table 8.

While we knew that this process would lead to mistakes, we

did spot check the extracted documents, and we felt the gain

from the additional training data exceeded the cost in misclas-

sified examples. Also, we had counter balanced this automati-

cally extracted data with over 1000 human judgments covering

all subcollections.

3.5.2 CLASSIFIER TECHNOLOGY

We used linear support vector machines (SVMs) as our classi-

fiers because of their success at text classification [41, 16, 10]

and their ability to produce a ranking rather than merely a class

prediction. The linear SVM learns a hyperplane in the feature

space of the training examples that separates positive from neg-

ative examples. A document’s distance from the hyperplane de-

termines the degree to which the SVM predicts the document

is a positive or negative example of the learned class. We used

SV M light with its default settings compiled for Windows to

perform all classification [15].

3.5.3 CLASSIFIER FEATURES

We used the same set of features for each of our classifiers.

Our selection of features was guided by the choices others have

used for the classification of text genre [18, 20, 37, 8, 11]. We

used the 10K most frequently occurring tokens in the corpus.

If a document contained one of these tokens, the corresponding

feature value was 1 otherwise it was 0. We also used the out of

vocabulary probability mass. The 10K most frequently occur-

ring tokens constituted our vocabulary. We made eight binary

features, one for each subcollection in the HARD collection:

AFE, APE, CNE, LAT, NYT, SLN, UME, and XIE. Finally, we

constructed a set of features focused on various length measures

of a document: number of tokens, average token length, aver-

age sentence length, average paragraph length, variance in para-

graph lengths, average corpus frequency of tokens, and four

features that measured the number of words <= X characters

long where X was one of 6,7,8, and 9. We normalized each

of these measures to vary between 0 and 1. We first took the

log of the sentence, paragraph, and document length features

before normalizing them.

3.5.4 CLASSIFIER TRAINING

To deal with imbalances in the number of positive examples

per class, we randomly oversampled from either the positive or

negative examples, whichever was in the minority until 50% of

the examples were positive [40]. No other special techniques

were used.
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Metadata Avg. Prec. Accuracy F1

Genre news 0.99 0.96 0.96

Genre op-ed 0.97 0.95 0.91

Genre other 0.82 0.92 0.76

Geo. US 0.96 0.92 0.91

Table 9: This table describes the performance of SVM classi-

fiers on the labeled data. All performance measures are aver-

ages from 3-fold cross validation. The class examples are over-

sampled so that positive examples comprise 50% of the training

examples.

The performance of the classifiers on the final datasets is

shown in Table 9. We aimed to improve average precision,

which measures ranking ability, while keeping an eye on the

other measures. One could obtain a high average precision

while doing poorly on accuracy.

While these metrics are certainly indicative of the classifiers’

power, some caveats must be stated. The HARD corpus con-

tains many articles that are posted to the newswires multiple

times in order to add more information or make small correc-

tions. Our automatically judged articles may in fact contain

several near copies of the same document. In addition, we in-

cluded many examples from the same columnists. It is likely

that a columnist’s pieces are more similar to each other than a

selection of opinion pieces written by different authors. These

duplicates can thus straddle the train and test sets of the 3-fold

cross validation and artificially inflate the performance metrics.

3.5.5 METADATA RERANKING

We reranked the results based on a linear combination of the

normalized outputs of both the retrieval and classifier outputs.

We normalize each classifier’s output across the whole corpus.

For each topic, the document scores were normalized with the

rank 1 document score set to 1 and rank 1000 document score

set to 0. We rerank passages as though they were documents.

We tuned the linear combination with a simple parameter

sweep using the LDC hard-relevance training data augmented

with additional UMass judgments. The best coefficients found

weighted the original IR results at 0.5, geography at 0.1, and

genre at 0.4.

3.5.6 USE OF RELATED TEXT

To utilize the related text metadata, we created a maximum like-

lihood model of the related text provided with the topic and lin-

early mixed this model with a model created for the title and

description. This mixture model was used as the query. A pa-

rameter sweep was used to find the best mixture ratio on the

training topics. The title and description model had a weight

of 0.4 and the related text model had a weight of 0.6. We did

not differentiate between on-topic and relevant related text and

used both together.

3.6 HARD Runs

We submitted three baseline runs (UMassBaseQL, UMass-

BaseRM3, UMassBaseSVM) that did not use any of the meta-

data, clarification form, or passage techniques described ear-

lier. Our other ten runs aimed to investigate the use of these

techniques.

UMassBaseQL This run uses the maximum likelihood

query model as described in section 3.1.4. It used both

the title and the description. Smoothing was performed

using the Dirichlet prior with its parameter set to 1000.

UMassBaseRM3 For this run, we used the title and de-

scription and the relevance modeling approach described

in section 3.1.4. We used the first 50 documents retrieved

to build the relevance model. The model was truncated

to include only the 200 words of highest probability with

a minimum probability of 0.001. The foreground model

(the title and description) received a weight of 0.6 when

mixed with the relevance model. Smoothing was performed

using the Dirichlet prior with its parameter set to 1000.

UMassBaseSVM This run used a support vector ma-

chine built from the normal features in Table 6 to

retrieve documents using a hybrid representation.

UMassMerge This run merged three different rankings.

The first ranking used CF1 and all associated feedback. This

run used the passage feedback and reformulation for building a

query model. A hybrid SVM was used for an initial retrieval.

This ranked list was reranked using temporal and document

feedback. List two is UMassF. List three was identical to

UMassRGG for the document topics. For the passage topics,

passages were reranked using the genre and geography meta-

data as described in section 3.5.5. The source of the passages

came from the fixed length SVM passage retrieval used by

run UMassCFMC, which used a query model produced by

CF1 and related text. These passages were reranked prior to

removal of overlap as opposed to the passages in UMassCFMC

which were reranked after overlap in the passages had been

removed. The three lists were each normalized and merged

by summing the scores of identical documents or passages

and ranked according this sum. Overlap in passages were

removed and the lists were trimmed to the top 1000 results.

UMassCFMC This run was a pipeline of the CF1 clari-

fication form, bootstrapped SVM retrieval, and genre and

geography metadata reranking. The linear bootstrapped

model used for UMassF was used with the query gener-

ated from the responses to CF1 as well the related text.

Ranked lists were generated for document and passage

topics in the same manner as for UMassF. The results

were then normalized and reranked using the genre and

geography metadata as per section 3.5.5. We performed tem-

poral and document feedback to provide a final ranking.

UMassCFC The linear bootstrapped model used for

UMassF was used with the query generated from the

responses to the clarification form, CF1. Ranked lists

were generated for document and passage topics in the

same manner as for UMassF. We performed tempo-

ral and document feedback to provide a final ranking.

UMassCMC The initial retrieval was performed us-

ing a query model built from CF1. These results were

then reranked using topic metadata values. We uti-

lized the geography, and genre metadata to rerank the

results from the clarification form. We performed tem-

poral and document feedback to provide a final ranking.
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UMassCVC UMassCVC used variable-length passage tech-

niques described in section 3.4, starting from the baseline

document run UMassBaseSVM and the top 50 terms from the

query model generated from the response to clarification form

CF1. After variable-length passage retrieval, we post-processed

the results as described in 3.2.3. For the 25 topics where the

retrieval element was documents, the results we submitted were

identical to the results from our baseline run UMassBaseSVM.

UMassF For the 25 document topics, query models were

generated using the top 10 results of a preliminary ranked

list as described in section 3.1.3. This preliminary list

was obtained by retrieving 100 word passages using query

likelihood. The title and description was used as the query

for each topic. A linear bootstrapped model was used

for retrieval. The top 1000 documents were returned for

each of the 25 document topics. The same process as

above was repeated for the 25 passage topics, except that

a passage index was used for retrieval. The top 1000 non-

overlapping passages were returned for each of these topics.

UMassRGG This run utilized the related text, geography,

and genre metadata. Documents were returned for all topics.

The metadata was utilized as described in sections 3.5.6

and 3.5.5. Retrieval was via query likelihood with Dirich-

let smoothing. The smoothing parameter was set to 1000.

UMassVPMM UMassVPMM was a baseline passage run

of sorts; it does not use any metadata or clarification form

feedback for retrieval. It used variable length passage retrieval

as described in section 3.4. We used the interpolated relevance

model query model described in 3.1.4. We used the baseline

run UMassBaseSVM as the starting ranked document list.

Because we found in training that boosting the scores of

passages from the top 25 documents improved results, we

added a constant to the score of each of these passages,

large enough to ensure that they would be ranked above

all other passages. For the 25 topics where the retrieval

element was documents, the results we submitted were iden-

tical to the results from our baseline run UMassBaseSVM.

UMassC2 This run used the passage feedback and re-

formulation for building a query model. A hybrid

SVM was used for an initial retrieval. This ranked list

was reranked using temporal and document feedback.

UMassC3 This run used the named entity feedback and

reformulation for building a query model. A hybrid SVM was

used for an initial retrieval. This ranked list was reranked using

temporal feedback.

3.7 Results and Discussion

In order to allow an initial analysis of our various techniques,

we generated several new runs based on different combina-

tions of feedback, metadata handling, and retrieval granularity.

These runs were evaluated using relevance judgments for the

HARD 2004 topics. Results are presented in Tables 10 and 11.

3.7.1 CLARIFICATION FORMS

Our initial experiments allow us to investigate broad issues in

ranking alternatives and named entity performance.

Passage Ranking Comparing the baseline, CF1, and CF2 rows

in Tables 10, and 11, we observe that, in general passage feed-

back tends to improve performance. This result is not surpris-

ing given previous work in relevance feedback. What is a little

more surprising is that clustering the results did not provide any

advantage over the standard ranking. In fact, clustering often

resulted in worse performance. One explanation for this behav-

ior is the strictly positive nature of our feedback. Query mod-

els were built from positive documents. Negative information

was essentially discarded. Therefore, to maximize the amount

of information it receives, a system should get feedback from

the documents which it is most confident about. By definition,

these documents (or passages) will be the ones at the top of the

ranked list. This intuition is confirmed by the number of pas-

sages marked relevant in the CF1 and CF2 clarification forms.

On average, CF1 garnered more positive responses from users.

This result motivates two questions. First, how do we in-

corporate negative feedback into our existing framework? Re-

search in retrieval by language models has ignored the question

of negative feedback. If interaction and relevance feedback is

to be considered an important aspect of HARD, it seems nec-

essary to develop models for negative feedback. Second, how

do we improve clustering so that removing redundancy does

not result in detrimental loss of information in feedback? This

question assumes both that the feedback in the likelihood rank-

ing approach is redundant and that the feedback in the clus-

tered approach is inferior. These assumptions need to be con-

firmed. Moreover, a similar question presents itself in novelty

and subtopic retrieval and models from work in that field could

improve future passage-based feedback forms.

Named Entities The results for runs using named entity infor-

mation seem to confirm the difficulty of handling term-based

feedback. The impact of named entity expansion is inconclu-

sive. Training experiments demonstrate that, given the proper

weighting of named entities, retrieval can be improved to the

level of document feedback. That is, if we can detect that a

person name is more important than a geographic name for a

particular query, then we can match document feedback per-

formance. However, the models we constructed used a uniform

weight for all queries; person names always weighed the same

as geographic and organizational names. Future experiments

will attempt predict the relative import of entity types based on

the query and corpus statistics.

3.7.2 METADATA

The results of using the related-text (RT), reranking results by

genre and geography (GG), and the combination of RT and

GG can be seen in Tables 10 and 11. For document retrieval,

our use of related-text resulted in results as good as the use of

the clarification form. In these tables, there is no evidence we

were able to leverage genre and geography. We examined the

use of genre applied to runs UMassBaseQL, UMassBaseSVM,

UMassBaseRM3, QL+RT, and RM+RT on topics requesting a

specific genre. We found an average 7% increase of precision

at five documents for hard relevance and 8% for soft relevance.

No similar increase was found for use of geography metadata.

We suspect the value of the genre and geography metadata

12



QLdoc RMdoc SV M trec12
doc V PMM SV MHtrec12

psg SV M boot
psg

baseline 0.222 0.218 0.223 0.211 0.174 0.185

GG 0.217 0.222 0.224 0.185 0.178 0.192

RT 0.272 0.262 0.214 0.196 0.231 0.214

GG+RT 0.257 0.255 0.207 0.196 0.231 0.206

CF1 0.335 0.331 0.307 0.308 0.298 0.294

CF2 0.263 0.262 0.252 0.306 0.253 0.275

CF3 0.228 0.230 0.246 0.191 0.192 0.207

GG+CF1 0.326 0.327 0.289 0.295 0.300 0.309

Table 10: Binary Preference at 12,000 characters for passage and document runs. QL refers to query-likelihood retrieval, RM to relevance

model retrieval, SV M to retrieval using a support vector machine trained using normal features, and SV MH to retrieval using a support

vector machine trained using hybrid features. Both SV M and SV MH used hybrid feature vectors for retrieval. Subscripts indicate whether

documents or passages were presented in the ranked list. Superscripts indicate the data which the SVM was built from. GG runs used genre

and geography metadata, RT used related text, and CF* used clarification form query models and re-ranking.

QLdoc RMdoc SV M trec12
doc SV MHtrec12

doc SV M boot
doc

hard soft hard soft hard soft hard soft hard soft

baseline 0.327 0.320 0.343 0.339 0.322 0.314 0.286 0.300 0.287 0.318

GG 0.307 0.314 0.325 0.330 0.336 0.319 0.308 0.297 0.292 0.311

RT 0.359 0.373 0.348 0.355 0.365 0.361 0.337 0.353 0.342 0.354

GG+RT 0.363 0.363 0.348 0.353 0.347 0.355 0.358 0.351 0.317 0.342

CF1 0.341 0.361 0.339 0.362 0.357 0.374 0.335 0.358 0.347 0.363

CF2 0.316 0.330 0.315 0.329 0.323 0.345 0.320 0.338 0.336 0.372

CF3 0.333 0.298 0.333 0.303 0.332 0.329 0.319 0.323 0.297 0.326

GG+CF1 0.331 0.368 0.333 0.368 0.352 0.368 0.334 0.353 0.338 0.361

Table 11: Document R-Precision for hard and soft relevance. Labels are described in the caption to Table 10.

is limited partly because topics may in fact disambiguate them-

selves with respect to metadata such that the majority of on-

topic documents already satisfy the metadata. We expected

topics to be ambiguous with respect to their metadata, but many

were not. Eleven of the 45 topics were completely unambigu-

ous, i.e. all on-topic documents satisfied the metadata. Looking

at the fraction of on-topic documents that were relevant, across

topics the median fraction was 0.83. The training topics were

similarly unambiguous with respect to metadata.

Another factor limiting the power of genre and geography

metadata could be that searchers are unable to express their

metadata needs correctly. On an initial exploratory analysis of

the retrieval results, we discovered many documents judged rel-

evant that clearly fall outside the requested metadata. Searchers

know a relevant document when they see one, but a priori they

don’t fully know what metadata is required of a relevant docu-

ment.

3.7.3 PASSAGE RETRIEVAL

Table 10 reveals two major findings in passage retrieval. First,

document runs (shown in the first three columns) generally tend

to do better than passage runs (columns 4-6) at passage re-

trieval, when a high-precision character-level metric such as

binary preference at 12,000 characters is used for evaluation.

Second, CF1 seems to provide big improvements over the base-

line for every retrieval method.

As for the question of whether variable-length passages im-

prove high-accuracy passage retrieval, the results in table 10

are somewhat misleading. Although VPMM did better than

both the bootstrap SVM and the hybrid SVM as a baseline,

experiments performed after the TREC submission deadline

showed that the gain there comes from the difference in re-

trieval method, not in passage length. Preliminary experiments

using the mixture model of VPMM on fixed-length passages

provide a better baseline than any of the document or passage

runs presented here.

The bootstrap SVM method provides a small gain over the

hybrid SVM method for all combinations of clarification forms

and metadata, except for those involving related text. Interest-

ingly, it seems that within the group of passage runs, the lower

the baseline score, the bigger the boost from related text. In

fact, VPMM is even hurt by the use of related text.

The major question raised by our findings for passage re-

trieval is whether passage retrieval is worthwhile, given that

document retrieval almost always does better than passage re-

trieval for this evaluation metric. Or are we simply using the

wrong evaluation metric for what we are really trying to mea-

sure? The official TREC 2003 HARD track metric of passage

R-precision got at the notion that systems should be rewarded

for returning text from many different documents. The charac-

ter level measures correct a flaw in passage-level R-precision

that favored very short passages, but remove this notion that

there is some inherent good in returning text from a variety of

documents. The problem of how to evaluate passage retrieval

has clearly not been solved yet.
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