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Abstract

Most solutions to distributed IR rely on access to a language model for each text collec-
tion, but it has been unclear how the model can be obtained reliably in real-world dis-
tributed environments. This paper proposes a solution based upon probing the collection,
and demonstrates its effectiveness on four databases.



1 Introduction

Distributed information retrieval systems assume more and more importance as information
resources proliferate on internets and intranets. One of the new issues in distributed IR is
how to do collection selection for online collections for which we don’t have access to the
full text, i.e., the documents in the collection are hidden behind a query interface. For
example, a newspaper website might have a database of archived articles and a user can
retrieve articles by querying the database, but there is no way to directly get all of the
articles. Previous research on collection selection has been based on the assumption that the
full contents and exact statistics of the collections are readily available. However this is not
applicable to real Web environment with hundreds or thousands of collections managed by
many different independent information services. To do content-based collection selection
without cooperation in such environment, before deciding which collections to search, the
first problem is how to find out what a collection contains, i.e., to automatically create a
representation that well represents the content of the collection.

In addition to collection selection in distributed searching, this problem also has signifi-
cance in many other applications that need to know the content of a database which is not
possible other than through query. For example, a system that assists children to locate
information in networked environments needs to identify which Web databases are useful or
appropriate for children of various ages. It can’t simply ask the databases themselves, so it
needs a method to find out what each database contains. Another example is browsing, i.e.,
to show a list of the frequent words that occur in a database, so as to understand what’s in
the database.

We propose to solve this problem by probing the database, that is, to send “probe”
queries to the database, to get a representative sample of the documements in the collection.
The retrieved documents are examined to build a learned dictionary that represents the
collection’s language model. The constraint in building a collection model is that we know
nothing about the collection except what is found by probing. We have experimented with
several probing methods on a number of test databases, and found that the probing approach
can build a learned dictionary that accurately represents the content of the original collection.

The rest of this paper is organized as follows: Section 2 discusses related work in collection
selection for distributed IR. Section 3 presents our hypothesis in collection probing. Section
4 introduces the experimental method and evaluation measures. Section 5 describes the
experiments performed and gives a detailed analysis of the results obtained. In the final
section, we draw conclusions and identify possible future work.

2 Related Work

Collection selection is the first step of distributed searching. For environments where there
are many sites, such as wide-area networks or the Internet, one approach is content-based
collection ranking and selection. It consists of ranking collections for relevance to a query,
and then selecting the best subset from a ranked list.

A widely used technique for selecting among many collections is to search a central-
ized collection selection index. Typically, the collection selection index consists of a set of
lightweight representations for the collections, each of which consists of the collection’s vo-



cabulary and its word frequencies. This method of describing the contents of distributed
collections has several advantages:

e It is cheap since the centralized index is relatively small; its moderate storage require-
ment (less than 0.4% the size of the original collection [2]) makes it easy to maintain.

e [t is better than only indexing a small portion of each document such as titles, since
the latter approach loses important information about collection content.

e Automatic creation of indexes rather than manual creation of summaries for individual
collections guarantees consistancy.

e Creation of indexes is completely automatic without any manual effort, hence scales
well to widely distributed and dynamic collections.

This technique was used in GLOSS [6][7], which was later extended to the vector space
model in gGLOSS [5], which was further extended to the hierarchical GLOSS — hGLOSS.
GLOSS estimates the number of potentially relevant documents in collection C for a boolean
AND query @ using two kinds of collection statistics: the number of documents in C con-
taining each term in (), and the total number of documents in C. The GLOSS approach is
easily applied to large numbers of dynamic collections in realistic distributed environment,
because it stores only term frequency information (e.g., a term’s document frequency) about
each collection. A preliminary evaluation of gGLOSS reported in [3] examined the effective-
ness of the gGLOSS approach to collection selection, and found that its collection ranking
is reasonably accurate under certain conditions.

Callan et al. [2] also used the words that occur in a collection and their frequencies to
describe the content of the collection for the collection selection index. Collection ranking is
based upon the statistics including document frequency (the number of documents containing
the term) and collection frequency (the number of collections containing the term). Their
work differs from GLOSS in two major aspects. First, Callan’s system is based on the
inference net, a probabilistic retrieval model, whereas GLOSS uses a boolean retrieval model
(gGLOSS is based on the vector space model). Second, in Callan’s work, one retrieval
algorithm is used for ranking both collections and documents, based on the argument that
ranking collections is analogous to ranking documents; in contrast, GLOSS uses different
algorithms for these two kinds of retrieval.

Both approaches require knowing the words and word frequencies in a collection. How
this information is obtained is an open problem. Omne approach is for each collection to
supply this information about itself, as proposed by the STARTS protocal [4]. However, this
approach assumes that each collection is capable of and willing to, supply this information.
It has so far been unclear how to integrate older legacy systems, systems that simply refuse
to cooperate, and systems that misrepresent themselves (e.g., “spamming” on the Internet).

3 Hypothesis

Most large collections of text documents have similar statistical characteristics. Zipf’s law
[12] shows that words are not distributed evenly; a few words occur very often, whereas



most words are infrequent. Luhn [8] proposed that frequency of word occurrence furnishes
a useful measurement of word significance. Common words are generally stopwords. Rare
words that occur only once or twice are mostly strange names, misspellings, etc. Natually
these two kinds of words are non-significant words. The set of words with frequency lies in
between them are significant words in that they contribute significantly to the content of
the document. We call those words content words and hope to find most of them in order to
estimate the content of the collection. Since content words typically have medium to high
frequency, the probability of finding most of them by probing is high.

The aim of probing a database is to build a model that reasonably accurately represents
the content of the database. The model is in the form of a learned dictionary containing a
list of words that occur in the documents found by probing. The set of words in the learned
dictionary is only a subset of that in the real dictionary, since one can only get a subset of
the collection through queries. Although it may be computationally possible to get all of
the words by using many probes, it is infeasible in practice, because the time it takes can be
undeterministically long, and the probing termination condition cannot be decided since the
actual size of the collection is unknown. More importantly, finding all or even most of the
vocabulary is not necessary, since Zipf’s law tells us that each collection, no matter what its
size, has a fairly small “working vocabulary”.

Probing is like taking a sample of a collection. As we do more probes, our sample becomes
larger, and hence more representative of the collection. We can calculate statistics such as
the ranks of words based on the sample, to estimate their true ranks in the original collection.
Since the size of the collection is constant, as we take a larger sample, the estimates become
more accurate, i.e., the ranks of the words converge to be close to their true values. If
the sample could be chosen perfectly randomly, the estimates would be relatively accurate.
Therefore an accurate model representative of the collection content can be built by probing.

After the first round of probes, we have seen a small collection of documents. We can
calculate the ranks of the words we’'ve seen. Due to sampling error, our calculations are
just estimates with confidence intervals around them. After the second round of probes, we
have seen a larger collection of documents. Again we calculate the ranks of the words we’ve
seen. It is expected that our confidence intervals should shrink. When there is substantial
variation in estimates from one probe cycle to the next, the confidence intervals are large;
when the variation is small, it is probable that the estimates have converged to be close to
the true values.

4 Experimental Method

4.1 Probing Method

A learned dictionary consists of a list of words that occur in the sample documents and
their frequency of occurrences. Initially the learned dictionary is empty representing that we
know nothing about the database. The dictionary grows as new words are found, and old
words’ frequency statistics are updated when they are encountered again. As we get a larger
sample through probing and update the dictionary accordingly, our estimates of the ranks
of terms in the original collection using the learned dictionary becomes more accurate . We
considered three ways of calculating the ranks of terms in the dictionary using three types



of frequency metrics: collection term frequency ctf (number of times the term occur in the
sample documents), document frequency df (number of documents in the sample containing
the term), and average term frequency atf (collection term frequency divided by document
frequency).

The iterative probing process consists of following steps:

1. Generate a set of M initial probe words.
2. Run M one-word probe queries. Get the top N documents retrieved by each query.

3. Parse the documents to make a list of the words in the documents (excluding docu-
ment markups, e.g., SGML or HTML tags), and how often each occurs. Update the
dictionary.

4. Decide whether to stop probing; if not,
5. Generate a new set of M probe words. Go to Step 2.

Our primary concern is the methods of generating initial probe words in Step 1 and
new probe words in Step 5. Initial probe words can be generated by choosing words from
a well-known large collection, for example, the 3GB TREC corpus (volume 1, 2, 3). New
probe words can be chosen from two kinds of sources, either from the learned dictionary,
or from a general collection such as the TREC corpus. We experimented with different
methods of choosing M probe words from a dictionary, such as choosing the M most frequent
words or just a random selection. There are further variations in deciding the most frequent
words using different ranking criteria, i.e., ranking by ctf, df, or atf. As a convention, we
use Ctf, Df, and Atf to represent the methods of choosing new probe words corresponding
to the three ranking criteria. In addition, we define Random and Random2 to represent
the methods of randomly selecting words from the learned dictionary and from the TREC
corpus, respectively. The three methods of Ctf, Df, and Atf have a sort of learning property
in that, later probe queries come from the most frequent words in the sample documents
that have been obtained in earlier probes. They use the previous probing results as a kind of
feedback in generating new probe queries, whereas the two random methods don’t have such
characteristic. We are interested in investigating how these five different methods work and
how the random approach compares with the most-frequent-words approach. Other issues
include how many documents to retrieve per query, and when to stop probing.

On the Internet, we won’t know what the stopword list and stemming algorithm are for
the database we are probing. So we don’t use a stopword list or a stemming algorithm when
parsing the documents that a database returns. Only at the end of probing, a stopword list
is used to remove words in the learned dictionary that tell little about content. In doing
evaluation, when the stemming algorithm of the test database is known, the same stemming
algorithm is used to post-process the final learned dictionary, before comparing the learned
dictionary to the real dictionary.

4.2 FEvaluation Measure

The effectiveness of probing was tested first using the INQUERY retrieval system and three
different TREC collections, and later using a real Web database service. INQUERY is



based on the Bayesian inference net model and is described in detail in [10][9][1]. For the
purpose of evaluation, we used INQUERY indexing system to build databases from the
TREC collections, so that the known stopword list and stemming algorithm can be used for
both the learned dictionary and the real dictionary in order to make a comparison between
them. We propose the following measures to evaluate the effectiveness of probing (assuming
the real collection statistics are known).

e percentage of terms found by probing

It is used to show the rate of finding new terms, or the pattern of growth of the learned
dictionary size with respect to the number of documents examined.

e ctf proportion

ctf proportion refers to the proportion of the term occurrences of those terms found by
probing in the total term occurrences of the collection. For example, a ctf proportion
of 80% means that the learned dictionary contains the words that account for 80% of
the content (word occurrencies) of the original collection.

For a real dictionary D and a learned dictionary D', ctf proportion is calculated as:
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where O _ctf; is the number of times term ¢ occurs in the original collection.

ctf proportion shows the frequency characteristics of the words found by probing. A
high ctf proportion means most of the words found are frequent words. According to
Zipt’s law, frequent terms constitute a large proportion of the total term frequencys;
for example, top 50 words can account for 50% of the total word occurrences. So this
metric can be used to tell whether (or roughly when) most of the frequent words have
been found by probing.

e mean squared error on rank estimates

The mean squared error metric was used to compare the estimated term rank to the
true rank. It is a simple and effective way of measuring how closely the ranks of the
terms in the learned dictionary match their ranks in the real dictionary.

Ranking is based upon a term’s collection term frequency (ctf). The most frequent
term is ranked 1, and the least frequent is ranked R, where R is the number of distinct
(unique) ranks. If two terms have the same cif, they get the same rank. The scaled
rank for a term is rank/R, so the top ranked term has a scaled rank of 1/R, and the
terms that occur just once have a scaled rank of 1. The scaled rank has two advantages:
it is less dependent on database size and, it applies equally to frequent and rare terms.

The mean squared error on rank estimates for a learned dictionary D' is calculated as:

1
— 3" (Est_rank; — Real_rank;)*
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where n is the number of terms in the learned dictionary, F'st_rank; is term i’s estimated
rank in learned dictionary, and Real_rank; is term ¢’s real rank in real dictionary.



e mean squared error on idf estimates

The mean squared error metric was used to compare the estimated idf (inverse docu-
ment frequency) value to the true idf value.

Given a collection of documents, a term’s idf is defined as:

log(N/df)

where N is the total number of documents in the collection, and df is the number of
documents containing the term. An unscaled idf is used so that the mean squared
error is relatively independent of the number of documents in the collection.

The mean squared error on idf estimates for a learned dictionary D’ is calculated as:
1 . a2
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where n is the number of terms in the learned dictionary, Fst_idf; is term ¢’s estimated
idf based on the collection of sample documents, and Real _idf; is term ¢’s real idf based
on the original collection.

5 Experiments

5.1 Test Collections and Experimental Setup

The effectiveness of probing was evaluated using the INQUERY retrieval system and three
TREC collections that differ significantly in size and nature:

e CACM: a very small database containing abstracts of scientific articles on computing;

e WSJ88 (the 1988 Wall Street Journel): a medium-sized American newspaper database;
and

e TREC-123 (the TREC corpus, volume 1, 2, and 3): a large and heterogeneous database
containing 17 subcollections from different sources and/or period of time.

Table 1 lists some statistics about the three databases.

Table 1: The three test databases

‘ Collection ‘ Size #Docs ‘ #Unique Terms ‘ Total Term Occurrences ‘
CACM 2MB 3,204 6,468 117,473
WSJ88 104MB 39,904 122,807 9,723,528
TREC-123 | 3.2GB | 1,078,166 1,134,099 274,198,901

The probing system runs 100 (10 for CACM) one-word queries per probe cycle, and ex-
amines the top 10 documents retrieved by each query. The set of initial probe words are



generated using the dictionary of TREC-123 after filtering out numbers and terms whose
occurrence is less than 6 (to reduce query failure). New probe words are chosen without
considering very short words such as 1-or-2-character words since they tend to be stop-
words. Numbers are discarded in parsing the documents retrieved, and are not included
in the learned dictionary. This is because numbers occur often but are useless for esti-
mating collection content. The probing system runs till at least 3000 database documents
are seen (WSJ88 and TREC-123), or till 50% of the documents are seen (CACM). The
number of probe queries used, the number/percentage of documents examined, and the
number/percentage of words found (excluding stopwords), in testing the three databases
using the Df method are given in Table 2.

Table 2: Probing experiments statistics
| Collection | # Queries | #(%) Docs Ezamined | #(%) Terms Found |

CACM 411 1,602 (50%) 3,952 (68%)
WSJ88 564 3,000 (7.5%) 19,600 (25.1%)
TREC-123 518 3,000 (0.3%) 47,320 (6.4%)

Each of the five methods of generating new probe words was tested and an analysis of
their effectiveness based on the results follows. We have also experimented with different
methods of choosing initial probe words, including choosing the most frequent words based
on ctf, df, or atf, or a random selection. We found that there is no obvious difference among
the evaluation results of these methods, which implies that the variation in the way of
generating the initial probe words does not change the effectiveness of probing. So generally
we choose the initial probe words based on ctf.

Evaluation was automatically performed at the end of each probe cycle using the measures
described above. Figures 1 to 4 show the evaluation results for probing WSJ88. Figures 5
to 8 are for CACM, and Figures 9 to 12 are for TREC-123. The stopword list used was
the INQUERY stopword list which consists of 418 common words that are generally only of
syntactic utility.

5.2 Analysis of Results

Figure 1 shows that the rate of finding new words keeps high for the first several probe
cycles, and gradually lowers down thereafter; new words occur less frequently as the sample
grows. Up to 50% of the terms are found when only 10% of database documents are seen.
This demonstrates that we can find a considerable proportion of the terms in the database
by examining a relatively small number of documents.

In Figure 2, The ctf proportion quickly grows to be higher than 90% when roughly 3000
documents are seen, and then the growth rate drops sharply. This means the words found by
the first several probes are mostly frequent words and the words found by subsequent probes
tend to be rare words, since by Zipf’s law, a small number of frequent words constitute a
large proportion of the total term occurrences. This result confirms that most of the frequent
words can be found by probing.



In Figure 3, mean squared rank error quickly drops down to below 0.02 when 3000
documents are seen, and converges to be close to the optimal value of 0. The very low error
demonstrates that the probing techniques can accurately estimate term rank. The very low
mean squared idf error shown in Figure 4 further indicates that probing can also accurately
estimate term frequency statistics such as idf. Although doing more probes will possibly
find more terms and thereby further reduces estimates error, it is likely to yield diminishing
benifits. As shown in Figures 1 to 4, only minor improvements are achieved at a significantly
higher cost after a certain number of documents are seen.

Although the five methods all do a reasonably good job (low error in rank estimates, can
find most of the frequent words, etc.), it seems that they do not perform eaqually well. By
comparison, Random?2 gives the best curves in Figures 1, 2, and 3; when the same number
of documents are examined, it finds more terms, attains a higher ctf proportion, and has a
lower mean squared rank error than other methods. The curves of Atf and Random appear
to be relatively closer to each other, as are the curves of Ctf and Df.

Not so surprisingly, the random methods turn out to be better than the non-random
ones. This may be due to the fact that, they use probe words that are selected randomly
rather than from the most frequent. Random probe words have a higher probability of hitting
documents scattered throughout the collection, making it more likely to sample the database
in a random fasion. This confirms that it is better to sample as randomly as possible.

When the same number of documents are seen, Random2 is able to find more important
words. However, in order to retrieve a same number of documents, Random?2 needs to run
more probe queries than other methods, since it has a higher query failure. This is due to the
probe words chosen by random from TREC-123 contain a fair number of rare words, such as
special names, which occur very frequently only in some documents in TREC-123. In terms of
the number of queries used, Random?2 tends to be slower to converge to the optimum model;
on the other hand, in terms of the number of documents examined, Random2 converges more
quickly than other methods.

Although the set of words found by different probing methods are not identical, there
exists considerable overlap among them. Furthermore, if we rank the words using the same
frequency metric such as ctf, the resulting lists of different methods are rather similar to
each other, especially the top 50 words. The top portion of the list plays a more important
role in browsing since statistically the most frequent words (except stopwords) are more
representative of the content. Probing results demonstrate that the frequent words found
can help us understand what the database is about. For example, the top 50 words (Table 3)
found by probing WSJ88 (using the Df method) contains a fare number of important words
like “market”, “share”, “trade”, “bank”, “stock”, “price”, etc., which are well suggestive of
the overall subject of the database.

Table 3 gives the top 50 words in the learned dictionary when 100, 1000, and 3000
documents are examined, and the top 50 words in the real dictionary of WSJ88 database.
It shows that as more documents are examined, the learned dictionary converges to be more
close to the real dictionary. When 3000 documents have been seen (the third column), the
two word sets of top 50 are nearly identical; only 4 out of 50 do not show in both lists. For
the words that overlap, each word’s estimated rank is either the same as or very close to its
true rank.

The curves of CACM and TREC-123 present similar patterns to that of WSJ88, and



Table 3: The top 50 words in the learned dictionary and real dictionary of WSJ88 database

learned (100 docs) |

learned (1000 docs) |

learned (3000 docs) [ real

new company million million
company new company company
million million new new
make corp share say

corp share stock share
base stock bank market
two base market trade
york trade say stock
market market trade bank

co make rate price
share co billion year
sale two price corp
business close corp billion
stock exchange month make
time month sale rate
high york make president
plan early base business
say increase increase sale
trade president co co
early secure fund two
interest report president month
month hold group group
close group report offer
product sale york plan
america billion tax report
call america manage base
billion bank exchange america
increase price two high
manage plan business time
operate yesterday offer close
system expect early york
buy offer plan issue
group unit issue govern
part chairman america early
president general secure work
price operate quarter expect
expect high time product
federal business close manage
general time high increase
issue concern unit operate
long executive federal unit
report current invest quarter
term issue product interest
work end interest state
current manage hold secure
large service operate exchange
raise interest firm official
result total service bond
won three work hold
yesterday part govern federal

the above analysis and conclusions also apply to them. One noticeable difference between
TREC-123 and the other two databases in terms of the goodness of the probing methods as
shown in the curves is that, Random and Atf seem to be better than Ctf and Df for TREC-
123, whereas the contrary is true for WSJ88 and CACM. This may be due to the large size
and heterogeneous nature of TREC-123. Unlike the pattern using the other three evaluation
metrics, Random?2 doesn’t seem to be the best method in terms of mean squared ¢df error.
This is because a term’s idf is dependent on the number of documents in the collection,
which can skew the result of mean squared idf error to some extent.

Figures 13, 14 and 15 compare the percentage of terms found, the ctf proportion, and the
mean squared rank error, respectively, for the three test databases, all using the Random2
method. The percentage of terms found is quite different among different databases, since
their sizes vary widely. The pattern of ctf proportion for different databases indicates that
the majority of frequent terms can be found when a certain number of documents are seen, no
matter how big the database is. Around the point of 1000 documents, ctf proportion quickly



grows to be higher than 0.88 for all three databases, and the curves level off thereafter,
implying that, after a certain point, the terms found are mostly rare terms. Furthermore,
rank errors for three databases converge to be very close to optimum (lower than 0.06),
around the turning point of 1000 documents. This can be used to decide a proper probing
termination condition (e.g., probing till 1000 documents are seen). This is a possible solution
to the question of when to automatically stop probing.

5.3 Experiments with Microsoft Customer Support Database

To see how the probing idea works with real Web databases, a probing system was built to
test the Web based Microsoft Customer Support Database. The system uses a Perl program
to automatically send a query to the database, and to fetch a HITML document. It runs
10 queries per probe cycle, and gets the top 25 documents per query. The 10 initial probe
words were chosen from the TREC-123 corpus, and INQUERY stopword list was used.

The probing system found 10,947 terms by examining 1,029 database documents using
600 probe queries. Figure 16 shows the number of terms found by probing versus the number
of documents examined. Compared with the results of probing INQUERY databases, the
pattern of dictionary growth is somewhat different, and Atf rather than Random?2 seems to
be the best probing method (although not significantly better). This may be due to the
Web HTML documents have rather different characteristics from the TREC collections with
respect to document length, style, and nature of content.

The top 100 words (ranked by ctf) which are found by the Random method are given
in Table 4 (along with their frequency statistics). They are shown in three lists ranked by
their ctf, df, and atf, respectively. One can get a quick idea of what the database is about by
looking at either of the lists, and conclude that it is about the popular Microsoft software
systems. It seems that the list of words ranked by atf (the third list) has a better effect for
browsing since the significant words, such as “excel”, “foxpro”, “microsoft”, “nt”, “access”,
“windows”, etc., show up high in the top 50 list, and the list contains more content words.

There are some words which happen to appear in the top 50 but tell little about the
content, such as “set”, “please”, etc. This is related to the stopword list used. They could
have been removed by using a larger stopword list. However, there has to be a tradeoff
in deciding which words should be counted as stopwords, since some unimportant words
in one database may potentially be content words for others. For example, “word” is a
non-significant term in general, but is used as a proper name here representing a perticular
Microsoft software product, hence is an important term.

Word stems and their morphological variants are both included in the dictionary, since we
didn’t do stemming while parsing documents for efficiency reasons. It is possible to improve
the results by using a stemming algorithm to reduce each word to its root form, but the
overall speed of probing will be lowered.

Different database systems are based on different assumptions about tokenizing, case,
stopwords, stemming, etc. This will effect the probing results and estimation of database
content. For example, our probing system uniformly converts all terms to lower case, hence
cannot distinguish terms that differ only in case, such as “Word” and “word”, “Access” and
“access”, “Office” and “office”, etc., in the Microsoft database.

10



Table 4: The top 50 words found by probing Microsoft Customer Support Database

ranked by ctf ranked by df ranked by atf
term ctf df atf term ctf df atf term ctf df atf
microsoft 5891 1027 5.736 microsoft 5891 1027 5.736 project 721 66 10.924
windows 2264 672 3.369 navigator 1046 1022 1.023 excel 525 60 8.750
information 2172 706 3.076 document 1573 1022 1.539 office 728 85 8.565
file 1679 345 4.867 reviewed 1105 1021 1.082 works 835 113 7.389
server 1585 218 7.271 corporation 1123 1021 1.100 server 1585 218 7.271
document 1573 1022 1.539 copy 1185 954 1.242 word 816 113 7.221
product 1420 365 3.890 reserved 978 949 1.031 table 478 72 6.639
beta 1376 276 4.986 rights 1030 948 1.086 printer 475 73 6.507
following 1189 351 3.387 april 971 933 1.041 foxpro 480 74 6.486
copy 1185 954 1.242 information 2172 706 3.076 database 679 111 6.117
files 1133 466 2.431 windows 2264 672 3.369 microsoft 5891 1027 5.736
corporation 1123 1021 1.100 support 986 478 2.063 object 451 80 5.637
reviewed 1105 1021 1.082 files 1133 466 2.431 user 731 138 5.297
error 1067 253 4.217 available 629 466 1.350 visual 986 187 5.273
navigator 1046 1022 1.023 help 681 445 1.530 beta 1376 276 4.986
rights 1030 948 1.086 article 998 445 2.243 service 588 118 4.983
article 998 445 2.243 change 728 413 1.763 basic 554 113 4.903
support 986 478 2.063 check 591 390 1.515 file 1679 345 4.867
visual 986 187 5.273 questions 812 383 2.120 nt 562 116 4.845
reserved 978 949 1.031 provided 501 381 1.315 field 506 107 4.729
april 971 933 1.041 please 483 381 1.268 access 847 186 4.554
version 919 292 3.147 product 1420 365 3.890 print 496 109 4.550
set 912 231 3.948 asked 601 361 1.665 data 752 174 4.322
release 895 302 2.964 frequently 598 360 1.661 internet 636 149 4.268
new 886 263 3.369 following 1189 351 3.387 error 1067 253 4.217
system 854 241 3.544 web 741 346 2.142 box 792 188 4.213
access 847 186 4.554 file 1679 345 4.867 articles 408 99 4.121
works 835 113 7.389 location 425 331 1.284 setup 565 138 4.094
word 816 113 7.221 page 811 328 2.473 mail 423 104 4.067
questions 812 383 2.120 release 895 302 2.964 users 384 95 4.042
page 811 328 2.473 version 919 292 3.147 set 912 231 3.948
box 792 188 4.213 note 519 282 1.840 application 584 149 3.919
data 752 174 4.322 beta 1376 276 4.986 product 1420 365 3.890
web 741 346 2.142 type 695 274 2.536 menu 695 181 3.840
user 731 138 5.297 computer 671 269 2.494 text 591 159 3.717
change 728 413 1.763 knowledge 673 268 2.511 software 478 132 3.621
office 728 85 8.565 new 886 263 3.369 code 387 107 3.617
project 721 66 10.924 error 1067 253 4.217 name 715 198 3.611
name 715 198 3.611 return 557 249 2.237 system 854 241 3.544
menu 695 181 3.840 system 854 241 3.544 dialog 471 134 3.515
type 695 274 2.536 set 912 231 3.948 command 445 127 3.504
select 682 222 3.072 open 629 226 2.783 following 1189 351 3.387
help 681 445 1.530 select 682 222 3.072 windows 2264 672 3.369
message 680 218 3.119 base 658 219 3.005 new 886 263 3.369
database 679 111 6.117 server 1585 218 7.271 settings 398 120 3.317
knowledge 673 268 2.511 problem 614 218 2.817 example 643 204 3.152
computer 671 269 2.494 message 680 218 3.119 version 919 292 3.147
base 658 219 3.005 want 551 215 2.563 message 680 218 3.119
example 643 204 3.152 these 474 211 2.246 information 2172 706 3.076
internet 636 149 4.268 updated 501 210 2.386 select 682 222 3.072

6 Conclusion

This paper proposes the new idea of probing a database via a search interface in order to
find out the contents of the hidden collection. The probing approach can automatically build
an accurate model that represents the content of the database, for use in colletion selection
in distributed retrieval. The words found by probing can give us an idea of what’s in the
database, which is also very useful information. The effectiveness of probing is demonstrated
in experiments with the INQUERY information retrieval system and three TREC collections,
as well as a real Web based database service.

The experimental results are encouraging because a simple probing approach was quite
effective in accurately estimating collection content. Overall effectiveness of the probing
methods studied is good, and random samples seem to be better. The probing techniques
are effective with databases that vary widely in size and nature. Collection models can be
built without cooperation, which is an important contribution.

The database size, or the number of documents in the collection (NV), is unknown but
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is an important parameter. The possibility of estimating N through probing is an open
problem. By definition, a term’s unscaled idf is still related to IV, hence is collection-specific.
Since the #df is not entirely independent of database size, the results of mean squared idf
error were skewed by database size to some extent.

Only one real Web database was used to test the probing techniques. As can be seen from
the results based on the Microsoft database, real Web databases present a somewhat different
probing pattern than INQUERY databases. The Web environment is highly heterogenous
in that databases differ significantly from each other in size, document length and content.
Further experiments with more Web databases are needed to see how the probing system
performs in the dynamic networked environments, and to draw a general conclusion on which
probing method is the best.

The evaluation metrics we used are only applicable to research databases whose original
data are readily available. It’s unclear how to evaluate the effectiveness of probing real
Web databases. Without knowing the actual database content and statistics as a basis for
comparison, we only examined the number of words found by probing, which seems to be a
coarse evaluation. More accurate evaluation measures suitable to real Web environment are
desirable.

There are other variations in probing method which we haven’t tested. For example,
one could use phrase queries instead of one-word queries; use less frequent words instead of
top words as probes; or choose probe words from the set of new words found in each probe
cycle, instead of from the whole learned dictionary. Although we believe that varying the
experimental parameters won’t dramatically change the effectiveness of probing, more work
is needed to see if further improvements are possible.
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Figure 1: WSJ88: percentage of terms found by probing
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Figure 5: CACM: percentage of terms found by probing
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Figure 7: CACM: mean squared rank error
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Figure 9: TREC-123: percentage of terms found by probing
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Figure 10: TREC-123: CTF proportion
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Figure 11: TREC-123: mean squared rank error
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Figure 12: TREC-123: mean squared idf error
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