
1

Taking Topic Detection From Evaluation to

Practice
James Allan, Stephen Harding, David Fisher,

Alvaro Bolivar, Sergio Guzman-Lara, and Peter Amstutz

Center for Intelligent Information Retrieval

Department of Computer Science

University of Massachusetts Amherst

Abstract— The Topic Detection and Tracking (TDT) re-
search community investigates information retrieval methods
for organizing a constantly arriving stream of news articles
by the events that they discuss. Our best system for the
open evaluations of TDT has used an approach that turned
out to be problematic when the cluster detection technology
was deployed in a real world setting. To avoid generating
“garbage” clusters, we had to revert to a different approach
and to explore engineering solutions that were not motivated by
the model. Our experiences also led us to propose extensions
to the formal TDT evaluation.

I. OVERVIEW

The Topic Detection and Tracking (TDT) research

community investigates information retrieval methods

for organizing a constantly arriving stream of news

articles by the events that they discuss. TDT is explored

in an open and cooperative evaluation sponsored by

DARPA and run by NIST; the evaluations have run every

year since 1998.

One of the organization tasks included in TDT is topic

detection, where systems cluster arriving stories into

bins depending on the topic (event) being discussed. For

example, stories that discuss the same bombing should

be grouped together, but other bombings at the same

or different locations should be grouped separately. Sys-

tems are typically required to process each story before

considering the next, and do not have any knowledge of

the topics (bins) that will be appearing in the news.

In this paper, we describe our experience deploying

a TDT detection system in two real-world applications,

the unexpected changes we had to make in the research

system for it to be usable in a real setting, and how

those changes have resulted in substantive changes in

the TDT evaluation program (starting with TDT 2004).

The point of this paper is not to serve as an indictment

of TDT, nor to criticize the evaluations of TDT that have

taken place. Rather, this paper serves as a cautionary note

for technology evaluation communities: highlighting the

possibility of a mismatch between evaluation abstrac-

tions and the real world, and reinforcing the mantra

that both evaluations and applications can benefit from

a cyclic relationship between the two.

TDT began as a technology development and evalu-

ation program [1]. In the DARPA-sponsored TDT eval-

uations, detection systems are compared by their ability

to put all stories in a single topic together. The official

measure is a cost function that combines system miss

and false alarm rates on a per-topic basis [8]. Currently,

the best systems achieve about a 0.3 cost value, typified

by one system that had a 28% miss rate and a 0.3% false

alarm rate on a randomly selected topic.

We initially fielded our TDT detection technology

based on the best parameter values as determined by the

formal evaluation. However, it quickly became appar-

ent that the resulting clusters were of sufficiently poor

quality that they could not be used: they were either

too focused or—more commonly–far too broad. We also

found that relationships between topics were less crisp

than in the TDT evaluation data, and that algorithmic

selection of topic granularity was almost never correct.

For example, the system tended to group topics from

the same geographical area rather than break them into

events. These effects were very clear in both newswire

and Web news environments.

Our failure analysis of TDT technology has con-

tributed to several changes in the TDT evaluation. For

example, starting with TDT 2004, topics will be ex-

pected to overlap, to be hierarchical, and to be less

rooted in a single “seminal” event. Also partly inspired

by deploying the technology, other tasks in TDT are

moving to a supervised version that better simulates

user involvement and, in particular, correction of system

errors. By transferring technology from a research setting

to an operational system, we have provided not only

a useful application, but an improved understanding of

the research problem and contributed to a more valuable

research program.

In the rest of this paper we provide more details of

our experience. We start in Section II by describing the

TDT environment and tasks, how TDT detection systems



2

are evaluated, and the algorithm that performs best in

the TDT evaluations. We then discuss in Section III

the deployment of our TDT clustering technology in

two applications, one in collaboration with other TDT

sites (Section III-A) and the other as part of a local

project to explore finer-grained relationships between

news topics (Section III-B). In Section IV we sketch

the implications of experience and how it has impacted

the TDT community’s evaluation program. We conclude

and discuss future work in Section V.

II. TDT AND CLUSTER DETECTION

The Topic Detection and Tracking (TDT) evaluation

program evaluates technology for organizing news by the

events that are discussed in the stories [3]. It explores the

issues in an environment where the news stories are in

English, Chinese, and Arabic, and come either as good

quality text from newswire sources, or as the output

of an automatic speech recognition system applied to

broadcast television or radio sources. All of the sources

are brought together into a single stream that a TDT

system must process sequentially, making decisions on

earlier stories before it sees subsequent news articles.

The TDT evaluation program includes several sub-

tasks: (1) Segmentation is the problem of dividing a

half hour (or more) of radio or television news audio

into discrete stories for later processing; (2) New event

detection requires recognizing when a story in the stream

discusses a topic that had not been seen previously; (3)

Clustering extends that by placing all other stories into

appropriate bins (clusters), such that each bin includes

stories that talk about the same topic and only that topic;

(4) Tracking is a partially supervised task that involves

monitoring the stream of news for subsequent stories on

the same topic as a handful of training examples; and (5)

Story link detection is a core technology task in which

a system must decide whether or not two randomly

selected stories are on the same topic.

TDT evaluations are carried out on a corpus of news

stories collected by the Linguistic Data Consortium,

sampled to achieve an appropriate mix of sources, and

formatted for the evaluation [5]. Evaluations have been

carried out on three major corpora to date, incorporat-

ing stories from most of 1998 as well as the end of

2000. Stories are collected in three languages—English,

Chinese, and Arabic—and in four media—newswire,

radio, television, and Web. In order to allow participants

to focus on the TDT technology tasks and sidestep

complex data processing issues, broadcast news stories

are converted to text using an automatic speech recog-

nition system and non-English sources are translated via

machine translation. As a result, a system can work

entirely within English, although it must be prepared to

cope with the (often substantial) errors introduced by

speech recognition and machine translations. In fact, an

important early and explicit goal of TDT was to explore

the impact of those errorful conversions on the TDT

tasks.

In order to evaluate a system’s ability to organize

stories by topic, the LDC also provides topic annotations

of each corpus [5]. The process has varied somewhat for

each evaluation as experience has pointed out concerns

and as available financial support has shifted. The current

process is a search guided annotation and works roughly

as follows (the LDC has described the process in more

detail elsewhere [5] and provides supporting information

on their Web site1.) Starting from a description of

the topic, an annotator uses a search engine to find

stories that discuss the topic. Then, using the stories

that were found, the searcher creates new queries that

locate additional stories that are judged. Finally, the

searcher is encouraged to use the knowledge he or she

has developed up to that point to create new and unusual

queries that might find more relevant stories. These

rounds of searching are capped by a quality assurance

step that compares system output to LDC “truth” and

adjudicates situations where they are substantially in

conflict.

A. TDT cluster detection

In this paper, we will focus exclusively on the cluster-

ing task, also referred to simply as detection in much of

the TDT literature [7], [11], [6]. This task has appeared

in all of the annual TDT evaluations since their inception

in 1998.

In TDT clustering, a system is conceptually provided

with a news story and must place it within the most

appropriate cluster—i.e., the one that discusses the same

event-based topic. If the topic had not appeared previ-

ously, the system is expected to create a new cluster at

that point. (The new event detection evaluation focuses

particular attention on that aspect of clustering, but it is

important here, too.)

In fact, TDT systems do not process stories one at a

time because that would be inefficient and unrealistic.

Instead, stories are provided in batches that roughly

correspond to a half hour’s worth of news. Variations of

the evaluation process allow the batching to be extended

to several hours in order to determine whether there are

advantages to deferring the decision on a story’s topic

until later information has arrived. To date, no system

has shown a pronounced advantage to batching more

than the default half hour of news.

1http://www.ldc.upenn.edu/TDT



3

B. Evaluating cluster detection

All TDT tasks are envisioned as “on-line” tasks that

must completely process each story in a batch before

receiving any additional stories. Decisions are irrevoca-

ble, even if a mistake is detected later. This approach

models a situation where the output is consumed im-

mediately and in a time-critical fashion. It explores the

core technology rather than how it might be used in an

interactive setting [12].

Output is couched in terms of a detection task, where

“yes” or “no” decisions must be made [8]. Evaluation

is in terms of errors (misses and false alarms) and the

tradeoff between them. (As with most language tasks,

the errors tend to tradeoff against each other: lowering

one tends to raise the other.)

The official evaluation measure of TDT is based on a

cost function, a weighted combination of miss and false

alarm rates:

Cost = CmissP (miss)P (target)+CfaP (fa)P (off-target)

where P (target) is the prior probability that a story will

be on topic, Cx are user-specified values that reflect

the cost associated with each error, and P (miss) and

P (fa) are the actual system error rates. Within TDT

evaluations, Cmiss = 10, Cfa = 1, and P (target) =
1 − P (off-target) = 0.02 (derived from training data).

In fact, a normalized version of the cost function is

used. A system that always answers “no” would have

no false alarms, though it would have a 100% miss

rate. That system would get a score of 0.2 (10 × 0.02).

Similarly, a system that always answers “yes” would

get a score of 0.98. To ensure that systems that under-

perform such simple approaches are visible, the cost

value is divided by the minimum of the “always say yes”

or “always say no” approaches; in this case, by 0.2. A

normalized detection cost of 1.0 means that the system

performs exactly as well as a system that does no work.

All evaluations in TDT have been carried out by

the National Institute of Standards and Technology.

Participating sites were provided with the corpus and

information that specified the starting condition for each

task. Each site generated its decisions on the stories

in the evaluation set and submitted them to NIST. In

turn, NIST did the evaluation and generated comparative

results of all the systems [8].

C. Cluster detection technology

The cluster detection algorithm that we used in the

most recent formal evaluation (TDT 2003) worked as

follows. Collection-wide statistics such as document

occurrence frequency of terms, average document length,

and so on, are updated as a half-hour batch of stories

arrives. Then, for each story in the batch:

1) Weight each term t in the story by

wt,s =
tft,s · log((0.5 + N)/dft)

log(1.0 + N)

where tft,s is the number of times term t occurs in

the story s, dft is the number of stories to date in

which term t occurs (including those in this batch),

and N is the total number of stories seen to date

(again, including this batch).

2) Select the top-weighted 1,000 terms from the

document and create a vector of those weighted

terms to represent its content. This threshold is

sufficiently high that for most stories all terms are

included, but particularly long stories are repre-

sented by a more focused set of terms. It also puts

a cap on the storage space for vectors.

3) Compute the cosine similarity of the story to every

previous story in the collection:

sim(A,B) =

∑
t wt,A · wt,B

(
∑

t w2

t,A

∑
t w2

t,B)0.5

4) If the similarity to the nearest neighbor is above

a threshold θ = 0.21 (determined empirically),

assign the new story to the cluster of that neighbor.

5) If the similarity is below the threshold θ, then

form a new singleton cluster containing just that

story. This approach is the same idea used to create

single-link clusters.

We and others have tried a large number of additional

techniques to improve overall effectiveness, none of

which has improved performance with respect to the

TDT cost function, and most of which have degraded

effectiveness.

• Within the IR community, a weighting function

that incorporates the “Okapi tf function” [15]—

i.e., roughly tf/(tf+2)—is generally more effective

than the “raw tf” that we have been using. We and

others have carried out exhaustive experiments on

training data but achieved substantially lower TDT

costs using raw tf than the Okapi tf [16], [4].

• We felt that it would be useful to agglomerate

stories in a batch into small and very focused

clusters before adding them to the larger cluster

set. Our intuition was that a new topic might be

strengthened if it were grouped with other, later,

stories on the same topic. Other groups have had

more success with this approach, though not to a

huge degree [6].

• It seemed that additional supporting information

would be helpful, so we tried to decide to which

cluster a story should be assigned using the top

n > 1 most similar stories rather than just the top

n = 1. Similarly, representing clusters of stories by



4

their centroid (rather than by the individual stories)

was not effective.

• We tried to select the features more carefully than

just using the 1,000 top weighted terms. We exper-

imented with a wide range of caps and with tech-

niques such as up-weighting or using only terms

occurring in named entities. We explored techniques

for removing category-specific words that cause

confusion in other TDT tasks [10].

• We observed that the likelihood that two stories are

on the same topic decreases as the time between

their appearance increases. We incorporated a time

penalty into our similarity function, but other than

in some early results [2], were never able to make

it work well.

We cannot claim that any of those approaches is useless,

but they did not provide any value within the scope

of the TDT evaluations. As we will discuss below, the

single-link (compare to n = 1 stories) approach is clearly

problematic when using other data, and we hypothesize

that some of the other decisions may be similarly context

dependent—that is, with different evaluation parameters

(corpora, topics), we might find some of those ideas turn

out to be useful.

III. DEPLOYING CLUSTER DETECTION

The system described above—vector space, single-

link clustering, etc.—is among the best performing sys-

tems in the TDT evaluations. It represents state-of-the-

art technology and is an obvious basis for transferring

the technology into a real-world application. We did just

that in two different settings. First, we participated in an

“integrated feasibility experiment” (IFE) as part of the

DARPA TIDES program to deploy our cluster detection

system as a component of a report writing application

for intelligence analysts. Second, in an effort to more

prominently showcase the capabilities of our system,

we developed our own Event Organizer application

and tasked it with organizing news gathered from Web

sources.

In this section we describe our experience working

within the IFE environment and how it forced us to retool

our technology. We then discuss the Event Organizer in

more detail and sketch the directions that experience is

pushing us.

A. TIDES IFE

The DARPA TIDES (Translingual Information Detec-

tion Extraction and Summarization) program includes

“integrated feasibility experiments” (IFEs) as part of

its technology program. On an approximately annual

cycle, “best of breed” technology components are gath-

ered from contractors (or other interested parties) and

combined into an overall system to address a particular

task. To date, the systems have been variations of report

writing assistants for intelligence analysts. That is, the

systems monitor and organize a stream of constantly

arriving news material, and provide the user with search,

browsing, and reporting writing capabilities. The overall

system’s effectiveness is measured by the proportion of

material found and/or viewed that was useful.

Our contribution to this system was our cluster detec-

tion system. Coordination and evaluation of the project

was handled elsewhere, and that site also provided

communication stubs that we could use to make our

technology available on the Internet. We developed a

communications protocol that could accept batches of

stories, assign them to clusters, and communicate those

cluster IDs back to the submitting system. Our com-

ponent of the IFE system was required to be available

without significant interruption.

In addition to ensuring that our system was more

robust than typically required by a research system, we

had to retool it to cope with a genuine stream of stories

rather than to simulate a stream as in the research task.

For example, because the research systems worked with

static corpora and merely “pretended” that the stories

arrived in small batches, we were able to take shortcuts

and pre-process large parts of the problem. Converting

to a system that actually received the stories in a batch

was entirely an engineering issue, but consumed an

incredible amount of time. In situations where a research

component might be fielded, this challenge is one that

should be taken into account from the start.

We also had to cope with a substantial increase in the

arrival rate of news stories. Although we were used to

processing an entire corpus that might have 40,000 sto-

ries, the IFE system provided 2-3000 stories per day, ran

for several months, and is intended to run indefinitely.

The nearest neighbor approach (1-NN) requires that an

arriving story be compared to every prior story, taking

time that grows approximately linearly with the size of

the collection. We found that after around 100,000 stories

were in the system, we could no longer process one batch

of incoming stories before the next batch arrived.

The feedback we received primarily addressed issues

of cluster size: they were too large or too small. In

the latter case, our system generated a large number

of singleton clusters—i.e., clusters containing a single

news story. For the most part, this was a mismatch

of expectations: there were large numbers of stories

discussing an event-based topic that appeared only once,

but it appears the IFE users were expecting the clustering

system to group them together by subject in that case.

So, for example, all singletons about a particular broad

subject might be put into a cluster. We felt that this



5

problem was best addressed by a move to hierarchically

organized clusters—the TDT cluster detection system

was operating correctly by TDT standards, but for ac-

tual deployment of the system, more organization was

desireable.

The greater problem, however, was that the quality of

some created clusters was very poor. We experienced the

well-known problem with single-link types of clustering:

large “stringy” clusters were created where completely

unrelated documents would be in the same cluster. This

effect occurs because similarity is not transitive: if A
is similar to B and B is similar to C, it does not

follow that there is any relationship between A and

C. We first tried raising the threshold θ to make it

less likely that stories would be inserted into a cluster,

but that merely fragmented useful clusters. We still

found “garbage” clusters containing close to 1000 stories

of nearly random content. Such clusters were usually

triggered by non-news stories such as weather, sports, or

financial news, that contained essentially random words

(e.g., the names of sports teams or companies) that would

cause a spurious match which would start a cascading

series of unfortunate links.

In the end, we solved this problem by changing to a

form of average-link clustering. We represented every

existing cluster by its centroid, or the average of all

stories in the cluster. As a result, a story is inserted in a

cluster only if it matches, on average, all of the stories

in a cluster more than in any other cluster. This not only

(mostly) resolved the problem with garbage clusters, but

addressed the scale problem: a newly arrived story is

now compared to every cluster rather than to every story.

We found that 100,000 stories might generate a few

thousand clusters, so this change substantially increases

the number of stories that can be processed in a limited

time.

The clear advantage of a centroid approach over an

1-NN approach led us to verify our research results. It

is definitely the case that with all other components as

described above, 1-NN is substantially more effective

than centroids in the TDT evaluations, but the opposite

is true on this real dataset.

Even with the huge garbage clusters less likely to

occur, system developers felt that the clusters being

generated were too large, as it was common for some

to include 100 or more stories. We explored several

approaches to address this problem:

• We increased the threshold θ to make it more likely

that new clusters could be created. We found that if

the threshold were raised sufficiently to keep clus-

ters small, it resulted in too much fragmentation:

we ended up with only very tiny clusters.

• We allowed clusters to “age” such that it was more

and more difficult to add stories to them. This was,

in effect, a variation on the time penalty mentioned

in Section II-C. The idea is that reporting is less

and less likely to occur on a particular topic, so it

should become more difficult to add stories to an

older topic. Unfortunately, although this property is

generally true, it is untrue sufficiently often that it is

not an adequate approach to reducing cluster size.

• Our final attempt was not motivated by any property

of news, but only by the goal of reducing cluster

size: we effectively capped the number of stories

that could be put into any cluster by making it more

and more difficult for a story to be added as the

cluster’s size grew.

We adopted a peculiar combination of cluster size and

age. Specifically, once a cluster reached a particular

size, it became increasingly difficult to add stories to

it. This technique worked best, providing smaller and

more coherent clusters, even though nothing like it was

helpful in the evaluation task.

Our final IFE system is implemented using the open

source Lemur toolkit2. It uses a slightly different term

weighting function than the TDT research had indicated

(the IDF component is calculated differently) and it does

not truncate vectors to only 1,000 terms.

In summary, when we deployed our cluster detection

system as part of the IFE report writing environment, we

were forced to:

1) re-engineer our system to reflect an environment

where stories arrived in batches rather than being

able to simulate such an environment;

2) convert from a single-link based approach (1-NN)

that was suggested by formal evaluations to a

centroid-based approach, both to generate more

focused clusters and to cope with substantially

increased scale; and,

3) incorporate a cluster size limitation that made it

increasingly difficult for stories to be added to

clusters over a selected size.

We continue to operate our cluster detection server for

IFEs. As research results suggest changes in the way

that event-based clustering should be done, we expect to

cautiously deploy such changes in this system.

B. Event Organizer

The IFE process provided modest feedback to our

research program, suggesting the need for more tightly

focused clusters that do not grow too large. Beyond that

one idea, we have received no suggestions that encourage

2Lemur is a toolkit for developing information retrieval sys-
tems in the language modeling framework. It is available at
http://ciir.cs.umass.edu/lemur.



6

Fig. 1. Architecture of the Event Organizer system.

us to explore alternate definitions of the task. Because

the IFE incorporates numerous component technology

systems (e.g., summarization, retrieval, alert folders,

named entity extraction, machine translation, and speech

recognition), we felt that it was unlikely that user needs

in cluster detection would be obvious. For that reason,

we constructed Event Organizer.

The Event Organizer system consists of several parts,

the core of which is the same cluster detection en-

gine used for the IFE system. We developed our own

stream of news stories by “scraping” the Web and, most

importantly, developed a user interface for interacting

with the resulting clusters. This interface, rather than

being a general tool to integrate technologies, is designed

primarily to explore the effectiveness and utility of event-

based clustering.

We show the architecture of the system in Figure 1.

The cluster detection component is in the lower-right

(“index cluster server”). It is implemented using the

Lemur toolkit and handles the clustering of arrived sto-

ries as well as providing a searchable index of individual

news stories. The “retrieval server” (lower left) handles

all user queries and serves the results back to the user

interface. In addition to directly accessing the Lemur

index of stories and clusters, it maintains a traditional

relational database of correspondences between stories

and clusters, cluster titles, and so on. This split of

functionality between indexing and retrieval was done

for the sake of efficiency, allowing some parallelism

between continual clustering of new data and constant

requests from users.

The GUI itself is not depicted in the architecture

diagram, but is also connected to the Event Organizer

module. The GUI is based upon the common file/folder

model of storing information. In this case, news stories

are placed in folders that represent event-based clusters.

The user can create a profile that captures clusters of

interest—a profile is in turn represented as a folder that

contains all clusters that matched the query. Figure 2

shows an example of creating a profile of the 10 clusters

that are most strongly related to california. In the figure,

the profile has already been created and the top ten

clusters are shown in the hierarchical view on the left.

Clusters are named with the 10 most highly weighted

terms occurring in the stories inside the cluster. In

this instance, clusters appear to be about forest fires in

California, Schwarzenegger’s election as governor of the

state, a grocery store worker strike, an earthquake, wine

growing issues, and even the weather.

The Event Organizer itself is the glue that holds things

together. It is an event-driven component that accepts

requests from the GUI, passes them to the retrieval

server, and then returns responses when they are ready.

It also moves data between the Web scrapers and the

clustering system.

We scrape Web pages from Lycos News, CNN, Busi-

ness Week, CNET, BBC, Wired News, and the Palestine

Chronicle. This small set of pages results in approx-

imately 200 added news stories each day. This is a

substantially smaller number than the IFE provided, but

is sufficient to highlight some limitations of the TDT

technology, to wit:

• TDT is a technology evaluation and does not in-

clude user interface issues. For example, it was

immediately necessary to highlight newly arrived

clusters that match a profile or stories that appear

in an existing cluster inside a profile. We imple-

mented the Event Organizer in such a way that the

“update profile” button (in Figure 2) would cause

new stories to be added to a cluster if appropriate.

Figure 3 shows (among other things) the result of

an update. Although it is difficult to distinguish

it in a grayscale rendering of the figure, clusters

that now appear in the top 10 that did not before

are highlighted in blue, whereas clusters that would

no longer appear in the top 10 are marked in red.

Clusters that were there and remain after the update

are presented in black.

• There is no way to provide supervision to the

system when it makes mistakes. We have shown

that the TDT tracking task can be more effective

if a user can redirect the system when it makes

mistakes, even if the user does not provide regular



7

Fig. 2. Creating a new profile in Event Organizer. The simple query “california” is used both as a query and as a title for the profile. In this
case the profile contains clusters that match the query.

or substantial feedback [12]. Accordingly, we have

engineered Event Organizer to allow the user to

correct the system’s errors by removing stories from

clusters and creating new clusters. Figure 3 shows

a cluster about a tiger attacking Roy Horn (of

Siegfried and Roy) that this user does not want

to keep in the California profile. In the dropdown

menu, the user is preparing to copy the cluster so

that it can be used to start a new profile about that

topic. It could also be deleted from the profile if

the user merely wished to suppress it.

• Topic granularity is difficult to specify a priori.

Depending on a user’s interest, a topic could be

brush fires in California, fighting a particular brush

fire, a particular fire company’s efforts to fight a

brush fire, or even the burning of a specific home.

The TDT evaluation program has “addressed” this

problem to date by fiat: the boundaries of a topic

are defined by annotator “truth” so ideally can

be discovered by some sort of pattern analysis in

training data. Based on our deployment experience,

we believe it is critical that topics (hence clusters)

be represented hierarchically so that a user can

rapidly drill down or move up to find the clus-

ter that is appropriately broad or narrow. Event

Organizer supports hierarchical clusters, including

the capability to create new clusters of clusters, to

move clusters between clusters, and so on, though

the underlying TDT technology cannot yet generate

such clusters.

• Events within topics are related by more than just

a contains/container connection. Although technol-

ogy for discovering such relationships is in its

infancy [13], we have designed Event Organizer so

that clusters can be linked to clusters by a typed

set of relationships. In theory, this might mean, for

example, that it would be possible to jump from a

trial event directly to the crime that is at issue or

to the arrest of the accused. We incorporate typed

links within clusters that can point to (and from)

other clusters, allowing a user to jump directly to

events that occurred earlier or after, that involve the

same people and locations, or that discuss a similar

topic.

IV. IMPLICATIONS AND IMPACT

Because the Event Organizer is in its early stages, it

has not been deployed outside of small pilot settings.

Although we have had to battle numerous engineering

issues to create an efficient and appealing interface, we



8

Fig. 3. The user is preparing to “cut” a cluster from this updated profile in order to use it as to “query by cluster” when starting a new profile.
In this screen snapshot, the profile has just been updated and changes in which clusters should appear are highlighted by color. In addition, a
timeline view of the documents in the cluster is shown on the right.

believe that the interface has already proven valuable.

In combination with our IFE experience, the Event

Organizer has demonstrated several directions in which

the TDT technology ought to change to be more “re-

alistic” and in which TDT evaluations should change

to support it. Those changes fall into four broad areas:

allowing stories to appear in multiple clusters, allowing

clusters to contain other clusters, recognizing the need to

find relationships between clusters, and supporting some

form of interaction to correct system errors.

A. Overlapping clusters.

Since the original pilot study that set the foundation

for the TDT evaluations [1], the evaluation has made

the simplifying assumption that a news story discusses

exactly one topic. Even at that point the community knew

this assumption was not true and that there would be

problems. For example, if a story discussed two topics,

the simplying assumption required that it be put in a

single cluster and that if it were put in the other (or,

indeed, caused another cluster to be created), it would

be an error.

Quick examination of early corpora had suggested

that only a small percentage of stories covered multiple

topics: news stories are generally very focused. However,

as the size of the TDT test corpora grew, and as the

number of topics being considered for evaluation also

increased, the problems caused by limited topic overlap

became larger. Our IFE and Event Organizer experiences

have shown that the problem is much more pronounced

in the “real” news we collected than in the TDT news

collections.

Based on all of that experience, we recommended last

year that the TDT 2004 evaluation tasks be changed to

support and to require that stories be able to appear in

multiple clusters. In practice, this will mean that systems

will put stories into any cluster that matches above a

threshold rather than to the best matching cluster.

B. Hierarchical clusters.

One of the largest areas of contention within the

TDT research community has been the definition of

“event.” Within TDT, topics are triggered by a “seminal

event” and then contain all stories that discuss that

event and any that follow inevitably from it [8]. To

make that definition less vague, the topic annotation

process includes “rules of interpretation” that describe

how different types of topics (elections, scandals, wars,



9

crimes, etc.) should be scoped: what is and what is not

part of the topic [5].

Unfortunately, even with those rules, it turns out

that the selection of “seminal event” is not rigorously

controlled. As a result, it is possible for a (non-seminal)

event within topic T1 to be seen as a seminal event of

another topic, T2, and for either T1 ⊂ T2 or T2 ⊂ T1
3.

That means that the “correct” topic—i.e., the “truth”

against which a system would be judged—depends on

the selection of seminal events, something that is not

known to a system in advance.

For that reason (at least), the TDT 2004 evaluation

has been extended to support hierarchical topics. To

implement this, the topic annotation process has been

changed so that it no longer discourages topics that

occur within existing topics, and so that a much larger

number of topics are annotated. Evaluation will be done

in two ways for the TDT 2004 evaluation. The primary

form will find the subgraph within the hierarchy that

is the most similar (by the standard cost measure) to

a “true” topic (based on LDC annotations). The cost

will be increased by the “travel cost” necessary to move

from the root of the graph to the selected subtree, so that

structures that make it “easy” to locate the cluster will be

rewarded. In the second approach, hierarchical clusters

will be collapsed into a set of overlapping clusters and

evaluated that way. As a simple example, if (A,B) ⊂ C
so A and B are contained within the larger cluster C,

evaluation would consider the clusters A, B, and C. Note

that this approach would not have been viable in the past

because clusters A and B overlap with cluster C.

C. Interaction.

As another simplying assumption, the TDT research

program has modeled its tasks as unsupervised, so they

proceed without any human intervention. Our experi-

ences with “garbage” clusters indicates that this model

may be inadequate when deploying the system. If a user

notices that a cluster contains nonsense, it seems odd not

to permit the user to correct the error. Other tasks that

are similar in spirit to TDT—notably that of information

filtering [14]—have for many years incorporated a notion

of supervised adaptation into their evaluation model.

We have shown that such supervision within the TDT

tracking task can result in a substantial improvement in

accuracy [12].

Motivated by these observations, starting in TDT

2004, the tracking evaluation will incorporate supervi-

sion, allowing systems to request confirmation of some

early decisions. The community opted not to incorporate

3It is even theoretically possible for neither to be a subset of the
other, though that is unlikely given the rules of interpretation.

supervision into the cluster detection task—the other

changes already mentioned complicate issues enough—

though it will eventually be valuable to include it there,

too.

D. Inter-cluster connections.

A final deficiency of TDT that has become apparent

because of our experiences is the failure to provide con-

nections between an event within topics. This problem

is somewhat related (1) to hierarchical topics since a

critical type of link is the container/contains relationship

that such a hierarchy suggests, and (2) to overlapping

topics since an event can appear in multiple topics. But

other types of links are important: ranging from rela-

tively straightforward connections—related topic, same

people, same location, same date—to needing substantial

research—cause and effect.

There are no plans to incorporate connections between

topics in TDT 2004. The issues are extraordinarily

complex and it is not at all clear how an evaluation

should be carried out. We have been investigating some

of the possibilities that connections enable as a problem

we call event threading [13]. In that task, we create

smaller and more focused clusters that represent events

rather than the larger topics of TDT (similar in spirit

to some approaches to the detection task [9]). We also

construct links between the event clusters that we hope

represent time dependencies. Our thought is that a TDT

topic would appear within such a graph structure as a set

of inter-connected events. However, those same events

would connect to events in other topics—those connec-

tions are not at all bound by rules of interpretation.

Our early results are intriguing and suggest that event

threading may be a new and interesting direction for

TDT technology to move.

V. CONCLUSION

There has been almost eight years of research on

the problem of TDT cluster detection. The six formal

evaluations have demonstrated “clearly” what shape a

state of the art system should take to address this task.

However, a few months’ experience with “real world”

data and “real users” showed that evaluation clarity does

not necessarily translate to deployment success.

Our experiences pointed out several serious limita-

tions with the TDT evaluation program and led us

to suggest several dramatic changes. Some of those—

hierarchical clusters, overlapping clusters, and super-

vision of tracking—have been adopted by the TDT

community and will be explored in TDT 2004.

What we learn in the new TDT evaluations will be

transferred into the Event Organizer and IFE settings to

see how well they address the problems we found. We



10

have completed one cycle of research to practice and

back with valuable lessons to and from each: the research

created core technology needed to deploy a system, and

the deployment suggested ways that the research could

be more pertinent. This project has been and continues to

be a successful illustration of research and deployment

synergy.

ACKNOWLEDGMENTS

This work was supported in part by the Cen-

ter for Intelligent Information Retrieval and in part

by SPAWARSYSCEN-SD grant number N66001-02-1-

8903. Any opinions, findings and conclusions or recom-

mendations expressed in this material are the authors’

and do not necessarily reflect those of the sponsor.

REFERENCES

[1] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang.
Topic detection and tracking pilot study: Final report. In
Proceedings of the DARPA Broadcast News Transcription and

Understanding Workshop, pages 194–218, 1998.

[2] J. Allan, R. Papka, and V. Lavrenko. On-line new event detection
and tracking. In Proceedings of Conference on Information

Retrieval Research (SIGIR), pages 37–45, 1998.

[3] James Allan. Introduction to topic detection and tracking.
In James Allan, editor, Topic Detection and Tracking: Event-

based Information Organization, pages 1–16. Kluwer Academic
Publishers, Boston, 2002.

[4] Thorsten Brants and Francine Chen. A system for new event
detection. In Proceedings of the 26th annual international ACM

SIGIR conference on Research and development in informaion

retrieval, pages 330–337. ACM Press, 2003.

[5] Christopher Cieri, Stephanie Strassel, David Graff, Nii Martey,
Kara Rennert, and Mark Liberman. Corpora for topic detection
and tracking. In James Allan, editor, Topic Detection and

Tracking: Event-based Information Organization, pages 33–66.
Kluwer Academic Publishers, Boston, 2002.

[6] S. Dharanipragada, M. Franz, J. S. McCarley, T. Ward, and W.-
J. Zhu. Segmentation and detection at ibm. In James Allan,
editor, Topic Detection and Tracking – Event-based Information

Organization, pages 135–148. Kluwer Academic Publisher, 2002.

[7] David Eichmann and Padmini Srinivasan. A cluster-based ap-
proach to broadcast news. In James Allan, editor, Topic Detection

and Tracking – Event-based Information Organization, pages
149–174. Kluwer Academic Publisher, 2002.

[8] Jonathan G. Fiscus and George R. Doddington. Topic detection
and tracking evaluation overview. In James Allan, editor, Topic

Detection and Tracking: Event-based Information Organization,
pages 17–31. Kluwer Academic Publishers, Boston, 2002.

[9] Martin Franz, Todd Ward, J. Scott McCarley, and Wei-Jing
Zhu. Unsupervised and supervised clustering for topic tracking.
In Proceedings of the 24th annual international ACM SIGIR

conference on Research and development in information retrieval,
pages 310–317. ACM Press, 2001.

[10] G. Kumaran and J. Allan. Text classification and named entities
for new event detection. In Proceedings of ACM SIGIR, 2004.
Forthcoming.

[11] Tim Leek, Richard Schwartz, and Srinivasa Sista. Probabilistic
approaches to topic detection and tracking. In James Allan,
editor, Topic Detection and Tracking – Event-based Information

Organization, pages 67–84. Kluwer Academic Publisher, 2002.

[12] A. Leuski and J. Allan. Improving realism of topic tracking
evaluation. In Proceedings of ACM SIGIR, pages 89–96, 2002.

[13] R. Nallapati, A. Feng, F. Peng, and J. Allan. Event threading
within news topics. In Proceedings of the Conference on Informa-

tion and Knowledge Management (CIKM), 2004. Forthcoming.
[14] S. Robertson and I. Soboroff. The TREC 2002 filtering track

report. In Proceedings of the Text Retrieval Conference (TREC-

2002), 2003. NIST special publication 500-251.
[15] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu,

and M. Gatford. Okapi at TREC-3. In D. K. Harman, editor,
Proceedings of the Text Retrieval Conference (TREC-3). NIST,
1995.

[16] Yiming Yang, Jaime Carbonell, Ralf Brown, Thomas Pierce,
Brian T. Archibald, and Xin Liu. Learning approaches for
detecting and tracking news events. IEEE Intelligent Systems

Special Issue on Applications of Intelligent Information Retrieval,
14(4):32–43, 1999.


