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Abstract

In sequence modeling, we often wish to repre-

sent complex interaction between labels, such

as when performing multiple, cascaded label-

ing tasks on the same sequence, or when long-

range dependencies exist. We present dynamic

conditional random fields (DCRFs), a general-

ization of linear-chain conditional random fields

(CRFs) in which each time slice contains a set

of state variables and edges—a distributed state

representation as in dynamic Bayesian networks

(DBNs)—and parameters are tied across slices.

Since exact inference can be intractable in such

models, we perform approximate inference us-

ing several schedules for belief propagation, in-

cluding tree-based reparameterization (TRP). On

a natural-language chunking task, we show that

a DCRF performs better than a series of linear-

chain CRFs, achieving comparable performance

using only half the training data.

1. Introduction

The problem of labeling and segmenting sequences of

observations arises in many different areas, including

bioinformatics, music modeling, computational linguistics,

speech recognition, and information extraction. Dynamic

Bayesian networks (DBNs) (Dean & Kanazawa, 1989;

Murphy, 2002) are a popular method for probabilistic se-

quence modeling, because they exploit structure in the

problem to compactly represent distributions over multi-

ple state variables. Hidden Markov models (HMMs), an

important special case of DBNs, are a classical method for

speech recognition (Rabiner, 1989) and part-of-speech tag-

ging (Manning & Schütze, 1999). More complex DBNs

have been used for applications as diverse as robot naviga-
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tion (Theocharous et al., 2001), audio-visual speech recog-

nition (Nefian et al., 2002), activity recognition (Bui et al.,

2002), and information extraction (Skounakis et al., 2003;

Peshkin & Pfeffer, 2003).

DBNs are typically trained to maximize the joint probabil-

ity p(y,x) of a set of observation sequences x and labels

y. However, when the task does not require being able

to generate x, such as in segmenting and labeling, mod-

eling the joint distribution is a waste of modeling effort.

Furthermore, generative models often must make problem-

atic independence assumptions among the observed nodes

in order to achieve tractability. In modeling natural lan-

guage, for example, we may wish to use features of a word

such as its identity, capitalization, prefixes and suffixes,

neighboring words, membership in domain-specific lexi-

cons, and category in semantic databases like WordNet—

features which have complex interdependencies. Genera-

tive models that represent these interdependencies are in

general intractable; but omitting such features or modeling

them as independent has been shown to hurt accuracy (Mc-

Callum et al., 2000).

A solution to this problem is to model instead the condi-

tional probability distribution p(y|x). The random vector

x can include arbitrary, non-independent, domain-specific

feature variables. Because the model is conditional, the

dependencies among the features in x do not need to be

explicitly represented. Conditionally-trained models have

been shown to perform better than generatively-trained

models on many tasks, including document classification

(Taskar et al., 2002), part-of-speech tagging (Ratnaparkhi,

1996), extraction of data from tables (Pinto et al., 2003),

segmentation of FAQ lists (McCallum et al., 2000), and

noun-phrase segmentation (Sha & Pereira, 2003).

Conditional random fields (CRFs) (Lafferty et al., 2001)

are undirected graphical models that are conditionally

trained. Previous work on CRFs has focused on the linear-

chain structure, depicted in Figure 1, in which a first-order

Markov assumption is made among labels. This model

structure is analogous to conditionally-trained HMMs, and

has efficient exact inference algorithms. Often, however,



we wish to represent more complex interaction between

labels—for example, when longer-range dependencies ex-

ist between labels, when the state can be naturally repre-

sented as a vector of variables, or when performing mul-

tiple cascaded labeling tasks on the same input sequence

(which is prevalent in natural language processing, such as

part-of-speech tagging followed by noun-phrase segmenta-

tion).

In this paper, we introduce Dynamic CRFs (DCRFs), which

are a generalization of linear-chain CRFs that repeat struc-

ture and parameters over a sequence of state vectors—

allowing us to represent distributed hidden state and com-

plex interaction among labels, as in DBNs, and to use

rich, overlapping feature sets, as in conditional models.

For example, the factorial structure in Figure 1(b) includes

links between cotemporal labels, explicitly modeling lim-

ited probabilistic dependencies between two different label

sequences. Other types of DCRFs can model higher-order

Markov dependence between labels (Figure 2), or incorpo-

rate a fixed-size memory. For example, a DCRF for part-of-

speech tagging could include for each word a hidden state

that is true if any previous word has been tagged as a verb.

Any DCRF with multiple state variables can be collapsed

into a linear-chain CRF whose state space is the cross-

product of the outcomes of the original state variables.

However, such a linear-chain CRF needs exponentially

many parameters in the number of variables. Like DBNs,

DCRFs represent the joint distribution with fewer parame-

ters by exploiting conditional independence relations.

Within natural-language processing, DCRFs are especially

attractive because they are a probabilistic generalization of

cascaded, weighted finite-state transducers (Mohri et al.,

2002). In general, many sequence-processing problems are

traditionally solved by chaining errorful subtasks such as

FSTs. In such an approach, however, errors early in pro-

cessing nearly always cascade through the chain, causing

errors in the final output. This problem can be solved

by jointly representing the subtasks in a single graphical

model, both explicitly representing their dependence, and

preserving uncertainty between them. DCRFs can repre-

sent dependence between subtasks solved using finite-state

transducers, such as phonological and morphological anal-

ysis, POS tagging, shallow parsing, and information extrac-

tion.

We evaluate DCRFs on a natural-language processing task.

A factorial CRF that learns to jointly predict parts of speech

and segment noun phrases performs better than cascaded

models that perform the two tasks in sequence. Also, we

compare several schedules for belief propagation on this

task, showing that although exact inference is feasible, ap-

proximate inference has lower total training time with no

loss in performance.

The rest of the paper is structured as follows. In section 2,

we describe the general framework of CRFs. Then, in sec-
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Figure 1. Graphical representation of (a) linear-chain CRF, and

(b) factorial CRF. Although the hidden nodes can depend on ob-

servations at any time step, for clarity we have shown links only

to observations at the same time step.

tion 3, we define DCRFs, and explain methods for approx-

imate inference and parameter estimation. In section 4, we

present the experimental results. We conclude in section 5.

2. CRFs

Conditional random fields (CRFs) (Lafferty et al., 2001)

are undirected graphical models that encode a conditional

probability distribution using a given set of features. CRFs

are defined as follows. Let G be an undirected model over

sets of random variables y and x. As a typical special case,

y = {yt} and x = {xt} for t = 1, . . . , T , so that y is a

labeling of an observed sequence x. If C = {{yc,xc}}
is the set of cliques in G, then CRFs define the conditional

probability of a state sequence given the observed sequence

as:

pΛ(y|x) =
1

Z(x)

∏

c∈C

Φ(yc,xc), (1)

where Φ is a potential function and the partition function

Z(x) =
∑

y

∏

c∈C Φ(yc,xc) is a normalization factor

over all state sequences for the sequence x. We assume

the potentials factorize according to a set of features {fk},
which are given and fixed, so that

Φ(yc,xc) = exp

(

∑

k

λkfk(yc,xc)

)

(2)

The model parameters are a set of real weights Λ = {λk},
one weight for each feature.

Previous applications use the linear-chain CRF, in which

a first-order Markov assumption is made on the hidden

variables. A graphical model for this is shown in Fig-

ure 1. In this case, the cliques of the conditional model

are the nodes and edges, so that there are feature functions

fk(yt−1, yt,x, t) for each label transition. (Here we write

the feature functions as potentially depending on the entire

input sequence.) Feature functions can be arbitrary. For

example, a feature function fk(yt−1, yt,x, t) could be a bi-

nary test that has value 1 if and only if yt−1 has the label

“adjective”, yt has the label “proper noun”, and xt begins

with a capital letter.
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Figure 2. Examples of DCRFs. The dashed lines indicate the boundary between time steps.

3. Dynamic CRFs

3.1. Model Representation

A Dynamic CRF is a conditionally-trained undirected

graphical model whose structure and parameters are re-

peated over a sequence. As with a DBN, a DCRF can be

specified by a template that gives the graphical structure,

features, and weights for two time steps, which can then

be unrolled given an instance x. The same set of features

and weights is used at each sequence position, so that the

parameters are tied across the network. Several example

templates are given in Figure 2.

Now we give a formal description of the unrolling process.

Let y = {y1 . . .yT } be a sequence of random vectors

yi = (yi1 . . . yim). To give the likelihood equation for ar-

bitrary DCRFs, we require a way to describe a clique in the

unrolled graph independent of its position in the sequence.

For this purpose we introduce the concept of a clique in-

dex. Given a time t, we can denote any variable yij in y by

two integers: its index j in the state vector yi, and its time

offset ∆t = i− t. We will call a set c = {(∆t, j)} of such

pairs a clique index, which denotes a set of variables yt,c

by yt,c ≡ {yt+∆t,j | (∆t, j)∈ c}. That is, yt,c is the set of

variables in the unrolled version of clique index c at time t.

Now we can formally define DCRFs:

Definition Let C be a set of clique indices, F =
{fk(yt,c,x, t)} be a set of feature functions and Λ = {λk}
be a set of real-valued weights. Then (C,F,Λ) is a DCRF

if and only if

p(y|x) =
1

Z(x)

∏

t

∏

c∈C

exp

(

∑

k

λkfk(yt,c,x, t)

)

(3)

where Z(x) =
∑

y

∏

t

∏

c∈C exp (
∑

k λkfk(yt,c,x, t)) is

the partition function.

Although we define a DCRF has having the same set of

features for all the cliques, in practice, we choose feature

functions fk so that they are non-zero except on cliques

with some index ck. Thus, we will sometimes think of each

clique index has having its own set of features and weights,

and speak of fk and λk as having an associated clique index

ck.

DCRFs generalize not only linear-chain CRFs, but more

complicated structures as well. For example, in this paper,

we use a factorial CRF (FCRF), which has linear chains

of labels, with connections between cotemporal labels. We

name these after factorial HMMs (Ghahramani & Jordan,

1997). Figure 1(b) shows an unrolled factorial CRF. Con-

sider an FCRF with L chains, where Yℓ,t is the variable in

chain ℓ at time t. The clique indices for this DCRF are of

the form {(0, ℓ), (1, ℓ)} for each of the within-chain edges

and {(0, ℓ), (0, ℓ+1)} for each of the between-chain edges.

The FCRF G defines a distribution over hidden states as:

p(y|x) =
1

Z(x)

(

T−1
∏

t=1

L
∏

ℓ=1

Φℓ(yℓ,t, yℓ,t+1,x, t)

)

(

T
∏

t=1

L−1
∏

ℓ=1

Ψℓ(yℓ,t, yℓ+1,t,x, t)

)

, (4)

where {Φℓ} are the potentials over the within-chain edges,

{Ψℓ} are the potentials over the between-chain edges, and

Z(x) is the partition function. The potentials factorize ac-

cording to the features {fk} and weights {λk} of G as:

Φℓ(yℓ,t, yℓ,t+1,x, t) = exp

{

∑

k

λkfk(yℓ,t, yℓ,t+1,x, t)

}

Ψℓ(yℓ,t, yℓ+1,t,x, t) = exp

{

∑

k

λkfk(yℓ,t, yℓ+1,t,x, t)

}

More complicated structures are also possible, such as

semi-Markov CRFs, in which the state transition probabil-

ities depend on how long the chain has been in its current

state, and hierarchical CRFs, which are moralized versions

of the hierarchical HMMs of Fine et al. (1998).1 As in

DBNs, this factorized structure can use many fewer param-

eters than the cross-product state space: even the two-level

FCRF we discuss below uses less than an eighth of the pa-

rameters of the corresponding cross-product CRF.

1Hierarchical HMMs were shown to be DBNs by Murphy and
Paskin (2001).



3.2. Inference in DCRFs

Inference in a DCRF can be done using any inference

algorithm for undirected models. For an unlabeled se-

quence x, we typically wish to solve two inference prob-

lems: (a) computing the marginals p(yt,c|x) over all

cliques yt,c, and (b) computing the Viterbi decoding y
∗ =

arg maxy p(y|x). The Viterbi decoding is used to label a

new sequence, and marginal computation is used for pa-

rameter estimation (Section 3.3).

Because marginal computation is needed during training,

inference must be efficient so that we can use large train-

ing sets even if there are many labels. The largest experi-

ment reported here required computing pairwise marginals

in 866,792 different graphical models: one for each train-

ing example in each iteration of a convex optimization al-

gorithm. Since exact inference can be expensive in com-

plex DCRFs, we use approximate methods. Here we de-

scribe approximate inference using loopy belief propaga-

tion.

Although belief propagation is exact only in certain spe-

cial cases, in practice it has been a successful approximate

method for general graphical models (Murphy et al., 1999;

Aji et al., 1998). In general, belief propagation algorithms

iteratively update a vector m = (mu(xv)) of messages be-

tween pairs of vertices xu and xv . The update from xu to

xv is given by:

mu(xv)←
∑

xu

Φ(xu, xv)
∏

xt 6=xv

mt(xu), (5)

where Φ(xu, xv) is the potential on the edge (xu, xv). Per-

forming this update for one edge (xu, xv) in one direction

is called sending a message from xu to xv . Given a mes-

sage vector m, approximate marginals are computed as

p(xu, xv)← κΦ(xu, xv)
∏

xt 6=xv

mt(xu)
∏

xw 6=xu

mw(xv),

(6)

where κ is a normalization factor.

At each iteration of belief propagation, messages can be

sent in any order, and choosing a good schedule can af-

fect how quickly the algorithm converges. We describe two

schedules for belief propagation: tree-based and random.

The tree-based schedule, also known as tree reparameteri-

zation (TRP) (Wainwright et al., 2001; Wainwright, 2002),

propagates messages along a set of cross-cutting spanning

trees of the original graph. At each iteration of TRP, a span-

ning tree T (i) ∈ Υ is selected, and messages are sent in

both directions along every edge in T (i), which amounts to

exact inference on T (i). In general, trees may be selected

from any set Υ = {T } as long as the trees in Υ cover the

edge set of the original graph. In practice, we select trees

randomly, but we select first edges that have never been

used in any previous iteration.

The random schedule simply sends messages across all

edges in random order. To improve convergence, we arbi-

trarily order each edge ei = (si, ti) and send all messages

msi
(ti) before any messages mti

(si). Note that for a graph

with V nodes and E edges, TRP sends O(V ) messages per

BP iteration, while the random schedule sends O(E) mes-

sages.

To perform Viterbi decoding, we use the same propaga-

tion algorithms, except that the summation in Equation 5

is replaced by maximization. Also, the algorithms that

we have described apply to DCRFs with at most pairwise

cliques. Inference in DCRFs with larger cliques can be per-

formed straightforwardly using generalized versions of the

variational approaches in this section (Yedidia et al., 2000;

Wainwright, 2002).

3.3. Parameter Estimation in DCRFs

The parameter estimation problem is to find a set of

parameters Λ = {λk} given training data D =
{x(i),y(i)}Ni=1. More specifically, we optimize the con-

ditional log-likelihood

L(Λ) =
∑

i

log pΛ(y(i) | x(i)). (7)

The derivative of this with respect to a parameter λk asso-

ciated with clique index c is

∂L

∂λk

=
∑

i

∑

t

fk(~y
(i)
t,c ,x(i), t)

−
∑

i

∑

t

∑

~yt,c

pΛ(~yt,c | x
(i))fk(~yt,c,x

(i), t).
(8)

where ~y
(i)
t,c is the assignment to yt,c in y

(i), and ~yt,c ranges

over assignments to the clique yt,c. Observe that it is the

factor pΛ(~yt,c | x
(i)) that requires us to compute marginal

probabilities in the unrolled DCRF.

To reduce overfitting, we define a prior p(Λ) over parame-

ters, and optimize log p(Λ|D) = L(Λ) + log p(Λ). We use

a spherical Gaussian prior with mean µ = 0 and covariance

matrix Σ = σ2I , so that the gradient becomes

∂p(Λ|D)

∂λk

=
∂L

∂λk

−
λk

σ2
.

See Peng and McCallum (2004) for a comparison of differ-

ent priors for linear-chain CRFs.

The function p(Λ|D) is convex, and can be optimized by

any number of techniques, as in other maximum-entropy

models (Lafferty et al., 2001; Berger et al., 1996). In the

results below, we use L-BFGS, which has previously out-

performed other optimization algorithms for linear-chain

CRFs (Sha & Pereira, 2003; Malouf, 2002).

The analysis above was for the fully-observed case, where

the training data include observed values for all variables in
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Figure 3. Performance of FCRFs and cascaded approaches on

noun-phrase chunking, averaged over five repetitions. The error

bars on FCRF and CRF+CRF indicate the range of the repetitions.

the model. If some nodes are unobserved, the optimization

problem becomes more difficult, because the log likelihood

is no longer convex in general (details omitted for space).

4. Experiments

We present experiments comparing factorial CRFs to other

approaches on noun-phrase chunking (Sang & Buchholz,

2000). Also, we compare different schedules of loopy be-

lief propagation in factorial CRFs.

4.1. Noun-Phrase Chunking

Automatically finding the base noun phrases in a sentence

can be viewed as a sequence labeling task by labeling

each word as either BEGIN-PHRASE, INSIDE-PHRASE, or

OTHER (Ramshaw & Marcus, 1995). The task is typically

performed by an initial pass of part-of-speech tagging, but

then it can be difficult to recover from errors by the tagger.

In this section, we address this problem by performing part-

of-speech tagging and noun-phrase segmentation jointly in

a single factorial CRF.

Our data comes from the CoNLL 2000 shared task (Sang

& Buchholz, 2000), and consists of sentences from the

Wall Street Journal annotated by the Penn Treebank project

(Marcus et al., 1993). We consider each sentence to be a

training instance, with single words as tokens. The data are

divided into a standard training set of 8936 sentences and

a test set of 2012 sentences. There are 45 different POS

labels, and the three NP labels.

We compare a factorial CRF to two cascaded approaches,

which we call CRF+CRF and Brill+CRF. CRF+CRF uses

one linear-chain CRF to predict POS labels, and another

linear-chain CRF to predict NP labels, using as a feature

the Viterbi POS labeling from the first CRF. Brill+CRF

Size CRF+CRF Brill+CRF FCRF
223 86.23 93.12
447 90.44 95.43

POS accuracy 670 92.33 N/A 96.34
894 93.56 96.85

2234 96.18 97.87
8936 98.28 98.92
223 92.67 93.75 93.87
447 94.09 94.91 95.03

NP accuracy 670 94.72 95.46 95.46
894 95.17 95.75 95.86

2234 96.08 96.38 96.51
8936 96.98 97.09 97.36
223 81.92 89.19
447 86.58 91.85

Joint accuracy 670 88.68 N/A 92.86
894 90.06 93.60

2234 93.00 94.90
8936 95.56 96.48
223 83.84 86.02 86.03
447 86.87 88.56 88.59

NP F1 670 88.19 89.65 89.64
894 89.21 90.31 90.55

2234 91.07 91.90 92.02
8936 93.10 93.33 93.87

Table 1. Comparison of performance of cascaded models and

FCRFs on simultaneous noun-phrase chunking and POS tag-

ging. The row CRF+CRF lists results from cascaded CRFs, and

Brill+CRF lists results from a linear-chain CRF given POS tags

from the Brill tagger. The FCRF always outperforms CRF+CRF,

and given sufficient training data outperforms Brill+CRF. With

small amounts of training data, Brill+CRF and the FCRF perform

comparably, but the Brill tagger was trained on over 40,000 sen-

tences, including some in the CoNLL 2000 test set.

predicts NP labels using the POS labels provided from the

Brill tagger, which we expect to be more accurate than

those from our CRF, because the Brill tagger was trained

on over four times more data, including sentences from the

CoNLL 2000 test set.

The factorial CRF uses the graph structure in Figure 1(b),

with one chain modeling the part-of-speech process and the

other modeling the noun-phrase process. We use L-BFGS

to optimize the posterior p(Λ|D), and TRP to compute the

marginal probabilities required by ∂L/∂λk. Based on past

experience with linear-chain CRFs, we use the prior vari-

ance σ2 = 10 for all models.

We factorize our features as fk(yt,c, x, t) =
pk(yt,c)qk(x, t) where pk(yt,c) is a binary function

on the assignment, and qk(x, t) is a function solely of

the input string. Table 2 shows the features we use. All

three approaches use the same features, with the obvious

exception that the FCRF and the first stage of CRF+CRF

do not use the POS features Tt = T .

Performance on noun-phrase chunking is summarized in

Table 1. As usual, we measure performance on chunking

by precision, the percentage of returned phrases that are



wt−δ = w
wt matches [A-Z][a-z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt matches .*[0-9].*

wt appears in list of first names,

last names, company names, days,

months, or geographic entities

wt is contained in a lexicon of words

with POS T (from Brill tagger)

Tt = T
qk(x, t + δ) for all k and δ ∈ [−3, 3]

Table 2. Input features qk(x, t) for the CoNLL data. In the above

wt is the word at position t, Tt is the POS tag at position t, w

ranges over all words in the training data, and T ranges over all

part-of-speech tags.

correct; recall, the percentage of correct phrases that were

returned; and their harmonic mean F1. In addition, we also

report accuracy on POS labels,2 accuracy on the NP labels,

and joint accuracy on (POS, NP) pairs. Joint accuracy is

simply the number of sequence positions for which all la-

bels were correct. The NP label accuracy should not be

compared across systems, because different systems use

different labeling schemes to encode which words are in

the same chunk.

Each row in Table 1 is the average of five different random

subsets of the training data, except for row 8936, which is

run on the single official CoNLL training set. All condi-

tions used the same 2012 sentences in the official test set.

On the full training set, FCRFs perform better on NP

chunking than either of the cascaded approaches, includ-

ing Brill+POS. The Brill tagger (Brill, 1994) is an estab-

lished high-performance tagger whose training set is not

only over four times bigger than the CoNLL 2000 data set,

but also includes the WSJ corpus from which the CoNLL

2000 test set was derived. The Brill tagger is 97% accu-

rate on the CoNLL data. Also, note that the FCRF—which

predicts both noun-phrase boundaries and POS—is more

accurate than a linear-chain CRF which predicts only part-

of-speech. We conjecture that the NP chain captures long-

run dependencies between the POS labels.

On smaller training subsets, the FCRF outperforms

CRF+CRF and performs comparably to Brill+CRF. For all

the training subset sizes, the difference between CRF+CRF

and the FCRF is statistically significant by a two-sample

t-test (p < 0.002). In fact, there was no subset of the

2To simulate the effects of a cascaded architecture, the POS
labels in the CoNLL-2000 training and test sets were automati-
cally generated by the Brill tagger. Thus, POS accuracy measures
agreement with the Brill tagger, not agreement with human judge-
ments.

Method Time (hr) NP F1 LBFGS iter
µ s µ s µ

Random (3) 15.67 2.90 88.57 0.54 63.6

Tree (3) 13.85 11.6 88.02 0.55 32.6

Tree (∞) 13.57 3.03 88.67 0.57 65.8

Random (∞) 13.25 1.51 88.60 0.53 76.0

Exact 20.49 1.97 88.63 0.53 73.6

Table 3. Comparison of F1 performance on the chunking task by

inference algorithm. The columns labeled µ give the mean over

five repetitions, and s the sample standard deviation. Approx-

imate inference methods have labeling accuracy very similar to

exact inference with lower total training time. The differences

in training time between Tree (∞) and Exact and between Ran-

dom (∞) and Exact are statistically significant by a paired t-test

(df = 4; p < 0.005).

data on which CRF+CRF performed better than the FCRF.

The variation over the randomly selected training subsets

is small—the standard deviation over the five repetitions

has mean 0.39—indicating that the observed improvement

is not due to chance. Performance and variance on noun-

phrase chunking is shown in Figure 3.

On this data set, several systems are statistically tied for

best performance. Kudo and Matsumoto (2001) report an

F1 of 94.39 using a combination of voting support vector

machines. Sha and Pereira (2003) give a linear-chain CRF

that achieves an F1 of 94.38, using a second-order Markov

assumption, and including bigram and trigram POS tags as

features. An FCRF imposes a first-order Markov assump-

tion over labels, and represents dependencies only between

cotemporal POS and NP label, not POS bigrams or tri-

grams. Thus, Sha and Pereira’s results suggest that more

richly-structured DCRFs could achieve better performance

than an FCRF.

Other DCRF structures can be applied to many different

language tasks, including information extraction. Peshkin

and Pfeffer (2003) apply a generative DBN to extrac-

tion from seminar announcements (Frietag & McCallum,

1999), attaining improved results, especially in extracting

locations and speakers, by adding a factor to remember the

identity of the last non-background label. Our early results

with a similar structure seem promising, for example, one

DCRF structure performs within 2% F1 of a linear chain

CRF, despite being trained on 37% less data.

4.2. Comparison of Inference Algorithms

Because DCRFs can have rich graphical structure, and re-

quire many marginal computations during training, infer-

ence is critical to efficient training with many labels and

large data sets. In this section, we compare different infer-

ence methods both on training time and labeling accuracy

of the final model.

Because exact inference is feasible for a two-chain FCRF,

this provides a good case to test whether the final classifica-



tion accuracy suffers when approximate methods are used

to calculate the gradient. Also, we can compare different

methods for approximate inference with respect to speed

and accuracy.

We train factorial CRFs on the noun-phrase chunking task

described in the last section. We compute the gradient

using exact inference and approximate belief propagation

using random, and tree-based schedules, as described in

section 3.2. Algorithms are considered to have converged

when no message changes by more than 10−3. In these

experiments, the approximate BP algorithms always con-

verged, although this is not guaranteed in general. We

trained on five random subsets of 5% of the training data,

and the same five subsets were used in each condition. All

experiments were performed on a 2.8 GHz Intel Xeon with

4 GB of memory.

For each message-passing schedule, we compare terminat-

ing on convergence (Random(∞) and Tree(∞) in Table 3),

to terminating after three iterations (Random (3) and Tree

(3)). Although the early-terminating BP runs are less ac-

curate, they are faster, which we hypothesized could result

in lower overall training time. If the gradient is too inac-

curate, however, then the optimization will require many

more iterations, resulting in greater training time overall,

even though the time per gradient computation is lower.

Another hazard is that no maximizing step may be possi-

ble along the approximate gradient, even if one is possible

along the true gradient. In this case, the gradient descent al-

gorithm terminates prematurely, leading to decreased per-

formance.

Table 3 shows the average F1 score and total training times

of DCRFs trained by the different inference methods. Un-

expectedly, letting the belief propagation algorithms run

to convergence led to lower training time than the early

cutoff. For example, even though Random(3) averaged

427 sec per gradient computation compared to 571 sec

for Random(∞), Random(∞) took less total time to train,

because Random(∞) needed an average of 83.6 gradient

computations per training run, compared to 133.2 for Ran-

dom(3).

As for final classification performance, the various approx-

imate methods and exact inference perform similarly, ex-

cept that Tree(3) has lower final performance because max-

imization ended prematurely, averaging only 32.6 maxi-

mizer iterations. The variance in F1 over the subsets, al-

though not large, is much larger than the F1 difference be-

tween the inference algorithms.

Previous work (Wainwright, 2002) has shown that TRP

converges faster than synchronous belief propagation, that

is, with Jacobi updates. Both the schedules discussed in

section 3.2 use asynchronous Gauss-Seidel updates. We

emphasize that the graphical models in these experiments

are always pairs of coupled chains. On more complicated

models, or with a different choice of spanning trees, tree-

based updates could outperform random asynchronous up-

dates. Also, in complex models, the difference in classifi-

cation accuracy between exact and approximate inference

could be larger, but then exact inference is likely to be in-

tractable.

In summary, we draw three conclusions about this model.

First, using approximate inference instead of exact infer-

ence leads to lower overall training time with no loss in ac-

curacy. Second, there is little difference between a random

tree schedule and a completely random schedule for belief

propagation. Third, running belief propagation to conver-

gence leads both to increased classification accuracy and

lower overall training time than an early cutoff.

5. Conclusions

Dynamic CRFs are conditionally-trained undirected se-

quence models with repeated graphical structure and tied

parameters. They combine the best of both conditional

random fields and the widely successful dynamic Bayesian

networks (DBNs). DCRFs address difficulties of DBNs, by

easily incorporating arbitrary overlapping input features,

and of previous conditional models, by allowing more com-

plex dependence between labels. Inference in DCRFs can

be done using approximate methods, and training can be

done by maximum a posteriori estimation.

Empirically, we have shown that factorial CRFs can be

used to jointly perform several labeling tasks at once, shar-

ing information between them. Such a joint model per-

forms better than a model that does the individual label-

ing tasks sequentially, and has potentially many practical

implications, because cascaded models are ubiquitous in

NLP. Also, we have shown that using approximate infer-

ence leads to lower total training time with no loss in accu-

racy.

In future research, we plan to explore other inference meth-

ods to make training more efficient, including expectation

propagation (Minka, 2001) and variational approximations.

Also, investigating other DCRF structures, such as hier-

archical CRFs and DCRFs with memory of previous la-

bels, could lead to applications into many of the tasks to

which DBNs have been applied, including object recogni-

tion, speech processing, and bioinformatics.
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