Text Segmentation by Topic

Jay M. Ponte! and W. Bruce Croft!

Computer Science Department, University of Massachusetts, Amherst, 01002, USA

Abstract. We investigate the problem of text segmentation by topic.
Applications for this task include topic tracking of broadcast speech data
and topic identification in full-text databases. Researchers have tackled
similar problems before but with different goals. This study focuses on
data with relatively small segment sizes and for which within-segment
sentences have relatively few words in common making the problem chal-
lenging. We present a method for segmentation which makes use of a
query expansion technique to find common features for the topic seg-
ments. Experiments with the technique show that it can be effective.

1 Introduction

There has recently been increased interest in tracking topics in information
“feeds.” A feed is a continuous stream of text produced, for example, by speech
recognition of broadcast news. The text in such an environment contains no
mark-up to indicate topic boundaries and may not even delineate sentences. The
text also tends to be terse and words are not repeated to the degree they would
be in, for example, an academic journal paper. Approaches to text segmentation
that depend on redundancy at the word level will fail on such data.

Segmenting text into topics can also be appropriate in heterogeneous full-text
database environments. In this case, the topics would be passages in the docu-
ments that could be used to improve retrieval or summarization. In this paper,
we focus on text segmentation for information feeds and use text for our exper-
iments that reflects some of the characteristics we would expect to encounter.
Specifically, the text has a short (2.8 sentence) average topic segment size and
within-topic sentences usually do not have enough common words to determine
appropriate segmentation. We do, however, assume that sentence boundaries
can easily be identified. Figure 1 shows an example of the text from the “What’s
News” database constructed from the TREC Wall St Journal collection.

The “What’s News” articles consist of several topics delimited by groups of
dashes. The six sentences in Figure 1 form three topic segments of two sentences
each. Notice that, other than stopwords, the first two sentences have only the
word “Lebanon” in common, the last two have only the word “Lee” in common
and the middle two have no words in common at all. However, within-topic
sentences do have many semantically related words and phrases in common.
For example, “White House” and “Bush” in the third sentence are related to
“presidential spokesman” in the fourth sentence and “cyst” and “cancerous” in



Police in Lebanon said that two Red Cross workers abducted last week are
being held by Palestinian guerrillas led by terrorist Abu Nidal.
Meanwhile, thousands of students returned to classes as Lebanon’s state
schools, most private schools and the American University of Beirut
reopened after being closed for six months.

The White House said that a cyst removed Friday from Bush’s right middle
finger wasn’t cancerous.

A presidential spokesman said a routine pathological examination was
performed on the half-inch growth following the 25-minute surgical
procedure at Walter Reed Army Medical Hospital.

Singapore’s Lee Kuan Yew said he would step down as prime minister by the
end of next year, ending three decades of nearly one-man rule in the
island nation.

The 66-year-old Lee, in an interview with the British Broadcasting Corp.,
said he would hand over power to his deputy, Goh Chok Tong.

Fig. 1. Example of typical topic segments.

the third sentence are related to “growth” and “surgical procedure” in the fourth
sentence. In order to segment this data correctly, we will need to use a method
that makes use of the related words. The technique of Local Context Analysis
(LCA) allows us to do exactly that. We will revisit this example to show how
LCA helps to solve the problem, but we first discuss previous work on similar
problems.

2 Previous Work

The topic segmentation task is somewhat related to previous work in passage
retrieval. Many passage retrieval techniques have, however, used fixed length
passages [1] or other features such as paragraph boundaries [6]. For our task,
paragraph and section information is not available and topic segments consist of
a very small number of sentences, sometimes only one, so choosing an arbitrary
block size as is often done for passage retrieval is not appropriate.

Salton and Singhal [8] and Salton et al [7], discuss the decomposition of
text into segments and themes where a segment is contiguous block of text
discussing a single subtopic and a theme is a chain of such segments possibly
interleaved with other themes. The segmenting process begins at paragraph level.
Then, paragraphs are compared by computing cosine similarity in order to infer
cohesive multi-paragraph segments.

Hearst [3] and Hearst and Plaunt [4] discuss a method of segmenting expos-
itory texts into multi-paragraph subtopics which they call ‘tiles’ using cosine
similarity in conjunction with smoothing. One notable feature of this work is
that formatting information is not used in the segmentation process. Instead,



the text is initially broken up into into blocks of size N with N ranging from
three to five sentences in the experiments. Next, a similarity curve of adjacent
blocks is computed using cosine similarity. This curve is then smoothed to get
rid of local extrema. Finally, the resulting smoothed graph is used to identify
potential topic boundaries. Hearst and Plaunt [4] performed experiments using
these topic boundaries to enhance ad hoc retrieval, but the results were not sig-
nificantly better than fixed-sized windows. In [3] the segmentation was compared
to that of several human judges.

These approaches are somewhat different from the one taken in our pre-
liminary study. In the first place, we cannot assume paragraph boundaries are
available. Secondly, we cannot use a fixed block size greater than one sentence
since, in our data, topic segments can be very short, sometimes only one or two
sentences. Finally, for the data in our study, we cannot assume that within-topic
sentences have very many, or indeed any, words in common. In that case, mea-
suring similarity of within topic sentences does not provide enough information.

As mentioned earlier, much of the work on passage retrieval has used pas-
sages of fixed length. An exception to this is Mittendorf and Sh&uble [5] in which
Hidden Markov Models (HMMs) were used to retrieve relevant passages of vari-
able length. This is an interesting approach and is somewhat related to our work
in that in both cases the text is broken up using a sequential (Markov) decision
process. The difference is that in their approach, a specific information need
is modeled by a stochastic process which generates text fragments relevant to a
particular query. This process is called the passage model. A second process gen-
erates typical text fragments without regard to any query. This process is called
the background model. A text block is scored as a function of the probability
that the passage model produced the block and the background model produced
the surrounding context of the block. Our approach, on the other hand, is to
segment the text by topic independent of a specific query and so we do not
explicitly model an information need in the current study.

3 Methodology

We now present a brief overview of the method, followed by additional detail
on key aspects. As mentioned earlier, one of the distinguishing features of this
problem is that within topic sentences often do not share any common words.
However, as shown in Figure 1, semantically related words will be present in a
topic segment.

We considered the sentence to be the smallest unit, i.e. a segment consists of
one or more sentences. Note that in broadcast speech data, sentence boundary
identification is not a trivial problem. For the current data, it can be approxi-
mated reasonably well.

As a first step, we used the method of Local Context Analysis (LCA), as
described by Xu and Croft [9], in order to find words and phrases related to
each sentence. The words and phrases returned by LCA were used in place of
the original sentence and pairwise similarity of all sentences in the data set was



calculated. Actually, sentences were only compared within a fixed window to
save unnecessary computation, but conceptually, that is not important.

The pairwise similarity measures were then used to score individual segments
of various sizes. Specifically, for n ranging from one to the maximum segment size,
each block of size n at each position was assigned a score based on the pairwise
similarity measures. These scores were used to rank each potential block of size
n starting at each position in the text.

Finally, the segmentation was done using dynamic programming. Each block
was given a final score based on its rank position and length. Each possible
segmentation, i.e. each possible sequence of topic breaks, was considered to find
the one that maximized the total score. There are exponentially many possible
segmentations, but dynamic programming makes the calculation tractable.

Now that we have seen an overview of the process, we will look at some of
the details.

3.1 LCA

Xu and Croft [9] developed Local Context Analysis as the method of query
expansion somewhat like a more robust version of local feedback (see [2] for a
discussion of local feedback). For the purposes of the current work, LCA is being
used as an association thesaurus. Each sentence in the test set is posed as a query
to the LCA database.

LCA works as follows, given a query:

— Retrieve the top IV passages.

— Extract words and phrases from these passages using a variant of EMIM.

— Rank the extracted concepts according to their co-occurrence with the query
terms and their collection statistics.

— Return the top M concepts.

LCA is quite robust with respect to the choice of N, the number of passages
to use and M, the number of top concepts to add. For the purposes of this study,
N was 2000 and M was 100.

The concepts returned from the LCA database are strongly associated with
the original sentences. We believe the reason for the effectiveness of LCA for this
task is that the words in context tend to disambiguate each other and LCA is
a method that takes advantage of that fact since it favors co-occurrence with
multiple query terms, or, in this case, multiple words in the sentence.

Recall the six-sentence example in Figure 1, after running LCA, we end up
with a set of surrogate features for each sentence.

Table 1 summarizes the number of co-occurring concepts after LCA expan-
sion.

Recall from Figure 1 that sentences 1 and 2 form a single topic and where as
the original sentences had only one word in common, after LCA expansion, their
surrogates have ten features in common. Likewise, sentences 3 and 4 formerly
had no words in common, now they have eleven features in common and finally



|Sentence|1 |2 |3 |4 |5 |6 |

1 —|10{0 (1 |0 |0
2 10|—|0 {0 (1 |3
3 0|0 [—|11j1 |1
4 1 (0 |11|—|0 |0
5 0|11 |0 |—|65
6 0 (3 (1|0 |65|—
Table 1. Number of common LCA features for six example sentences.

sentences 5 and 6 which had one word in common, now have sixty five features
in common. Equally important, pairs of across-topic sentences have few concepts
in common.

3.2 Pairwise Sentence Similarity

After LCA expansion, we use the LCA concepts to measure the similarity of
blocks of text. As a first step, each pair of sentences, is assigned a similarity
score based on coordination level matching on the list of LCA concepts. The
similarity function is simply the sum of the number of matches. For example
for sentences 1 and 2 in Figure 1, the similarity score will be 10. This is a very
simple measure. We assume that the top 100 concepts from LCA are all going
to be useful and so we do not use a more elaborate similarity measure. In order
to avoid unnecessary computation, only sentences within a fixed window were
assigned a score. The window size depends on the calculations for each block,
which will be covered shortly, and the range of possible block sizes.

3.3 Segment Ranking

For each possible segment size, we want to compute a score for each position
in the input text. We use sizes ranging from 1 to N where N is a conservative
estimate of the maximum segment size. The features we will use are internal
stmilarity which is simply the sum of the pairwise similarities within the seg-
ment and left and right external similarity. Left external similarity is the sum
of the pairwise similarities of each sentence in the segment to a fixed number of
preceding sentences. Similarly, right external similarity is the sum of the pair-
wise similarities of each sentence in the segment to a fixed number of sentences
following the segment. For example, with a window of size two, sentences 3 and
4 in Figure 1 will have an internal similarity score of 11, a Left external similar-
ity of 1 and a right external similarity of 2. For each size, the segments will be
ranked by the internal similarity minus the two external similarities.

3.4 Dynamic Programming

We now have ranking for segments of size N at each position in the input text
i.e. for each block size N a score is computed for the block from p to p + n for



each position p in the input stream. The rank position of each segment will be
used to indicate the belief that a segment at a given position is of length N. At
this point we use dynamic programming to consider every possible segmentation.

As part of the dynamic programming process, we use a Gaussian length
model to weight each potential segment with the prior probability of the segment
length. The length model is defined as:

_k ey
2o
Where g is the estimated mean topic length, o is the estimated standard
deviation and k is constant for scaling purposes. The parameters were estimated
from a training set consisting of 85 topic segments. As will be shown, while the
length model improves performance, it is not necessary for reasonable segmen-
tation.

4 Experiments

Experiments were run on three data sets. Also, the method with and without
LCA was compared on one of the data sets. In addition, the method with and
without length modeling was compared on one of the data sets. Finally, an
experiment was run to study the time sensitivity of LCA for this task.

4.1 Test Data

The test data consisted of three sets drawn at random from the “What’s News”
articles from Wall Street Journal 1989. These articles are a good choice for
evaluating segmentation in the two contexts mentioned previously. In order to
segment stories in a topic tracking environment one needs to identify boundaries
in relatively terse text in which formatting information such as paragraph or sec-
tion boundaries are not available. Likewise, in a heterogeneous text collection,
one may have documents which really contain a number of unrelated topics.
In this case, one needs to predict the boundaries of these unrelated document
portions, furthermore, as in the topic tracking task, one may not have consis-
tent formatting information available. Since this is the case for these two tasks,
the “What’s News” articles provide a reasonable set of test data. The form of
these articles does not contain information when the topic boundaries have been
removed and the terseness and relatively short segment length of these articles
makes the task challenging since there is minimal overlapping of content words
and minimal structure to the individual stories themselves.

Test set 1 consists of 228 sentences and 86 topics, set 2 consists of 251 sen-
tences and 96 topics and set 3 consists of 269 sentences and 119 topics. An
additional set of similar size was used to obtain the parameters for the Gaussian
length model. The parameters, u = 2.7 and o = 1.4 are not optimal for the test
sets since each set has a different length distribution. Nevertheless, the length
model with these parameters worked well, as we shall see shortly.



4.2 Evaluation

We make the assumption that the topic breaks in the original Wall Street Journal
“What’s News” articles are the ground truth for evaluation purposes. This is a
reasonable assumption for this study since each topic segment is a discussion
of a different event. In other cases, one might have to determine the level of
agreement between several human judges in order to estimate performance, see

In order to score the segmentation generated by the algorithm, we first per-
form a least squares alignment with the correct segmentation. Then the distance
between the two is measurable in terms of insertions, deletions and moves. An
insertion error is the algorithm produced a break that does not line up with a
real break. A deletion error is when a real break exists but the algorithm did not
produce a break that lines up with it. Finally, a mowve error is when two breaks
line up but are not in the same place. Table 2 shows an example. The first col-
umn shows the true segmentation and the second column shows the predicted
segmentation. In this example, an insertion error occurs at sentence 5 where the
algorithm has predicted a break which does line up with a real break. A deletion
error occurs at sentence 27 where the original segmentation has a break which
is not found by the algorithm. Finally, two move errors occur at sentences 26
and 31 where the algorithm has predicted breaks when the real breaks are at
sentences 25 and 29.

Actual Predicted
Segmentation|Segmentation
2 2
5
10 10
14 14
19 19
25 26
27
29 31
35 35

Table 2. Example of aligned segmentations.

Given the aligned segmentations one can choose an error function for the
move errors based on the desired level of tolerance. An insertion or deletion
always counts as one error. We report results using two error functions. The first
is a ’pessimistic’ error function:

1 if Ir(b=r);
b = { ;
1) 0 otherwise
This function simply counts each break b if and only if it matches some
real break r. This measure does not take into account predictions that were



close but not exact, e.g. a block of length six would count as a complete miss
even if the real block started in the same place and was of length seven. This
exact match error function does not distinguish between some segmentations
where it clearly should. For example, suppose a data set consists of one hundred
sentences with a topic break at sentence fifty. The exact match error function
would not distinguish between an algorithm that predicted a single break at
sentence forty-nine and one that predicted a single break at sentence two even
though the former is clearly better. However, the following error function does
make that distinction:

- (3)-

In this function, d is the difference between the predicted break b and the
corresponding real break (where correspondence is determined by the alignment
process), u is the difference between the next actual break and the previous one
and ¢ is the number of insertion errors between the next actual break and the
previous one. It may help to think of u as the amount of uncertainty and g as the
number of guesses. This partial match error function gives full credit for exact
matches and partial credit for near misses. The first term causes the amount of
credit to drop off as the distance increases and the second term measures the
'nearness’ of the near miss.

For the purposes of this study, we report scores with both of the above
error functions. The errors are counted using both error functions and then the
counts are used to calculate recall and precision scores for each function. Recall
is measured as the percentage of topic breaks in the original data that were
predicted by the algorithm. Precision is measured as the percentage of breaks
that were predicted by the algorithm that appeared in the original data.

The two sets of recall and precision scores allow more meaningful comparisons
than either set by itself. Two segmentations can be compared by the worst case
analysis using the exact match score. The partial match score provides a reality
check if the exact match scores are close. Also, for a single segmentation, the
partial match scores can be compared to the exact match scores to determine
the closeness of missed breaks.

(u—g)—d)

u

4.3 Results
Exact Match|Exact Match||{Partial Match|Partial Match
Set 1 Recall Precision Recall Precision
Original Words|70.0% 62.9% 77.9 % 70.1%
LCA Concepts [88.8% 82.6% 91.4% 85.1%
Table 3. Comparison with length modeling, with and without LCA expansion.




Table 3 shows the results on Set 1 using the LCA concepts vs. using the orig-
inal words. It can bee seen that performance with the original words is poor,
especially the exact match precision. This is not surprising in light of the fact
that many within-topic sentences do not have many words in common. There is
simply not enough information in the original sentences to perform the segmen-
tation well. On the other hand, when the LCA concepts are used, the results
improve dramatically.

Exact Match

Exact Match

Partial Match

Partial Match

Set 1 Recall Precision Recall Precision
No Length Model|73.5% 76.3% 75.2% 78.1%
Length Model 88.8% 82.6% 91.4% 85.1%

Table 4. Comparison using LCA expansion with and without length modeling.

Table 4 shows the results on set 1 with and without length modeling. As
you can see, without length modeling, performance is not as good but is still
reasonable. This is encouraging since one may not be able to estimate an accurate
length model in general settings. On the other hand, if a length model is available,
segments of typical length have higher probability and a better segmentation
results.

Exact Match|Exact Match||Partial Match|Partial Match
Set|Recall Precision Recall Precision
1 [88.8% 82.6% 91.4% 85.1%
2 |78.4% 79.2% 79.9% 80.7%
3 |75.0% 85.7% 76.6% 87.6%

Table 5. Results for three data sets using LCA and length modeling.

Table 5 shows the results on all three data sets using length information and
LCA. These results show that the method is reasonably robust across the three
data sets. For purposes of comparison, results using the original words for data
sets 2 and 3 are included in in Table 6, notice that the improvement provided

by LCA is consistent across the three data sets.

Exact Match|Exact Match ||Partial Match|Partial Match
Set|Recall Precision Recall Precision
2 |58.8% 61.3% 66.8% 69.7%
3 |58.3% 70.7% 64.6% 78.3%

Table 6. Results for sets 2 and 3 using the original words.




10

4.4 Time Sensitivity of LCA

The following is an example where the method fails. The six sentences in Figure
2 form three topics of two sentences each. The correct topic boundaries are
represented by the dashes. The segmentation algorithm broke this passage in the
middle forming two topics of three sentences each, represented in Figure 2 by the
asterisks. One of the reasons for the error is that there is more overlap in the LCA
concepts for the across topic sentences. For example, sentence three has concepts
such as “parliament”, “party” and “election” in common with sentences one
and two. Many of the concepts returned for sentences three and four are related
to political unrest and reform, probably from editorial articles. For example,
sentence four and sentence six have “Mandela” in common.

Britain’s Conservative Party prepared to open its annual conference today
with its popularity at an eight-year low, the economy in trouble, and
polls showing voters increasingly disenchanted with Prime Minister
Thatcher’s recent programs.

The four-day forum in Blackpool, England, follows a gathering last week
by the Labor Party.

Yugoslavia’s Premier Markovic traveled to the U.S., where he is expected
to seek $1 billion in assistance to bolster his economic and political
restructuring plans.

*okk

Markovic is to meet with Bush and other administration officials as well
as with commercial bankers during his six-day visit.

South Africa said escalating violence between rival political groups in
Namibia could jeopardize a U.N. independence plan for the territory.
U.N. officials are expected to urged Namibia’s political leaders to halt
the "mob behavior" by supporters, which resulted in two deaths over the
weekend.

Fig. 2. Example of text which caused a problem.

The passage in Figure 2 is from Wall Street Journal, 1989. The original
results used Tipster volume 2 and 3 (Tip23) as the LCA database. Tip23 contains
articles from Wall Street Journal for the years 1990, 1991 and 1992 (and articles
from several other sources). Since these passages are (were) current events, the
obvious question is whether an LCA database from a closer time period would
improve results since, of late, one is less likely to find articles about Yugoslavian
Premier Markovic.

We ran an additional experiment using Tipster volume 1 (Tipl) which in-
cludes Wall Street Journal for the years 1987, 1988 and 1989. This is a reasonable
approximation of the standard routing task since one would typically keep a col-
lection of articles from the past up to the present time. The above problem goes



away under these circumstances and the overall results improve as shown in table

7.
Exact Match|Exact Match||Partial Match|Partial Match
Set 1 Recall Precision Recall Precision
Tip23 LCA|[88.8% 82.6% 91.4% 85.1%
Tipl LCA [95.0% 84.4% 95.9% 85.2%

11

Table 7. Results with more timely LCA database vs. original LCA database.

Note that Tipster volume 1 includes the data in the above example. This
does not compromise the result since LCA is not taking advantage of the topic
boundaries. One could break up incoming text into large blocks, apply LCA and
accomplish essentially the same thing. In fact, the LCA database was built with
a passage size of 300 words. That being the case, one might expect this database
to cause problems since LCA could potentially return concepts from adjoining
topics thereby making them seem more similar. However, LCA is quite robust
in this respect and so that was not the case.

5 Performance

An important factor for topic segmentation is the performance of each com-
ponent of the system. Remember, the four components are LCA expansion,
computation of pairwise sentence similarity, segment ranking and dynamic pro-
gramming. All timing figures are for test set 1 on a DEC AlphaStation 250.

The LCA expansion requires one query per sentence. Assuming 2 seconds per
query, on average, this translates into approximately 200 KB per hour for the
LCA expansion. Clearly, it is important to speed this up for many applications.

Pairwise sentence similarity is O(mn?), where m is the number of LCA con-
cepts and n is the number of sentences. However, m can be regarded as a constant
and in practice one can reduce this to O(n) by using a fixed sized window with
a constant factor for the window size. Pairwise similarity computation takes ap-
proximately 3 seconds for set 1, though this could certainly be sped up as the
current implementation was built for flexibility rather than speed.

Segment ranking is O(mn) where m is the maximum segment size and n is
the number of sentences. In practice, m may be regarded as a constant. Segment
ranking takes approximately 0.05 seconds for set 1. Similarly, the dynamic pro-
gramming step is O(n) with a constant factor for maximum window size. The
dynamic programming step takes approximately 0.06 seconds for set 1.

The important point is that the last three steps are linear in the size of the
data, all with reasonable constants. The LCA expansion is the expensive part.



12

6 Conclusions and Future Work

We have presented a method for segmenting text by topic that works well in
spite of small segments with few common words. We have shown that LCA is a
good technique to augment short passages with related words for the purposes of
text segmentation and that matching the age of the LCA database to the age of
the data to be segmented is helpful but not critical. In addition, we have shown
that segment length modeling is an important component of this task.

The current results suggest some additional experiments. LCA works with a
fixed passage size. In the current work, we did not attempt to find the optimal
passage size or to study the effects of varying the passage size. It seems rea-
sonable that a passage size related to the mean segment length would improve
performance but this remains to be tested.

An additional parameter is the number of concepts to use in place of the
original sentence. In the current experiments, we used the top 100 concepts from
LCA. In the future we intend to investigate the effects of varying this number.

The length model used in the current method worked well. Larger, more
heterogeneous collections may require more complex models, and it may be the
case that length modeling will not be feasible. Fortunately, performance without
a length model is quite reasonable. We intend to investigate whether that will
still be the case in other collections.

In order to handle automatically recognized speech data, we need to extend
the method to work in the case where sentence boundaries are difficult, if not
impossible, to identify accurately. Other cues may be available, such as length of
pauses and it may be possible to use this information instead of sentence bound-
aries. Obviously, pauses will not generally coincide with sentence boundaries, so,
at best, use of this information will present a challenge. Other approaches such
as a fixed window may also work well. This remains a matter for investigation.

Finally, the performance issue will need to be addressed. We would like to
speed up the current method without resorting to more machine power. We
intend to investigate whether LCA can be customized for this task in a more
time efficient manner.

7 Acknowledgments

The authors would like to thank Jonathan Yamron of Dragon Systems Inc. for
his help with the evaluation metrics.

This material is based on work supported in part by the National Science
Foundation, Library of Congress and Department of Commerce under cooper-
ative agreement number EEC-9209623. Any opinions, findings and conclusions
or recommendations expressed in this material are the author(s) and do not
necessarily reflect those of the sponsor.



13

References

1. Callan J. P., “Passage-Level Evidence in Document Retrieval.” In Proceedings of
the Seventeenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Dublin, Ireland, July, 1994 (pp. 302-310).

2. Croft, W. B. and D. J. Harper. “Using probabilistic models of document retrieval
without relevance information.” Journal of Documentation, 35, 1979 (pp. 285-295).

3. Hearst, M. “Multi-Paragraph Segmentation of Expository Text”, Proceedings of
the 32nd Annual Meeting of the Association for Computational Linguistics, Las
Cruces, NM, June 1994.

4. Hearst, M. and Plaunt, C. Subtopic Structuring for Full-Length Document Ac-
cess, Proceedings of the sixteenth Annual International ACM/SIGIR Conference,
Pittsburgh, PA. 1993 (pp. 59-68).

5. Mittendorf E. and P. Shéuble, “Document and Passage Retrieval Based on Hidden
Markov Models”, In Proceedings of the Seventeenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Dublin,
Ireland, July, 1994 (pp. 318-327).

6. Salton, Gerard, J. Allan and C. Buckley, “Approaches to Passage Retrieval in
Full Text Information Systems”, Proceedings of the sixteenth Annual International
ACM/SIGIR Conference, Pittsburgh, PA. 1993 (pp. 49-58).

7. Salton,Gerard, Amit Singhal, Chris Buckley and Mandar Mitra. “Automatic Text
Decomposition Using Text Segments and Text Themes”, Proceedings of the Sev-
enth ACM Conference on Hypertext, Washington D.C., 1996.

8. Salton,Gerard and Amit Singhal. “Automatic Text Theme Generation and the
Analysis of Text Structure”, Cornell Computer Science Technical Report 94-1438,
July 1994.

9. Xu, Jinxi and W. Bruce Croft, “Query Expansion Using Local and Global Doc-
ument Analysis”, In Proceedings of the Nineteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Zurich,
Switzerland, August, 1996 (pp. 4-11).



