Combining the Language Model and Inference
Network Approaches to Retrieval

Donald Metzler and W. Bruce Croft

Department of Computer Science
Unwersity of Massachusetts
Amherst, MA 01003-9264

Abstract

The inference network retrieval model, as implemented in the InQuery search engine,
allows for richly structured queries. However, it incorporates a form of ad hoc tf.idf
estimates for word probabilities. Language modeling offers more formal estimation
techniques. In this paper we combine the language modeling and inference network
approaches into a single framework. The resulting model allows structured queries
to be evaluated using language modeling estimates. We explore the issues involved,
such as combining beliefs and smoothing of proximity nodes. Experimental results
are presented comparing the query likelihood model, the InQuery system, and our
new model. The results reaffirm that high quality structured queries outperform
unstructured queries and show that our system consistently achieves higher average
precision than InQuery.

Key words: Inference network model, language modeling, structured query
language

1 Introduction

Most information retrieval systems require a user to formulate a query by
transforming a complex representation of an information need into a short
list of keywords. For example, if a user is interested in learning more about
stemming in information retrieval they might formulate the natural language
query “stemming information retrieval”, or even more ambiguously just
“stemming”. A lot of semantics is lost by transcribing the information need
into a set of keywords. Any a priori knowledge a user has may not be ex-
pressible using this type of query. For instance, in our example the user knows
that any relevant documents will most likely contain the phrase information

Preprint submitted to Information Processing & Management 2 March 2004

retrieval and that information retrieval and IR should be treated as a single
concept. Such a query can be formulated as a structured query that repre-
sents a more accurate encoding of the user’s original information need. A
structured query language allows term weighting, the use of proximity infor-
mation among terms, and various ways of combining concepts. Thus, struc-
tured queries can be more expressive than their flat (natural language) query
counterparts. Therefore, it is plausible that retrieval models that can evaluate
structured queries have more potential to satisfy the user’s information need.

The term “structured query” has been used in both the database and in-
formation retrieval communities. In the information retrieval community, the
“structure” typically refers to operators that are used to express constraints
between the words in the retrieved documents, such as Boolean and proximity
operators. Constraints on word occurrences in specific parts of the document
structure, such as fields, are also frequently used.

The inference network model (Turtle and Croft, 1991), as implemented in
the InQuery retrieval system (Callan et al., 1992, 1995), allows for structured
queries via a rich set of probabilistic operators (Greiff et al., 1999). The model
is formal in the sense that it is based on the Bayesian network formalism. Term
observation probabilities, however, are estimated by ad hoc normalized tf.idf
weights (Callan et al., 1995). There is little justification for using these weights
but it has not been clear that there are better alternatives. The language mod-
eling approach to retrieval (Ponte and Croft, 1998; Berger and Lafferty, 1999)
provides a theoretically well-grounded framework for estimating probabilities
using smoothing techniques (Zhai and Lafferty, 2001a). This model has become
increasingly popular and has been used to describe a number of aspects of in-
formation retrieval (Croft and Lafferty, 2003). None of the variations of this
model, however, describe how structure can be used in queries. This causes
a considerable limitation in the practical application of this model. In this
paper we address the problem of probability estimation in the inference net-
work model and the problem of expressing structure in queries in a language
modeling system by combining the two frameworks. The combination uses in-
ference nets to express complex queries and language models to estimate the
probabilities needed to evaluate those queries. The remainder of the paper
further details the synthesis of the inference network and language modeling
approaches into a single retrieval model, and shows that this model produces
results that are more effective than either the language modeling approach or
the inference network approach on their own.

We provide an overview of the inference network retrieval model and language
modeling in Section 2. Section 3 then describes our model, discusses how
beliefs are combined, and looks at the smoothing of proximity nodes. Section 4
presents experimental results for flat and structured queries and provides a
comparison of InQuery, the query likelihood model, and our approach. Finally,

Section 5 discusses future work.

2 Background

Inference networks and language modeling form the core of our retrieval meth-
od. In this section we explain the relevant previous work and the advantages
and disadvantages of the two models.

2.1 Inference Network Model

The inference network retrieval model, as we discussed in the introduction,
is based on the formalism of Bayesian networks. Bayesian networks are di-
rected, acyclic graphical models (DAGs). Each node in the graph represents
an event with either a discrete or continuous set of outcomes. Furthermore,
each non-root node stores a conditional probability table that fully describes
the probability of the outcomes associated with that node occurring given its
parent nodes. Each outcome associated with a root node is assigned a prior
probability. Given a DAG, priors, conditional probability tables and any ob-
served events (evidence), we are able to calculate the probability, or belief, of
an outcome at any node by propagating beliefs through the network (Pearl,
1988).

Turtle and Croft (1991) showed that it was possible to formulate information
retrieval as a Bayesian network. The resulting model is called the inference
network retrieval model (Turtle, 1991). Figure 1 depicts a simplified inference
network model. All events in the network are binary. That is, true and false
are the only possible outcomes.

2.1.1 Document Nodes

The inference network model is comprised of four types of nodes. The first set,
the d; nodes, correspond to the event that a document is observed. Therefore,
we need a d; node for every document in our corpus. Furthermore, we assume
that only one document is observed at any time. Thus, if document d; is
observed then P(d;z; = true) =0 and P(d; = true) = 1.

2.1.2 Representation Nodes

The 7, nodes are representation nodes. A representation can be any easily
indexed feature of a document. We distinguish between single term and prox-

Fig. 1. Simplified inference network model

imity representations. A single term representation corresponds to some term
in the corpus. Proximity representations are more complex. They can be used
to represent phrases, terms appearing ordered or unordered within a fixed
length window of words, and other such concepts. Returning to the exam-
ple in the introduction, the phrase information retrieval is an example of a
proximity representation. The event associated with it is the event that the
phrase information retrieval is extracted from a subset of the corpus (Turtle
and Croft, 1991). The nodes associated with proximity representations are
proximity nodes. InQuery allows proximity representations to take on many
different forms. These are discussed further in Section 2.1.5.

Each representation node has every document as a parent. For clarity, these
connections are omitted from Figure 1. Since we assume that a single document
is observed at any time, we must estimate P(r, = true|ld; = true,diz; =
false) for all representation nodes, where d; is the observed document. For
notational simplicity we define P(q = true|d; = true,d;x; = false) as node
¢’s belief and denote it as bel(g). Turtle and Croft (1991) propose estimating
these beliefs as:

bel(ry) =db+ (1 — db)tf,, 4idfs, (1)

where db is an arbitrary default belief and the tAf,,k,dj and ¢df,, values can
be calculated using any standard method for estimating ¢f.idf weights for
the representation rp. The default belief ensures that every representation is
allocated a nonzero belief for the observed document, even if it is not present
in the document.

The InQuery system uses db = 0.6, the Okapi (Robertson and Walker, 1994)
tf score, and a standard idf score. The exact expressions for representation
7y, and document d; are:

t’:f _ tf’l"k,dj
Trydj .
YU tfra, + 0.5+ 1550
’ log <]\;?25)
idfr, = log (N + 1)

where tf,, 4. is described below, df,, is the number of documents that 7
appears in, |D|g,, is the average length of a document in the corpus, and N is
the total number of documents in the collection. Note that tAf,,k’dj represents
the Okapi tf score, whereas tf,, 4, is the actual representation frequency.

If 4 is a single term then ¢ f,, 4. is the number of times rj, appears in document
d;j. Similarly, if r is a proximity representation then tf,, 4. is the number
of times the corresponding proximity representation is matched within the
document. For example, the tf;, 4. value associated with the representation
node corresponding to the exact phrase information retrieval is the number
of times that information retrieval appears ordered in d;.

Although scoring based on tf.idf weights has worked well in many informa-
tion retrieval systems, including InQuery, it is heuristic and not based on
any formal underpinnings. Additionally, the only future improvements possi-
ble require further tuning of the heuristic. We will show that bel(ry) can be
efficiently estimated using smoothed language modeling techniques and how
such estimates offer advantages over tf.¢df estimates.

2.1.8 Query Nodes

Next, the ¢ nodes correspond to the query nodes. They allow us to com-
bine beliefs about representation nodes and other query nodes in a structured
manner. We may assign them any possible conditional probability table. How-
ever, this quickly becomes infeasible as the number of parents associated with
a node increases. Therefore, we must restrict ourselves to computationally
and space efficient methods for storing and marginalizing over the conditional
probabilities.

In Bayesian networks, link matrices (Greiff et al., 1999) provide a way to repre-
sent conditional probabilities. Suppose we are given a node ¢ with bel(m;) = p;
for all parent nodes 7; of ¢ for ¢ = 1...n. We define ¢’s link matrix to be the 2
by 2" matrix that completely encodes ¢’s conditional probability table. Then

¢’s link matrix has the form:

I 1—p0..0001—po.001 1—po.ow0---1—pi 111

Do...000 DPo...o01 Do...oto --- D111

and

pb1b2...bn = P(q = tTU€|7T1 = Z;l, e, Ty = Bn)

where lsz = true if b = 1 and l;z = false if b; = 0. The second row of L
defines the belief that the event associated with node g occurs for all of the
possible 2" configurations of the parents, which are encoded by a bit string,
as in Greiff et al. (1999). Since we assume each node to be binary, the sum of
the probabilities in each column must be 1.

We can then compute bel(q) as follows:

bel(g)= > P(q=truelm =by,...,m, = b,) [[P(mi = bi|E)
b1, ,b i=1
= > Dot anP i = b|E)
b1, ,b

where F is the evidence. Therefore, in general, computing beliefs requires time
exponential in the number of parents and is not feasible in practice. However,
a family of link matrices exist that allow this marginalization to be done
efficiently. We now give a toy example of such matrices to further solidify the
idea. The following are link matrix forms for a query node g that has parent
nodes a and b

1110
0001

1000
0111

_ Wy, _ _we _ Waetwp
L _ 1 1 Wq+Wp 1 Wq +Wp 1 Waq+wWp
wsum —

0 2 1

Wa t+Wp Wa+wp

where weights w, and wy, associated with nodes a and b, respectively.

These link matrices have very intuitive meanings. For instance, L, defines
P(q = truela = true,b = true) to be 1 and all other outcomes for a and b
to be 0. Thus L,,q mimics Boolean AND. For L,,., the belief event ¢ occurs
is 1 only if one or more of the parent node events occurs. This is similar to
Boolean OR. For L, ., each parent node event that occurs contributes some
weight w; to the belief of ¢q. Thus, the more parent nodes that occur, the more
belief we have in q.

Marginalization over parent nodes can be done efficiently for belief operators
defined by link matrices. For example, consider a node ¢ with conditional
probability table defined by L,,q we compute ¢’s belief as:

belana(q) = pooP(a = false)P(b = false)
+po1P(a = false)P(b = true)
+ p1oP(a = true)P(b = false)
+ p11P(a = true)P(b = true)
= 0(1 - pa)(l - pb) + 0(1 - pa)pb + Opa(l - pb) + 1pape
= DaPb

Thus, marginalization over L,,q can be done very efficiently.

The following is a list of closed form expressions for efficiently computing
beliefs at query nodes. They are derived from marginalizing over their cor-
responding link matrices (Turtle, 1991). Both InQuery and our system limit
query nodes to taking on one of these forms to allow for efficient belief prop-
agation. For a node ¢ given bel(m;) = p; for all parents m; of ¢ with weights w;
fori=1...n we get:

belnot(Q) =1-p (2)

belor(q) =1- H (1 - pz) (3)

beland(Q) = H Di (4)

belmaa: (CZ) = maX{p17p27 e apn} (5)

belsum (q) = ETP (6)
2 Wip;

bel'wsum (q) = Zz w3 (7)

As we will show in Section 2.1.5, query nodes are generated dynamically at

query time and allow different beliefs within the network to be logically com-
bined.

2.1.4 Information Need Node

Finally, the I node represents the event the information need is met. It is a
query node that combines all of the evidence from the other query nodes into
a single belief. Thus, to score a document we first instantiate the d; node it
corresponds to. We then propagate beliefs through the network, starting with
the document nodes, all the way down to the information need node. The
belief value associated with bel(I) is then interpreted as the document score.
Doing so for every document in the corpus allows us to generate a ranked list
of documents.

Therefore, the inference network retrieval model is both formal and robust. It
allows us to efficiently combine beliefs about representations, such as terms
and phrases, via a rich set of probabilistic operators described by link matri-
ces. However, a drawback to this powerful model is the ad hoc estimation of
representation probabilities in Equation 1. Thus, we turn to a more formal
method of estimating these probabilities, such as language modeling.

2.1.5 Query Language

Now that the framework has been set up, we describe how the representa-
tion, query, and information need nodes are dynamically generated given a
structured query. As described in the introduction, InQuery uses a powerful
structured query language. It is comprised of single terms, proximity operators
and belief operators. Single terms and proximity operators correspond to rep-
resentation nodes, and allow beliefs to be formed about single terms, phrases,
terms appearing unordered within a fixed-sized window of text, among others.
Belief operators, corresponding to query nodes, then allow us to combine these
beliefs in a number of useful ways. Both proximity and belief operators have
the general form #0P(p; ...p,), where OP is the operator name and the p;’s
are the parameters sent to the operator.

Single terms not occurring within a proximity operator generate single term
representation nodes within the network. These nodes are implemented ex-
actly the same as proximity nodes. Table 1 lists the proximity operators used
in InQuery. The ¢; parameters are required to be proximity operators to en-
sure matching makes sense. A representation node (proximity node) is created
for each proximity operator in the query. Given some document as evidence,
beliefs are computed at these nodes using Equation 1. Table 1 details how
matching is done for single terms and operators. These operators allow us to
include many different kinds of representation nodes within our network be-
yond single term nodes. We limit ourselves to this set of operators, but note
that practically any concept easily extracted from a document could be used.

Operator Name Description

term single term A match occurs for every occurrence
of the term in the document

#ODN (g1 ---qn) ordered window A match occurs if the ¢;’s appear in
order with no more than N words be-
tween adjacent terms.

#UWN (g1-.-qn) unordered window Matches if the ¢;’s appear in any or-
der within a window of N words

#PHRASE (q1...4qp) phrase Equivalent to #0D3(q; - - - gn)-

#SYN (q1-.-qn) synonym The ¢;’s are to be treated as syn-
onyms. Each g; is treated as a match.

#PASSAGEN (q) passage Evaluates ¢’s belief for every passage
of length N within a document and
returns the highest belief.

Table 1
Explanation of single terms and proximity operators from Callan et al. (1992).

Belief Operators | Weighted Belief Operators

#NOT (Q1) #WSUM (w1 qiL-.. Wnp qn)
#AND (q1...qn) #WAND (wy q1 ... Wy gn)

#O0R (q1---qn)
#MAX (q1...qn)
#SUM (q1--.qn)

Table 2
List of query operators, where w;’s are weights and ¢;’s are either query or repre-
sentation operators.

Table 2 lists the belief operators used in InQuery. Note that #WAND was not
originally implemented in InQuery and will be discussed later. The ¢; param-
eters can either be proximity or query operators and the w;’s are weights that
allow parent beliefs to be assigned varying amounts of importance. A query
node is created for each belief operator, and the nodes corresponding to each
q; become the current node’s parents. In this way, belief operators allow us to
combine many different kinds of evidence in the network. Each belief operator
corresponds to a link matrix that allows efficient marginalization within the
network. Equations 2 — 7 are used to compute beliefs at these nodes.

Figure 2 shows the nodes dynamically generated for a simple query that con-
tains both proximity and belief operators. For this query, documents would
be ranked according to the belief associated with the #WAND node.

Fig. 2. Nodes generated for the query #WAND (1.5 #SYN (#0DN3(information retrieval)
IR) 2.0 stemming)

2.2 Language Modeling

2.2.1 Owverview

Language modeling is a formal probabilistic retrieval framework with early
roots in speech recognition (Rosenfeld, 2000) and statistical machine trans-
lation (Berger and Lafferty, 1999). The underlying assumption of language
modeling is that human language generation is a random process. The goal
is to model this process via a statistical model. We would then like to calcu-
late the likelihood a sequence of language, such as a sentence, is generated by
this model. Such statistical models are known as language models. A common
class of language models, n-gram models, are used to calculate the probability
a sequence of language is generated given the last n — 1 words observed. If
M is a n-gram language model, then the probability some sequence of words

S = s1,82,..., 8 is generated is given by:
k
P(S|M)= H P(silsi-1,8i-2,- -+, Si—nt1, M)
i=1

For n = 1 each term is generated independently of the previous terms. This
is known as a unigram language model.

2.2.2 Language Modeling in IR

Language models have been successfully applied to information retrieval (Croft
and Lafferty, 2003). Rather than using a single model for all of human lan-

10

guage, each document is assumed to be generated from a different model. This
allows us to use statistical techniques to both estimate document models and
score documents. We now describe the motivation behind the query likeli-
hood model, which is one of the most widely used language modeling retrieval
models in information retrieval.

Let us assume a simple unigram model for each document, where each doc-
ument is represented as the standard “bag of words” and each document’s
language model is a distribution over a vocabulary of single words. The vo-
cabulary for a given collection consists of the unique words that appear and
are indexed. In most cases, the underlying document model is assumed to
be a multinomial distribution, although other distributions are possible, such
as the multiple Bernoulli (Ponte and Croft, 1998). Here, we assume it is a
multinomial. A plausible but naive approach is to estimate P(w|D) using the
maximum likelihood estimate of w occurring in D, which, for a multinomial
distribution, is:

tf'w,D

where tf,, p is the number of times word w appears in document D and |D)|
is the number of words in D.

Then, given the query Q = q1,qo, - - ., @k, consisting of single words, we can
compute the likelihood it was generated given a document’s language model
D as:

k
P(QI|D)=]] P(a|D) (8)
i=1
This likelihood is computed for each document and used for ranking. Ranking
documents this way is known as the query likelithood retrieval model.

Although simple, maximum likelihood estimates have a serious flaw. When
calculating document scores using Equation 8, the resulting likelihood is 0
if any of the query terms do not appear in D. It is unreasonable to give a
document a score of 0 for a 10 word query if 9 of the query terms appear in
a document and 1 does not. Therefore, to avoid this problem and overcome
sparsity in the data, we must employ smoothing (Zhai and Lafferty, 2001b).
We use Jelinek-Mercer smoothing, which is a method of interpolating be-
tween the document and collection language model. We chose Jelinek-Mercer
smoothing for our experiments because structured queries tend to be long and
it has been shown that Jelinek-Mercer smoothing outperforms other smooth-
ing techniques on verbose queries (Zhai and Lafferty, 2001b). The smoothed
P(w|D) is calculated as follows:

11

cfa
|C]

tfw,D

P(w|D)= A D

+(1-2X)

where cf,, is the number of times word w appears in the entire collection, |C|
is the number of words in the collection, and A is the smoothing parameter
that may be set manually or automatically found (Zhai and Lafferty, 2002).
Therefore, all terms in the vocabulary will be given non-zero probability in
each document model and we avoid the 0 probability problem. Additionally,
smoothing plays the important role of and idf-like component when scoring
using the query likelihood model.

The query likelihood scoring function with smoothed estimates is:

k
tfq,D chi)
P(Q|D) = -2
@p) = [T (52 +0- 0%
/\tfq, +(1 /\ qu@ k
_ D] Cfi
_ H cfq; H |th1‘

itfq p>0 (1 -)\) |C‘ i=1
ks

rank Z 1o |D|)
= 8l e 1
istf >0 ((1 -\

As we see, the expression has both a tf- and idf- like component. Thus,
smoothing plays an important role in the language modeling framework.

Language models are preferred over tf.idf weights because of their formal
probabilistic meaning. Vector space models based on heuristic ¢f.idf weighting
give us a high dimensional geometric interpretation of scores that are difficult
to visualize. However, query likelihood scores, being probabilities, give doc-
ument scores more of an intuitive meaning. Unfortunately, current language
modeling-based retrieval systems have no way of evaluating the structured
queries. Therefore, we focus on combining the structured probabilistic queries
of the inference network with the formal language modeling term probability
estimates under the umbrella of a single retrieval model to combine the ben-
efits of these two powerful models. The following section details how this can
be accomplished.

3 Language Modeling with Structured Queries

Combining the inference network model with language modeling is relatively
straightforward. This section first describes our query model and how the
representation probabilities are calculated. Next, we look at a new method for
combining beliefs at query nodes. Finally, we explore smoothing techniques

12

applied to proximity nodes and show that our model subsumes the query
likelihood model.

3.1 Model

Our system is modeled after InQuery and uses a similar set of query operators.
Table 2 lists the belief operators our system handles. See Section 2.1 for an
explanation of each, except #WAND which is described shortly. Additionally,
Table 1 lists and describes the proximity operators allowed in our model.
These belief and proximity operators make up our model’s query language.
Figure 2 shows an example of how these operators can be used to combine
single term representations, proximity representation (operators) and belief
operators to form a structured query representation in the network.

The only remaining task is to describe how representation probabilities are
estimated. The idea is simple. Rather than using the original ¢f..df weights we
will instead use probabilities estimated by smoothed language models. Thus,
instead of using Equation 1, we choose to use the following estimate:

thk,dj
|d;]

|C]

bel(ry) =\ +(1-X)
where tf., 4, is defined as in Section 2.1.2 and cf,,, i’s collection frequency,
is computed as cf,, = 3, tfr, 4;- All necessary term statistics, including cf,,,
can be efficiently calculated using the same machinery as InQuery.

Thus, we can estimate representation probabilities using the formal framework
of language models while maintaining our ability to use structured query op-
erators. This allows a wide range of possibilities and more flexibility over the
original inference network framework. First, rather than having a single crude
default belief for each representation node, we have representation dependent
“default beliefs” (i.e. (1—)‘)%f) Next, as we will discuss shortly, it is possible
to apply different smoothing techniques to different kinds of nodes within the
network to achieve better performance. Finally, as more sophisticated meth-
ods for estimating language models are developed, they can be used directly
within the inference network framework as discussed above for even further

improvement.
3.2 Combining Beliefs

In the InQuery system, the information need node I is very often represented
by the #WSUM belief operator. That is, InQuery combines beliefs for the in-

13

formation need using a weighted averaging over I’s parent nodes. To see why
this is reasonable, let us assume we have a simple query of the form #WSUM (w;
Q- -, Wy qy) for representations ¢;. In the InQuery framework, propagating
beliefs from the nodes corresponding to the ¢;’s to I for an observed document
d; using the closed form equation for #WSUM gives:

_ 2 wipi
20 W
 Tiwi(db+ (1 — db)tf,, o idfy,)
B 20 Wi
x Z witf g, 4,10fg,

belysum (1)

Thus, applying #WSUM at node I essentially gives us a form of #f.tdf scoring.
However, things go awry if we use #WSUM with language modeling representa-
tion probabilities. We would get the following scoring function for the same

query:

belwsum(I) = ZE#
tfa;.d; cfa;
w4 (1 - N
Zi W;
tf,. 4.
O(sz {fiw‘rj
1]

As we showed, in language modeling for information retrieval, smoothing plays
the same role as idf weighting in tf.4df based systems (Hiemstra, 2002; Zhai
and Lafferty, 2001a). Using #WSUM with language modeling probability esti-
mates results in the smoothing component (1 — A)T’é"’ having no influence on
document scoring. This leads to a poor scoring function based solely on term
frequency. Therefore, combining beliefs at I using #WSUM will not work for our
model. A more appropriate choice is the #WAND , or weighted and operator.
Suppose a query node g has parent nodes a and b with weights w, and wy,
respectively. Also, let bel(a) = p, and bel(b) = pp, then the link matrix for
#WAND is defined as:

1111w,
Lwand =
000 w,

wq —1, Wp—1

where wy, = p2*~'p,* . Using Lyand, the belief at g can be efficiently computed
as:

14

wand H p

Although #WAND is not among the original query operator set, it is still a valid
probabilistic model for combining probabilities within the network.

The operator has a number of interesting properties. Lyanq 1S a generalization
of Lgpq in the same sense that Ly g, is a generalization of Ly, Lyang can be
thought of as Boolean AND with uncertainty. That is, the belief associated
with node ¢ is zero if any one of ¢’s parent node events did not occur, and
is wy, 0 < w, < 1, when all parent node events do occur. When w; = 1 for
all 7, then L, 4,q equals Lg,ug. Thus, other non-uniform weights can be used to
leverage our uncertainty. Using #WAND in place of #WSUM to compute the belief
at I gives:

wand H pz

\Hads oy
H ‘;‘Hl >|C$‘>

which is akin to the query likelihood model and preserves the important de-
pendence on smoothing (Zhai and Lafferty, 2001a). A closer look reveals that
if each g; corresponds to a single term and each w; = ¢f,,, then it is ezactly the
query likelihood model, when gf,, is the number of times w; appears in the
query. That is, #WAND (2.0 wordA 1.0 wordB) is equivalent to #AND (wordA
wordA wordB) which produces the same ranked list as the flat query “wordA
wordA wordB” evaluated under the query likelihood model. Therefore, #AND
and #WAND are more well grounded methods for combining beliefs in our model.

Another elegant connection exists between #WSUM and #WAND . Without loss
of generality we can assume that >, w; = 1. In this case #WSUM can be in-
terpreted as the weighted arithmetic mean of its parents’ beliefs and #WAND
the weighted geometric mean. This intuitively makes sense since tf.idf scoring
involves adding weights together and so the arithmetic mean is more appropri-
ate, whereas language modeling probabilities are multiplied together making
the geometric mean a good choice.

3.8 Smoothing

Using language modeling probabilities allows us great flexibility in estimat-
ing representation probabilities. The smoothing parameter A can be set by
hand tuning, using a held-out set of documents, or automatically (Zhai and
Lafferty, 2002). Our system allows many smoothing options. Rather than hav-
ing a single, fixed value for every representation node, it allows for different

15

smoothing parameters for each individual node or each type of node. Although
it may be possible to “smooth” belief nodes, we focus our attention only on
representation nodes.

Smoothing can be used to implicitly implement ranked variants of Boolean
AND, OR, and NOT operators within the network. Suppose we are given the
query #AND (information retrieval) and set the smoothing parameter A of
the representation nodes corresponding to information and retrieval to 1.
In this case, if the document does not contain both query terms the resulting
score is 0. Similar results hold for #0R and #NOT . Thus, using no smoothing
(i.e. A =1), our model can perform a scored variant of Boolean retrieval.

Smoothing can also be used to overcome data sparsity. We can use different
smoothing parameters for each type of representation node. Since there is more
data available for estimating the single term node beliefs than there is for the
other types of proximity nodes, it is reasonable to believe that the single term
nodes will need to be smoothed less. The results presented in the next section
support this hypothesis, although a more detailed analysis of the different
aspects smoothing plays on each type of representation node is necessary.

4 Results

This section describes our experimental setup and a comparison of the query
likelihood model, InQuery, and our proposed model. We also present an anal-
ysis of proximity node smoothing. The goal of the experiments is twofold.
First, we wish to reiterate the importance of structured queries over flat ones.
Second, and more important, we aim to establish that our model performs at
least as well as the InQuery system, except in a more formal framework.

4.1 Experimental Setup

Our retrieval system was implemented by modifying the InQuery code in the
Lemur Toolkit (Ogilvie and Callan, 2002). All InQuery test runs made use
of the standard Lemur InQuery implementation with default parameters. The
query likelihood retrieval system used is a straightforward implementation the
results in Section 2. Each query was stemmed via the Porter stemmer and sto-
plisted via the standard InQuery stoplist. All experiments except those involv-
ing proximity smoothing have the single term smoothing parameter A = 0.6
and proximity node smoothing parameter A, = 0.1 unless otherwise spec-
ified. The specific value for A\ was chosen because it yielded good results on
experiments in the past. Additional experiments are necessary to establish

16

how sensitive results are to this parameter. The value for A,.,, was chosen be-
cause it yielded the best performance on the proximity smoothing experiments
described later.

For our experiments we chose 4 sets of queries, all of which had been used
with the InQuery system at past TREC conferences and had varying degrees
of structure and verbosity. We tested our system on TREC 4, 6, 7, and 8
queries.

The TREC 6, 7, and 8 queries were automatically generated from their corre-
sponding TREC topic and description fields. See Allan et al. (1997) for details
of the automatic query generation process. Note, however, that we remove all
terms added by query expansion from these queries. The generated queries
are generally relatively short and contain little or no structure and few term
weights. The corpus used to run these queries against is composed of TREC
disks 4 and 5, minus the Federal Register data.

For the TREC 4 data, two sets of structured queries were available. The first
set consists of automatically generated queries (Allan et al., 1995). These
queries are very long, highly structured, and contain many noisy (irrelevant)
terms. The second set is made up of manually edited versions of the automatic
queries (Allan et al., 1995). This higher quality set contains mostly short,
highly structured queries and considerably fewer noisy terms. Both query sets
were used as is. These two sets allow us to compare the impact of query quality
on retrieval performance. These sets were run against TREC disks 2 and 3.

The structured queries are used to compare InQuery and our model. They
contain a mixture of belief and proximity operators. Flat versions of each
structured query described above were created by removing all proximity op-
erators. These queries were used in evaluating the query likelihood model since
it can not evaluate structured queries.

The following is the TREC 4 manually edited, structured version of the flat
query “capital punishment deterrent crime”

#WAND (1.0 #WAND (1.0 capital 1.0 punishment
1.0 deterrent 1.0 crime
2.0 #UW20(capital punishment deterrent)
1.0 #PHRASE(capital punishment)
1.0 #PASSAGE200 (1.0 capital 1.0 punishment
1.0 deterrent 1.0 crime
1.0 #PHRASE(capital punishment)))

This query is one of the shorter structured queries from the data set. It serves
to illustrate how much more expressive structured queries are over flat queries.

17

QL | InQuery | StructLM
TREC-6 | 0.1854 | 0.1622 0.1863
TREC-7 | 0.1972 | 0.1803 0.2004
TREC-8 | 0.2396 | 0.2343 0.2498

Table 3
Comparison of average precision for query likelihood (QL), InQuery, and our model
for TREC-6, 7, and 8 topics.

4.2 Ad Hoc Retrieval Ezxperiments

Table 4 compares retrieval results for the query likelihood model, the InQuery
system, and our model for both sets of TREC 4 queries. The table shows the
standard TREC output used to compare retrieval performance across systems.
First, we compare the performance of the flat and structured queries. For
the automatically generated queries there is some improvement in average
precision when using structured queries over flat ones. These queries are very
long and contain many irrelevant term and proximity representations, thus the
added structure does very little in terms of boosting performance. However,
when the queries are more intelligently created there is a more noticeable
improvement in average precision. There is a 12.1% increase for InQuery and
15.9% increase for our model for the manually edited versions of the structured
queries over the manually edited flat queries. Therefore, query quality has a
large effect on retrieval accuracy. Thus, high quality structured queries should
lead to better results over their unstructured counterparts. Finally, as Table 4
shows, our model slightly outperforms InQuery in terms of average precision
for both sets of queries. Therefore, we can conclude that our model is valid
and capable of achieving results at least as good as InQuery.

Table 3 shows the results obtained for the TREC 6, 7, and 8 queries on the
same set of systems. As was stated previously, these queries contained very
little structure and were generally short. The simple query likelihood model
outperforms the InQuery system on all 3 query sets. Our model achieved the
highest average precision on each set. The proximity operators that do appear
in these queries are low quality which lead to degraded retrieval performance
by InQuery. Smoothing is the reason our model fares better than InQuery
under such conditions. The InQuery system uses a crude form of smoothing
that assigns a fixed default belief to any representation that does not appear
in a document. This value may be overly optimistic or pessimistic for certain
representations. Since our model uses Ap.o; = 0.1 we heavily smooth these
representation nodes and thus assign them more realistic beliefs.

18

QL InQuery StructLM

Auto | Manual | Auto | Manual | Auto | Manual

Rel | 6086 6086 6086 6086 6086 6086
Rret | 3190 3371 3306 3679 3355 3737
0.0 | 0.6761 | 0.7166 | 0.7188 | 0.7896 | 0.6888 | 0.7893
0.1 |0.4796 | 0.5082 | 0.4944 | 0.5601 | 0.4983 | 0.5479
0.2 | 0.3801 | 0.4156 | 0.3942 | 0.4581 | 0.3926 | 0.4486
0.3 | 0.3220 | 0.3465 | 0.3310 | 0.3883 | 0.3300 | 0.3997
0.4 | 0.2672 | 0.2960 | 0.2844 | 0.3317 | 0.2769 | 0.3329
0.5 | 0.2087 | 0.2315 | 0.2241 | 0.2552 | 0.2268 | 0.2631
0.6 | 0.1546 | 0.1708 | 0.1622 | 0.1849 | 0.1713 | 0.2079
0.7 | 0.0903 | 0.1033 | 0.0975 | 0.1236 | 0.1331 | 0.1520
0.8 | 0.0480 | 0.0567 | 0.0544 | 0.0727 | 0.0763 | 0.0894
0.9 | 0.0056 | 0.0175 | 0.0194 | 0.0300 | 0.0246 | 0.0422
1.0 | 0.0021 | 0.0038 | 0.0016 | 0.0014 | 0.0048 | 0.0024
Avg | 0.2179 | 0.2397 | 0.2312 | 0.2688 | 0.2376 | 0.2779
5 1 0.5020 | 0.5102 | 0.5265 | 0.6082 | 0.5020 | 0.5796

10 | 0.4510 | 0.4714 | 0.4735 | 0.5551 | 0.4531 | 0.5490
15 | 0.4204 | 0.4422 | 0.4190 | 0.5034 | 0.4190 | 0.5007
20 | 0.3959 | 0.4235 | 0.4071 | 0.4694 | 0.3969 | 0.4602
30 | 0.3544 | 0.3748 | 0.3578 | 0.4211 | 0.3571 | 0.4156
100 | 0.2376 | 0.2516 | 0.2412 | 0.2794 | 0.2380 | 0.2843
200 | 0.1735 | 0.1856 | 0.1771 | 0.2039 | 0.1747 | 0.2064
500 | 0.1030 | 0.1114 | 0.1071 | 0.1192 | 0.1067 | 0.1227
1000 | 0.0651 | 0.0688 | 0.0675 | 0.0751 | 0.0685 | 0.0763

RPr | 0.2761 | 0.2904 | 0.2763 | 0.3174 | 0.2872 | 0.3282

Table 4

Comparison of query likelihood (QL), InQuery, and our model for automatically
and manually created TREC-4 queries. Rel is the number of relevant documents in
the corpus, Rret is the number of relevant documents retrieved, Awvg is the uninter-
polated average precision, and RPr is the recall-precision breakeven point.

19

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5 | 0.580 | 0.580 | 0.588 | 0.600 | 0.610 | 0.612 | 0.608 | 0.608 | 0.612
10 | 0.549 | 0.555 | 0.541 | 0.549 | 0.547 | 0.553 | 0.551 | 0.553 | 0.551
15 | 0.501 | 0.499 | 0.498 | 0.498 | 0.499 | 0.499 | 0.491 | 0.494 | 0.499
20 | 0.460 | 0.459 | 0.455 | 0.458 | 0.461 | 0.464 | 0.467 | 0.465 | 0.470
30 | 0.416 | 0.417 | 0.420 | 0.424 | 0.421 | 0.420 | 0.422 | 0.425 | 0.422
100 | 0.284 | 0.285 | 0.280 | 0.279 | 0.277 | 0.275 | 0.276 | 0.274 | 0.271

Avg | 0.278 | 0.277 | 0.275 | 0.274 | 0.272 | 0.271 | 0.270 | 0.268 | 0.265

Table 5
Non-interpolated precision for varying document cutoffs and average precision for
a range of Ap,op values on the TREC-4 manual queries.

4.8 Smoothing Experiments

As we just discussed, smoothing of proximity nodes plays a very important
role in our model, since the amount of data available to estimate these proba-
bilities accurately is minimal. Therefore, we set out to find the proximity node
smoothing parameter that yielded the best average precision. Figure 3 plots
average precision against Ay, the smoothing parameter applied to the prox-
imity nodes, for each query set previously discussed. Note, for non-proximity
representation nodes (i.e. single term representations) we hold A fixed at 0.6.

The best value, in terms of average precision, is achieved at Ao, = 0.1 for all
data sets. Thus, data sparsity forces us to use a great deal of smoothing to
achieve good results. Most of the query sets, with the exception of the TREC
4 automatic queries, are relatively insensitive to proximity smoothing. There-
fore, shorter, less structured queries are less sensitive to proximity smoothing,
whereas more verbose, highly structured queries are much more sensitive to
smoothing. Zhai and Lafferty (2002) give analogous results.

Although average precision is an important metric, in some settings such as an
interactive retrieval environment, it is desirable to have more relevant docu-
ments earlier in the ranked list of documents. As Table 5 illustrates, our system
achieves higher precision at the beginning of the ranked list for larger values of
Aproz- However, this is only possible at the the cost of lower average precision.
Although not explored here, varying the value of the smoothing parameter
A for single term nodes will have an additional effect on performance. Thus,
smoothing within our model allows great flexibility within different retrieval
settings.

20

5 Conclusion and Future Work

We have presented an information retrieval model that combines the ability to
use a rich structured query language with the formal probabilistic framework
of language modeling. The #WAND structured operator was introduced for com-
bining beliefs and a glimpse into potential smoothing options was explored.
We also showed that our combined model is robust and capable of achiev-
ing better retrieval results than the InQuery system and reaffirmed that high
quality structured queries have the potential to increase average precision.

There are several areas of potential future work. First, Turtle (1991) showed
that combining multiple query representations gave a significant increase in
average precision. Thus, a possible extension to our model would combine
language modeling query representations with InQuery ¢f.idf based ones.

Second, as Section 4.3 discussed, a more detailed study of smoothing applied
to the different types of query nodes is necessary. We looked at one method,
but a number of options exist including automatic methods (Zhai and Lafferty,
2002).

Third, our model combines generative language models and Bayesian net-
works. As a result, it is not immediately clear what intuitive meaning, if any,

0.3 4

average precision

--+--TREC-4a

—=— TREC-4m

005] —&—TREC6
— = - TREG-7
— *— TREC-8
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ +
0 0.1 02 03 0.4 05 06 07 0.8 0.9

proximity lambda

Fig. 3. Results of varying the smoothing parameter associated with proximity nodes.

21

the representation nodes in our network have. In the inference network frame-
work, representation nodes correspond to the event that the representation
is “about” the concept requested (Turtle, 1991). In our model the nodes cor-
respond to the event that a representation was generated by a document’s
language model. However, another interpretation is possible. The original in-
ference network model contains a layer of text representation nodes between
the document and representation nodes. Each of these nodes is associated
with the event that a given text representation is observed, where a text rep-
resentation is defined to be the full text of the document. Furthermore, a
one-to-one correspondence between these nodes and the document nodes was
assumed, thus conflating the two layers into one. Figure 1 depicts this com-
bined model, with the two layers of nodes represented as a single document
node layer. In our model, text representations can be interpreted as subsets of
text, such as single terms, ordered windows, etc, that have a one-to-one corre-
spondence with the representation nodes. Then, rather than interpreting our
language modeling probability estimates as the likelihood a representation is
generated from a document, we can interpret them as the likelihood a certain
text representation is observed in a document. Such an interpretation is more
theoretically sound since our language modeling probabilities can be viewed
as the likelihood of observing a representation when randomly sampling rep-
resentations of the same form from a document. The difference between the
two models is subtle, but must be addressed. Therefore, future work should
explore more of the theoretical issues involved with these node interpretations.

Finally, in theory, any probability distribution can be used to estimate rep-
resentation probabilities. InQuery’s ¢f.2df method and our language modeling
approach are just two of many possible techniques that yield good retrieval
performance. A more detailed study of estimation techniques could prove to be
beneficial for both inference network-based models and information retrieval
systems in general. The inference network model provides a useful framework
to carry out such experiments in.

We are currently implementing the Indri system (a version of Lemur) that
will serve as the testbed for large scale experiments on language modeling and
inference network integration.

Acknowledgments

This work was supported in part by the Center for Intelligent Information Re-
trieval and in part by SPAWARSYSCEN-SD grant number N66001-02-1-8903
and by Advanced Research and Development Activity under contract number
MDA904-01-C-0984. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are the authors and do not necessarily reflect

22

those of the sponsor.

References

Allan, J., Ballesteros, L., Callan, J., Croft, W., Lu, Z., 1995. Recent experi-
ments with inquery. In: Proceedings of the 4th Text Retrieval Conference
(TREC-4). pp. 49-63.

Allan, J., Callan, J. P., Croft, W. B., Ballesteros, L., Byrd, D., Swan, R. C.,
Xu, J., 1997. INQUERY does battle with TREC-6. In: Text REtrieval Con-
ference. pp. 169-206.

Berger, A., Lafferty, J. D., 1999. Information retrieval as statistical translation.
In: Research and Development in Information Retrieval. pp. 222-229.

Callan, J., Croft, W. B., Broglio, J., 1995. An overview of the inquery system.
Information Processing and Management 31 (8), 327-344.

Callan, J. P., Croft, W. B., Harding, S. M., 1992. The INQUERY retrieval
system. In: Proceedings of DEXA-92; 3rd International Conference on
Database and Expert Systems Applications. pp. 78-83.

Croft, W. B., Lafferty, J., 2003. Language Modeling for Information Retrieval.
Kluwer Academic Publishers.

Greiff, W. R., Croft, W. B., Turtle, H., 1999. PIC matrices: a computation-
ally tractable class of probabilistic query operators. ACM Transactions on
Information Systems 17 (4), 367-405.

Hiemstra, D., 2002. Term-specific smoothing for the language modeling ap-
proach to information retrieval: the importance of a query term. In: Proceed-
ings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM Press, pp. 35-41.

Ogilvie, P., Callan, J., 2002. Experiments using the lemur toolkit. In: Proceed-
ings of the 2001 Text REtrieval Conference (TREC 2001). pp. 103-108.
Pearl, J., 1988. Probabilistic reasoning in intelligent systems: networks of plau-

sible inference. Morgan Kaufmann Publishers Inc.

Ponte, J. M., Croft, W. B., 1998. A language modeling approach to information
retrieval. In: Research and Development in Information Retrieval. pp. 275—
281.

Robertson, S. E., Walker, S., 1994. Some simple effective approximations to
the 2-poisson model for probabilistic weighted retrieval. In: Proceedings
of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval. Springer-Verlag New York, Inc., pp.
232-241.

Rosenfeld, R., 2000. Two decades of statistical language modeling: Where do
we go from here. Proceedings of IEEE 88 (8).

Turtle, H., Croft, W. B., 1991. Evaluation of an inference network-based re-
trieval model. ACM Transactions on Information Systems (TOIS) 9 (3),
187-222.

23

Turtle, H. R., 1991. Inference networks for document retrieval. Ph.D. thesis,
University of Massachusetts.

Zhai, C., Lafferty, J., 2001a. Dual role of smoothing in the language mod-
eling approach. In: Proceedings of the Workshop on Language Models for
Information Retrieval.

Zhai, C., Lafferty, J., 2001b. A study of smoothing methods for language mod-
els applied to ad hoc information retrieval. In: Research and Development
in Information Retrieval. pp. 334-342.

Zhai, C., Lafferty, J., 2002. Two-stage language models for information re-
trieval. In: Proceedings of the 25th annual international ACM SIGIR con-
ference on Research and development in information retrieval. ACM Press,
pp- 49-56.

24

