Augmenting Naive Bayes Classifiers

with Statistical Language Models

Fuchun Peng *

Center for Intelligent Information Retrieval,
Department of Computer Science, University of Massachusetts at Amherst
140 Governors Drive, Amherst, MA, USA, 01003
fuchun@cs.umass.edu
Dale Schuurmans
School of Computer Science, University of Waterloo
200 University Avenue West, Waterloo, ON, Canada, N2L 3G1
dale@cs.uwaterloo.ca
Shaojun Wang
School of Computer Science, University of Waterloo
200 University Avenue West, Waterloo, ON, Canada, N2L 3G1

sjwang@cs.uwaterloo.ca

Abstract

We augment naive Bayes models with statistical n-gram language models to address short-

comings of the standard naive Bayes text classifier. The result is a generalized naive Bayes

*Work was mainly performed when the first author was at the University of Waterloo.



classifier which allows for a local Markov dependence among observations; a model we re-
fer to as the Chain Augmented Naive Bayes (CAN) Bayes classifier. CAN models have
two advantages over standard naive Bayes classifiers. First, they relax some of the indepen-
dence assumptions of naive Bayes—allowing a local Markov chain dependence in the observed
variables—while still permitting efficient inference and learning. Second, they permit straight-
forward application of sophisticated smoothing techniques from statistical language modeling,
which allows one to obtain better parameter estimates than the standard Laplace smoothing
used in naive Bayes classification. In this paper, we introduce CAN models and apply them
to various text classification problems. To demonstrate the language independent and task
independent nature of these classifiers, we present experimental results on several text clas-
sification problems—authorship attribution, text genre classification, and topic detection—in
several languages—Greek, English, Japanese and Chinese. We then systematically study the
key factors in the CAN model that can influence the classification performance, and analyze

the strengths and weaknesses of the model.
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1 Introduction

Text classification concerns the problem of automatically assigning given text passages (paragraphs
or documents) into predefined categories. Due to the rapid explosion of texts in digital form, text
classification has become an important area of research, owing to the need to automatically organize
and index large text collections in various ways. Such techniques are currently being applied in many
areas, including spam detection, language identification [41], authorship attribution [44], text genre
classification [25, 44], topic identification [11, 30, 33, 52|, and subjective sentiment classification [36,
48|.

Many standard machine learning techniques have been applied to automated text categorization
problems, such as naive Bayes classifiers, support vector machines, linear least square models, neural

networks, and K-nearest neighbor classifiers [43, 52]. Naive Bayes classifiers have been proven



successful in text classification [31, 33, 40], despite the simplicity of the model and the restrictiveness
of the independence assumptions it makes. Domingos and Pazzanni [9] observe that naive Bayes
classifiers can obtain near optimal misclassification error even when the independence assumption is
strongly violated. Nevertheless, it is commonly thought that relaxing the independence assumption
of naive Bayes ought to allow for superior text classification [31], and it has been shown in practice
that functionally dependent attributes can indeed improve classification accuracy in some cases [14,
39].

A significant amount of research has been conducted on relaxing the naive Bayes independence
assumption in machine learning research. A popular extension is the Tree Augmented Naive Bayes
classifier (TAN) [14] which allows for a tree-structured dependence among observed variables in addi-
tion to the traditional dependence on the hidden “root” variable. However, learning tree structured
Bayesian network is not trivial [24, 53], and this model has rarely been used in text classification
applications. In this paper we investigate a convenient alternative that lies between pure naive
Bayes and TAN Bayes models in the strength of its assumptions; namely, the Chain Augmented
Naive Bayes (CAN) model. A CAN Bayes model simplifies the TAN model by restricting depen-
dencies among observed variables to form a Markov chain instead of a tree. Interestingly, it turns
out that the model that results is closely related to the n-gram language models that have been
widely studied in statistical natural language modeling and speech recognition. We augment the
naive Bayes text classifier by including observation dependencies that form a Markov chain, and use
techniques from statistical n-gram language modeling to learn and apply these models. The result
is a combination of naive Bayes and statistical n-gram methods that yields simple yet surprisingly
effective classifiers.

An advantage of using the CAN model, which naturally incorporates the use of statistical lan-
guage models for classification, is that they also allow the straightforward use of advanced smoothing
techniques from statistical language modeling to obtain better parameter estimates. In the standard
naive Bayes approach, Laplace smoothing is commonly used to avoid zero probability estimates.
However, Laplace smoothing is usually less effective than many other smoothing techniques from

statistical language modeling. We consider four more advanced smoothing techniques that have



been commonly used in n-gram language modeling to improve naive Bayes classifier, and achieve
significant improvements.

In addition to improving the standard naive Bayes model, CAN models also have advantages
over other traditional text classifiers. A common aspect of traditional text classification approaches
is that they treat text categorization as a standard classification problem, and thereby reduce the
learning process to two simple steps: feature engineering, and discriminant learning over the feature
space. Of these two steps, feature engineering is critical to achieving good performance in practice.
Once good features are identified, almost any reasonable technique for learning a classifier seems to
perform well [42]. However, relying upon an explicit feature selection process has several drawbacks.
First, feature construction is usually language and task dependent. Various techniques such as stop-
word removal or stemming require language specific knowledge to design adequately. Moreover, most
traditional text classifiers work on word level features, whereas identifying words from character
sequences is hard in many Asian languages—such as Chinese or Japanese—and any word-based
approach must suffer added complexity in coping with segmentation errors. Second, feature selection
is task dependent. For example, tasks like authorship attribution or genre classification require
attention to linguistic style markers [44], whereas topic detection systems rely more heavily on
bag of words features. Third, there are an enormous number of possible features to consider in
text classification problems, and standard feature selection approaches do not always cope well in
such circumstances. For example, given an enormous number of features, the cumulative effect
of uncommon features can still have an important effect on classification accuracy, even though
infrequent features contribute less information than common features individually. Consequently,
throwing away uncommon features is usually not an appropriate strategy in this domain [1]. A
better approach is to use as many features as possible.

CAN models provide a convenient and effective way to mitigate these difficulties. First, they
deal with the feature explosion problem by employing simple back-off estimators from statistical
language modeling, which avoids explicit feature selection by considering all n-grams as features and
measures their importance implicitly by their contribution to language models. Thus, CAN models

avoid the need for explicit feature selection, which is a critical but error prone process. Second,



character level CAN models can be deployed in order to avoid the word segmentation issues that
arise in Asian languages, and thus provide a simple avenue toward achieving language independent
and task independent text classification.

The remainder of the paper is organized as follows. First in Section 2 we describe the naive
Bayes classifier and then present the basic n-gram language model in Section 3. These two models
form the basis of the chain augmented naive Bayes classifier we propose in Section 4. We then
experimentally evaluate the proposed classifier on various text classification problems in various
languages in Section 5. A detailed discussion and analysis is presented in Section 6. Finally, we

discuss related work in Section 7 and conclude in Section 8.

2 The naive Bayes text classifier

Text classification is the problem of assigning a document D to one of a set of |C| pre-defined
categories C' = {ci, ¢, ..., ¢jc|}- Normally a supervised learning framework is used to train a text
classifier, where a learning algorithm is provided a set of N labeled training examples {(d;, ¢;) : i =
1,..., N} from which it must produce a classification function F' : D — C that maps documents
to categories. Here d; denotes the ith training document and c; is the corresponding category
label of d;. We use the random variables D and C to denote the document and category values
respectively. A popular learning algorithm for text classification is based on a simple application of
Bayes’ rule [10, chapter 10]:

P(C=c¢)x P(D=d|C =c¢)
P(D = d) (1)

P(C=cD=d) =

where d and c are instances of D and C, P(D =d) =) ., P(C = ¢)P(D = d|C = c). To simplify
the presentation, we re-write Equ. (1) as

P(c) x P(dc)

P(d) = =75 )

1Other popular learning algorithms for text classification include decision tree learning, support vector machines,
regression methods, neural network, rule learning methods, and on-line learning [43].



Bayes’ rule decomposes the computation of a posterior probability into the computation of a like-
lihood and a prior probability. In text classification, a document d is normally represented by a
vector of K attributes d = (v1,v2, ....vx).> Computing p(d|c) in this case is not generally trivial,
since the space of possible documents d = (vy,vs,....vx) is vast. To simplify this computation,
the naive Bayes model introduces an additional assumption that all of the attribute values, v;, are
independent given the category label, c. That is, for ¢ # j, v; and v; are conditionally independent

given c¢. This assumption greatly simplifies the computation by reducing Equ. (2) to

[1,21 P(vjle)

P(c|d) = P(e) x Pd) (3)

Based on Equ. (3), maximum a posterior (MAP) classifier can be constructed by seeking the

optimal category which maximizes the posterior P(c|d):

¢" = argmax {P(c|d)} (4)
= argmax {P(c) X W} (5)

= argmax {P(c) X HP(vj|c)} (6)

ceC !
J=1

Note that the step from Equ. (5) to Equ. (6) is valid because P(d) is a constant for every category
c. A MAP classifier (Equ. (4)) is optimal in the sense of minimizing zero-one loss (misclassification
error). If the independence assumption holds, then a classifier based on Equ. (6) is also optimal [10].
The prior distribution P(c) can be used to incorporate additional assumptions about the relative
frequencies of classes. Two commonly used prior distributions are the Dirichlet distribution and
uniform distribution.

There are several variants of naive Bayes classifiers, including the binary independence model,
the multinomial model, the Poisson model, and the negative binary independence model [12]. It has
been shown that for text classification applications, the multinomial model is most often the best

choice [12, 33], therefore we will only consider the multinomial naive Bayes model in this paper.

2 Attributes are also called features in many papers.
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Figure 1: Graphical model of a naive Bayes classifier

Figure 1 gives a graphical representation of the multinomial naive Bayes model, showing that each
attribute node is independent of the other attributes given the class label C.

The parameters of a multinomial naive Bayes classifier are given by © = {6 = P(vjlc) : j =

1,....,K;c=1,...,|C|}. The likelihood of a given set of documents D¢ for a given category c is given
by
c Nel c\N¢
P(D10) = 1y 1;[@-) j (7)

where N¥ is the frequency of attribute j occurring in D¢ and N¢ =} ; V5. A maximum likelihood

estimate yields the parameter estimates

N¢
o5 = 2 (8)

Note that Equ. (8) puts zero probability on attribute values that do not actually occur in D¢
(i.e., Ny = 0). Unfortunately, a zero estimate can create significant problems when we classify a
new document, for example, when we encounter a new attribute value that has not been observed
in the training corpus D¢. To overcome this problem, Laplace smoothing is usually used to avoid
zero probability estimates in practice:

g - Nitd
J Nc+a



where a; is some constant and a = ) | ;- A special case of Laplace smoothing is add one smooth-
ing [32, chapter 6] obtained by setting a; = 1. However, Laplace smoothing is not as effective
in language modeling as some other smoothing techniques [5]. We will show that more advanced
smoothing techniques can be used to improve naive Bayes classifiers, and therefore play an impor-
tant role in developing effective text classifiers using naive Bayes models.

We now describe the next main component of our models—statistical n-gram language models—

which we will use to later augment naive Bayes classifiers.

3 Statistical n-gram language modeling

Although the dominant motivation for language modeling has come from speech recognition, sta-
tistical language models have recently become more widely used in many other application areas,
including information retrieval [18, 37].

The goal of language modeling is to predict the probability of natural word sequences; or more
simply, to put high probability on word sequences that actually occur (and low probability on word
sequences that never occur). Given a word sequence wjws...wr to be used as a test corpus, the

quality of a language model can be measured by the empirical perplexity (or entropy) on this corpus

T

1
Perplezity = | 10
P v EP(wi\wl...wi_l) (10)
Entropy = log, Perplexity (11)

The goal of language modeling is to obtain a small perplexity. The simplest and most successful
basis for language modeling is the n-gram model: Note that by the chain rule of probability we can

write the probability of any sequence as
T
P(wlwz...wT) = HP(wz|w1w,_1) (12)

i=1

An n-gram model approximates this probability by assuming that the only words relevant to predict-



ing P(w;|w;...w; 1) are the previous n—1 words; that is, it assumes the Markov n-gram independence
assumption

P('w1-|w1...w,-_1) = P(wi|wi_n+1...w,~_1)

A straightforward maximum likelihood estimate of n-gram probabilities from a corpus is given by

the observed frequency

#(wi—n+1---wi)
#(wi—n+1---wi—1)

P(wi|wi,n+1...w,~,1) (13)

where #(.) is the number of occurrences of a specified gram in the training corpus. Unfortunately,
using grams of length up to n entails estimating the probability of W™ events, where W is the size of
the word vocabulary. This quickly overwhelms modern computational and data resources for even
modest choices of n (beyond 3 to 6). Also, because of the heavy tailed nature of language (i.e. Zipf’s
law) one is likely to encounter novel n-grams that were never witnessed during training. Therefore,
some mechanism for assigning non-zero probability to novel n-grams is a central and unavoidable
issue. One standard approach to smoothing probability estimates to cope with sparse data problems
(and to cope with potentially missing n-grams) is to use some sort of linear interpolation or back-off
estimator. Linear interpolation models involves an EM procedure to optimize the weight for each
component [5] and back-off model is relatively simple. To keep the simplicity of naive Bayes model,

we use back-off models.

(
P(wi|wi_n+1---wi—1),

if #(wi,n+1...w,’) >0
P(wi|wi_n+1...wi_1) =< (14)
B(Wi—nt1---wi—1) X P(w;|wi_pia...w5_1),

otherwise

where

- discount #(w;_p11...w;
P(wi|wi_n+1...wi_1) = #(w _(H Uj—ll) ) (15)




is the discounted probability, and S(w; p11...w; 1) is a normalization constant calculated to be

1— Z ]3(:c|w,-_n+1...w,-_1)

T H(Wi—pt1...wi—12)>0

1-— Z P(w\wi_n+2...wi_1)

a::#(wi_n+1...wi_1z)>0

(16)

ﬁ(wi—n+1...wi_1) —

An n-gram is first matched against the language model to see if it has been observed in the
training corpus. If that fails, the n-gram is then reduced to an n— 1-gram by shortening the context
by one word. The discounted probability (15) can then be computed using different smoothing
approaches. The standard smoothing approaches we consider in this paper include linear smoothing,
absolute smoothing, Good-Turing smoothing and Witten-Bell smoothing [5].

To describe the smoothing techniques, let n; denote the number of events which occur ezactly i
times in training data [35].

Absolute smoothing Here the frequency of a word is subtracted by a constant b so that the

discounted probability (Equ. 15) is calculated as

#(wi_n+1 wz) )
#(wi—n+1---wi—1)

P(wi\wi,nﬂ ...wi,l) =

where b is often defined as the upper bound b = nl_’ilznz.

Linear smoothing Here the discounted probability is calculated as

R (1 _ @) y #(Wing1-.w;)

P(wiwi—ny1...wi-1) = T #(Wi-n+1--Wi-1)
i—n Wy

where T is the number of uni-grams, which corresponds to the number of words in the training
data [35].
Good-Turing smoothing  Good-Turing smoothing discounts the frequency of r by GT, =

(r 4+ 1)7* and the discounted probability is calculated as [23]:

GT#(wi—n+1---’wi)
#(wi—n+1---wi—1)

P(UJ, |w,~,n+1...wi,1) =

10



There are different variants of this standard Good-Turing smoothing. These include Katz’s vari-

ant [23] and Church & Gale’s variant [6]. We implemented Katz’s variant.

Witten-Bell smoothing Witten-Bell smoothing is very similar to Laplace smoothing, except
it reserves probability mass for out of vocabulary (OOV) values, whereas Laplace smoothing does

not.® Here the discounted probability is calculated as

#(wifn—l-l---wi)
#(wi py1.wi 1) +C

P(wi\w,—_nﬂ...wi_l) =

where C' is the number of distinct words that can follow w; ,11...w; 1 in the training data [50]. In
the uni-gram model, this corresponds to the size of vocabulary.
We now show how the naive Bayes and statistical n-gram language models can be combined to

form the chain augmented naive Bayes classifier.

4 Applying n-gram language models as text classifiers

Text classifiers attempt to identify attributes which distinguish documents in different categories.
Such attributes may include vocabulary terms, word average length, local n-grams, or global syn-
tactic and semantic properties. Language models also attempt capture such regularities, and hence
provide another natural avenue to constructing text classifiers. An n-gram language model can be
applied to text classification in a similar manner to a naive Bayes model. That is, we categorize a
document according to

¢" = argmax{P(c/d)} (17)

3Witten-Bell smoothing is a misnomer since it was actually invented by Alistair Moffat [34], and is called method
C in PPM text compression. We thank William Teahan for pointing this out (personal communication).
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Using Bayes rule, this can be rewritten as

¢” = argmax{P(c)P(d|c)} (18)
= argmax {P(c) H P(wi|wi—nt1...wi—1, c)} (19)
— argmax {P(c) I Pc(wi\wi_nﬂ...wi_l)} (20)

Here, P(d|c) is the likelihood of d under category ¢, which can be computed by an n-gram language
model. Likelihood is related to perplexity and entropy by Equ. (10) and Equ. (11). The prior P(c)
can be estimated from training data or can be used to incorporate more assumptions, similar to the

standard naive Bayes model. In our case, P,(w;|w;_pny1...w;_1) is computed using a back-off model:

(.
Pe(w;|wi py1..w;-1),

if #c(wi_nﬂ...wi) >0
Pc(wi\wi,nﬂ...wi,l) = < (21)
Be(Wi ny1--wi 1) X Pe(wi|wi pnyo...w; 1),

otherwise

where #.(w;_p11...w;) is the frequency of w; 1 1...w; occurring in all training documents of category
c, Pc(wi|w,-_n+1...wi_1) is the discounted probability calculated as
A _ discount #¢(Wi—n41...w;)

Pc(wi|wi—n+1---wi—1)— 4 (w~ W, 1) (22)
c\%i—n+1---%i—

and B.(w;_n41...w;_1) is a normalization constant, calculated by [13] to be

1-— Z Pc(x|wi,n+1...wi,1)

T:H(Wi—pt1...wi—12)>0

1-— Z pc(m|wi_n+2...wi_1)

z:#(wi,n+1...wi,1m)>0

/Bc(wifn—{—l---wifl) = (23)

Thus our approach overall is to learn a separate back-off language model for each category by
training on a data set from that category. Then, to categorize a new text d, we supply d to each

language model, evaluate the likelihood (or entropy) of d under the model, and pick the winning cat-

12



egory according to Equ. (20). The parameters in the model are © = {8¢ = P,(w;|w;_p41...w;_1), 8¢ =
Be(wi—pi1.-wi—q):i=1,...N;c=1,...|C|}.

Note that n-gram classifiers are in fact a straightforward generalization of naive Bayes: a uni-
gram classifier with Laplace smoothing corresponds exactly to the traditional naive Bayes classifier.
However, n-gram language models, for larger n, possess many advantages over naive Bayes classifiers,
including modeling longer context and exploiting superior smoothing techniques in the presence of
sparse data. For naive Bayes text classifiers, attributes (words) are considered independent of each
other given the category. However, in a language modeling based approach, this is enhanced by
considering a Markov dependence between adjacent words. Due to this similarity, we refer the
n-gram augmented naive Bayes classifier as a Chain Augmented Naive Bayes classifier (CAN).

Another notable advantage of the language modeling based approach is that it does not incor-
porate an explicit feature selection procedure. That is, instead, it considers all possible n-grams as
features. Their importance is implicitly considered by their contribution to the quality of language
modeling (in sense of perplexity in Equ. (10)). The back-off smoothing technique effectively deals
with feature explosion. The over-fitting problems associated with the subsequent feature explosion
are nicely handled by applying the backoff smoothing techniques outlined above.

Note that the basic unit used in the language models described above is the word. However, we
can also consider text as a concatenated sequence of characters instead of words. The formulation
of a character based language model is the same as above, except that the size of the vocabulary is
much smaller, which greatly reduces the sparse data problem. Character level models also avoid the
word segmentation problems that occur in many Asian languages such as Chinese and Japanese, and

thus allows constructing language independent classifiers. We also explore this alternative below.

5 Experimental comparison

To systematically evaluate the CAN model, we investigate several different text classification tasks
on various languages. Specifically, we consider Greek authorship attribution, Greek genre classifi-

cation, and topic detection in English, Japanese, and Chinese.
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5.1 Classification performance and experimental paradigm

In many cases, classification can be carried out directly based on Equ. (17). However some classifiers,
such as SVMs, are specifically designed only for binary classification problems. For these classifiers,
given a |C| category classification problem, we have to convert it to a set of binary classification
problems.

Different performance measures can be used to assess these two different unique classification
approaches. For the sake of consistency with previous research, we experiment with both approaches
in different data. In the Chinese topic detection experiments, there are 6 classes, so we formulate
6 binary classification problems. In Reuters topic detection experiments, there are 10 classes, so
we formulate 10 binary classification problems. In both of these cases, we measure classification
performance by micro-averaged F-measure. To calculate the micro-averaged score, we formed an
aggregate confusion matrix by adding up the individual confusion matrices from each category. The
micro-averaged precision, recall, and F-measure can then be computed based on the aggregated
confusion matrix.

In other experiments, we measured overall accuracy and macro-averaged F-measure. (Micro-
averaged values are not available in these cases. ) Here the precision, recall, and F-measures of
each individual category can be computed based on a |C| x |C| confusion matrix. Macro-averaged
scores can be computed by averaging the individual scores. The overall accuracy is computed by
dividing the number of correctly identified documents (summing the numbers across the diagonal)
by the total number of test documents.

In all our experiments, we first report results of character level CAN models which consider text
as a sequence of characters. However, for western languages such as English and Greek, we also

report results of using word level CAN models which consider text as a sequence of words.

5.2 Authorship attribution

The first text categorization problem we examined was author attribution. A famous example is

the case of the Federalist Papers, of which twelve instances are claimed to have been written both

14



by Alexander Hamilton and James Madison [19]. We considered a data set used by Stamatatos et
al. [44] consisting of 20 texts written by 10 different modern Greek authors (totaling 200 documents).

In each case, 10 texts from each author were used for training and the remaining 10 for testing (using

the same split as [44]). The specific authors that appear are shown in Table 1.

Code || Author Name | Train size (characters)
BO S. Alaxiotis 77295
B1 G. Babiniotis 75965
B2 G. Dertilis 66810
B3 C. Kiosse 102204
B4 A. Liakos 89519
B5 D. Maronitis 36665
B6 M. Ploritis 72469
B7 T. Tasios 80267
B8 K. Tsoukalas 104065
B9 G. Vokos 64479

Table 1: Authors in the Greek authorship attribution data set

The results of using character level models are shown in Table 2. In our experiments, we obtained
the best performance by using a tri-gram model with absolute smoothing. The best accuracy we

obtained is 90%. This compares favorably to the best accuracy reported in [44] of 72%.* The 18%

accuracy improvement is surprising given the relative simplicity of our method.

|n| Absolute | Laplace | Good-Turing | Linear | Witten-Bell |

Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac

1| 0.57 0.53 0.56 0.51 0.55 0.49 0.55 0.49 0.55 0.49

2| 0.85 0.84 | 082 | 079 | 080 | 0.75 | 084 | 083 |0.84 | 0.82

31090 089 | 070 | 064 | 079 | 072 | 0.8 | 0.88 |0.89 | 0.87

4| 0.87 0.85 | 047 | 039 |079| 072 |08 | 082 | 088 | 0.86

5 | 0.86 0.85 [035 (| 029 |0.79| 072 | 087 | 0.8 | 0.8 | 0.83

6 | 0.86 0.83 [0.16 | 010 | 0.79 | 073 | 087 | 0.85 | 0.86 | 0.83

Table 2: Results on Greek authorship attribution using character level models

As a typical western language, Greek words are separated by white space, so we can also apply

word level models to this data. Table 3 shows the results of the word level model. Here the perfor-

“Note that Stamatatos et al.’s measures of identification error and average error correspond to our recall and
overall accuracy measures respectively.
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mance increases to 96%, which is better than character level models. However, such a significant

improvement is not always observed in other experiments, as we will see below.

|n| Absolute | TLaplace | Good-Turing| Linear | Witten-Bell |
Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac
0.96 | 0.95 0.76 | 0.72 093 | 092 [0.96| 0.95 0.61 0.57
0.96 | 0.95 0.60 | 0.56 0.95 | 0.94 0.95 094 | 083 | 0.78
0.96 | 0.95 0.54 | 0.51 0.95 | 094 0.95 094 | 083 | 0.78
0.96 | 0.95 0.56 | 0.53 0.95 | 094 0.95 094 | 0.84 | 0.80

=W =

Table 3: Results on Greek authorship attribution using word level models

5.3 Text genre classification

The second problem we examined was text genre classification, which is an important application in
natural language processing [25] and information retrieval [29]. We considered a Greek data set used
by [44] consisting of 20 texts of 10 different styles extracted from various sources (200 documents
in total). For each style, we used 10 texts as training data and the remaining 10 as testing data

(using the same split as in [44]). The 10 different text genres and their original sources are shown

in Table 4.
code || Genre Source
0 Press editorial Newspaper TO BHMA
1 Press reportage Newspaper TO BHMA
2 Academic prose Journal of archives of hellonic pathology
3 Official documents High court decisions, ministerial decisions
4 Literature Various pages
3 Recipes Magazine NETLIFE
6 Curriculum Vitae Various pages
7 Interviews Newspaper TO BHMA
8 Planned speeches Ministry of defense
9 Broadcast news, scripted | Radio station, FLASH 9.61

Table 4: 10 different text genres

The results of the character level model are shown in Table 5. The 86% accuracy obtained with

bi-gram models compares favorably to the 82% reported in [44], which again is based on a much

16



deeper NLP analysis.

‘ n ‘ Absolute ‘ Laplace ‘ Good-Turing ‘ Linear ‘ Witten-Bell

Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac
0.31 0.55 0.30 0.54 0.30 0.54 0.30 0.54 0.30 0.54
0.86| 086 |072| 0.69 | 060 | 052 |082 | 0.81 |0.86| 0.86
0.77 | 0.75 | 050 | 041 |0.65| 059 |0.79| 077 | 0.85 | 0.85
0.69 | 0.65 | 038 | 029 |0.58| 050 |0.74| 069 |0.76 | 0.74
0.66 | 0.61 | 038 | 029 |056| 049 |069 | 0.66 | 0.73 | 0.70
0.62 | 0.57 | 038 | 0.29 |0.49| 053 |0.67| 063 | 0.71 | 0.68
0.63 | 0.58 | 033 | 021 |0.49| 053 |0.66| 062 | 0.70 | 0.68

| OO x| W N

Table 5: Results on Greek text genre classification using character level models

As before, we can again apply word level models to Greek text genre classification. Here we
obtain 81% accuracy using absolute smoothing and uni-grams (n = 1). The standard naive Bayes
model (n=1 and Laplace smoothing) achieves only 56% performance in this case. Here word level

models perform worse than character level models.

|n| Absolute | TLaplace | Good-Turing| Linear | Witten-Bell |
Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac
1] 0.81 0.78 | 0.56 | 0.48 0.76 | 0.73 | 0.77 | 0.76 | 0.50 | 0.42
21080 0.77 | 0.59 | 0.61 0.79 | 076 | 0.77| 0.74 | 0.61 0.56
31080 | 0.77 | 0.61 0.62 0.78 | 0.75 | 0.77| 0.74 | 0.60 | 0.56

Table 6: Results on Greek text genre classification using word level models

5.4 Topic detection

The third problem we examined was topic detection in text, which is a heavily researched text
categorization problem [11, 30, 33, 43, 52]. Here we demonstrate the language independence of the
character based language modeling approach by considering experiments on English, Japanese and

Chinese data.
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5.4.1 English 20 newsgroup data

The English 20 Newsgroup data was originally collected and used for text categorization by Lang [28]
and has been widely used in topic detection research [33, 38].> This collection consists of 19,974
non-empty documents distributed evenly across 20 newsgroups. We use the newsgroups to form
categories, and randomly select 80% of the documents to be used for training and the remaining

20% for testing. Table 7 shows the 20 categories appearing in the newsgroup data.

‘ Code ‘ Newsgroup ‘ Code ‘ Newsgroup ‘
0 alt.atheism 10 | rec.sport.hockey
1 comp.graphics 11 | sci.crypt
2 comp.os.ms-windows.misc 12 | sci.electronics
3 comp.sys.ibm.pc.hardware | 13 | sci.med
4 comp.sys.mac.hardware 14 | sci.space
5 comp.windows.x 15 | soc.religion.christian
6 misc.forsale 16 | talk.politics.guns
7 rec.autos 17 | talk.politics.mideast
8 rec.motorcycles 18 | talk.politics.misc
9 rec.sport.baseball 19 | talk.religion.misc

Table 7: English 20 newsgroup data

We first considered text to be a sequence of characters, and learned character level n-gram mod-
els. The resulting classification accuracies are reported in in Table 8. All results are averaged across
5 random runs. In the character model, with tri-gram (or higher order) models, we consistently
obtain accurate performance, peaking at 89.13+0.33% accuracy in the case of 6-gram models with
Witten-Bell smoothing. These results compare favorably to the state of the art result of 87.5%
accuracy reported in [38], which was based on a combination of SVMs with error correcting output
coding (ECOC).

As before, we can also consider English text as a sequence of words and therefore also apply
word models in this case. The results are shown in Table 9. Word level models were able to achieve
88.22+0.35% accuracy in this case. (Using the t-test, we find that the difference between the

results of character level models and word level models are statistically significant to the oo = 0.01

Shttp://www.ai.mit.edu/” jrennie/20Newsgroups/
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significance level. The resulted p-value is 0.0027 and t-score is 4.2818.) Note that the word level
model with Laplace smoothing and n = 1 is exactly equivalent to the traditional Naive Bayes

classifier, which only achieves 84.93% accuracy in this case—consistent with previous findings [33].

‘n‘ Absolute ‘ Laplace ‘ Good-Turing ‘ Linear ‘ Witten-Bell ‘

Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. F-Mac
0.2128 | 0.2034 | 0.2128 | 0.2033 | 0.2126 | 0.2032 | 0.2126 | 0.2032 | 0.2126 | 0.2032
0.6691 | 0.6505 | 0.6646 | 0.6451 | 0.6760 | 0.6569 | 0.6772 | 0.6584 | 0.6628 | 0.6437
0.8680 | 0.8635 | 0.8458 | 0.8385 | 0.8617 | 0.8571 | 0.8629 | 0.8596 | 0.8673 | 0.8621
0.8879 | 0.8849 | 0.8279 | 0.8197 | 0.8803 | 0.8775 | 0.8783 | 0.8760 | 0.8903 | 0.8870
0.8895 | 0.8867 | 0.7384 | 0.7267 | 0.8803 | 0.8764 | 0.8824 | 0.8806 | 0.8923 | 0.8896
0.8876 | 0.8852 | 0.6517 | 0.6453 | 0.8787 | 0.8759 | 0.8810 | 0.8794 | 0.8913 | 0.8883
0.8862 | 0.8831 | 0.5800 | 0.5759 | 0.8771 | 0.8742 | 0.8838 | 0.8821 | 0.8909 | 0.8875

N[O O x| W[ N

Table 8: Topic detection results on English 20 newsgroup data using character models

|n| Absolute | Laplace | Good-Turing | Linear | Witten-Bell |

Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. F-Mac | Acc. | F-Mac
0.8735 | 0.8694 | 0.8493 | 0.8412 | 0.8653 | 0.8612 | 0.8757 | 0.8717 | 0.8423 | 0.8343
0.8818 | 0.8781 | 0.4730 | 0.4718 | 0.8733 | 0.8686 | 0.8822 | 0.8790 | 0.8749 | 0.8711
0.8800 | 0.8766 | 0.3381 | 0.3416 | 0.8713 | 0.8668 | 0.8798 | 0.8769 | 0.8726 | 0.8693
0.8808 | 0.8774 | 0.3234 | 0.3274 | 0.8712 | 0.8667 | 0.8795 | 0.8766 | 0.8730 | 0.8699

=W N =

Table 9: Topic detection results on English 20 newsgroup data using word models

5.4.2 Japanese data

Japanese topic detection is often thought to be more challenging than in English, because words
are not white-space delimited in Japanese text. This fact seems to require word segmentation to
be performed as a pre-processing step before further classification [1]. However, we avoid the need
for explicit segmentation by simply using a character level (byte level) n-gram classifier.

We consider the Japanese topic detection data investigated by [1]. This data set was converted
from the NTCIR-J1 data set originally created for Japanese text retrieval research. The data has
24 categories. The testing set contains 10,000 documents distributed unevenly between categories.

We have obtained the experimental results shown in Table 10, which still show an 84% accuracy

19



rate on this problem (for 6-gram or higher order models). This is the same level of performance as
that reported in [1], which uses an SVM approach with word segmentation, morphology analysis

and feature selection.

|n| Absolute | Good-Turing| Linear | Witten-Bell |
Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac | Acc. | F-Mac
0.33 0.29 | 0.34 0.29 | 0.34 0.29 0.34 0.29
0.66 0.62 0.66 0.61 0.66 0.63 0.66 0.62
0.75 0.72 0.75 0.72 0.76 0.73 0.75 0.72
0.81 0.77 0.81 0.76 0.82 0.76 0.81 0.77
0.83 0.77 | 0.83 0.76 | 0.83 0.76 0.83 0.77
0.84 | 0.76 | 0.83 0.75 0.83 0.75 | 0.84 | 0.77
0.84 | 0.75 0.83 0.74 | 0.83 0.74 | 0.84| 0.76
0.83 0.74 | 0.83 0.73 | 0.83 0.73 | 0.84| 0.76

O J| OO =W~

Table 10: Japanese topic detection results

5.4.3 Chinese data

Chinese poses the same word segmentation issues as Japanese. Word segmentation is also thought
to be necessary for Chinese text categorization [16], but we avoid the need again by considering
character level language models.

For Chinese topic detection we considered a data set investigated in [16]. The corpus in this
case is a subset of the TREC-5 data set created for research on Chinese text retrieval. To make
the data set suitable for text categorization, documents were first clustered into 101 groups that
shared the same headline (as indicated by an SGML tag) and the six most frequent groups were
selected to make a Chinese text categorization data set, as shown in Table 11. Following [16, 17],
we converted the problem into 6 binary classification problems. In each case, we randomly selected
500 positive examples and then selected 500 negative examples evenly from among the remaining
negative categories to form the training data. The testing set contains 100 positive documents and
100 negative documents generated in the same way. The training set and testing set do no overlap
and do not contain repeated documents.

Table 12 shows the results of the character level language modeling classifiers. Table 13 shows
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Code | Topic

0 Politics, Law and Society
Literature and Arts
Education, Science and Culture
Sports
Theory and Academy
Economics

O | W DN =

Table 11: Chinese topics

the results of using an SVM classifier, where the first column is the number of selected features
based on frequency ranking. (We use the SV M!9ht [22] toolkit with linear kernels.) The entries are
micro-average F-measure. We observe a performance of over 86.7% for this task, using bi-gram
(2 Chinese characters) or higher order models. Standard naive Bayes model (n=1 and Laplace
smoothing) achieves 85.7% performance. SVM achieves stable performance of about 81.5%. He et
al. [16] reported a performance of about 82% using SVM based on word segmentation and feature

selection.

‘ ‘ Absolute ‘ Laplace ‘ Good-Turing ‘ Linear ‘ Witten-Bell ‘

1 0.855 0.857 0.858 0.859 0.859
2| 0.867 0.798 0.862 0.860 0.859
3] 0.864 0.794 0.859 0.859 0.862
4| 0.866 0.801 0.860 0.863 0.862

Table 12: Results on Chinese topic detection data using character level models

Feature # | Micro-F1
100 0.811
200 0.813
300 0.817
400 0.816
500 0.817
1000 0.817
1500 0.815
2000 0.816

Table 13: Results of the character level SVM classifier on Chinese data
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5.4.4 Reuters-21578 data

Unlike other data sets, the Reuters-21578 data is used for multi-way classification, where each
document is allowed to belong to more than one category. The data set contains 12902 Reuters
news wire articles.® The documents are assigned to 135 topic categories. However, some categories
are empty and thus there are only non-empty 118 categories, among which the 10 most frequent
categories contain about 75% of the documents. There are several ways to split the documents into
training and testing sets: ‘ModLewis’ split, ‘ModApte’ split, and ‘ModHayes’ split. The ‘ModApte’
train/test split is widely used in text classification research. Using the ‘ModApte’ split, the 10 most
frequent categories and the numbers of documents used for training, testing and reserved unused

in each category are listed in Table 14.

‘ category ‘ training‘ test ‘ unused ‘

earn 2877 1087 22
acq 1650 719 79
money-fx 538 179 82
grain 433 149 45
crude 389 189 54
trade 369 118 65
interest 347 131 33
wheat 212 71 23
ship 197 89 18
corn 182 56 15

Table 14: Reuters 10 most frequent categories

The results of micro-averaged F-measure are shown in Table 15 and Table 16 for character level
models and word level models respectively.

Word level models marginally outperform character level models. Bi-gram or tri-gram word level
models are better than uni-gram models, which means that relaxing the independence assumption
in naive Bayes models also helps in this case. However, in previous research, an SVM classifier

obtained up to 92% accuracy [11],” which was based on feature selection and optimizing prior P(c)

6The data set is publicly available at http://www.research.att.com/~ lewis

"They measured the performance with break even point (BEP). BEP is special case of F1 measure where recall
equals precision. However, since normally it’s not possible to have such a point in practice, BEP often has to be
calculated using interpolation. When recall and precision values are far apart, BEP may not reflect the true behavior
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n | Absolute | Laplace | Good-Turing | Linear | Witten-Bell |

0.4213 0.4207 0.4207 0.4207 0.4207
0.6607 | 0.6731 0.6790 0.6651 0.6651
0.7816 | 0.8032 0.7873 0.7883 0.7805
0.8010 0.7229 0.8024 0.7969 0.8023
0.7964 0.6448 0.7932 0.7855 0.7996
0.7832 0.6156 0.7839 0.7765 0.7884
0.7701 0.6131 0.7782 0.7697 0.7813

N[O O x| W I

Table 15: Results on Reuters data using character level models

| n | Absolute | Laplace | Good-Turing | Linear | Witten-Bell |
1| 0.7850 0.7973 0.7900 0.7880 0.7959
2| 0.8152 0.7069 0.8124 0.8114 0.7935
3| 0.8137 0.6353 0.8135 0.8105 0.7952

Table 16: Results on Reuters data using word level models

for each individual category. We did not optimize the prior information and merely used a uniform

prior (that is, we put equal weight for positive and negative category).

6 Analysis and discussion

The perplexity of a test document under a language model depends on several factors. The three
most influential factors are the order, n, of the n-gram model, the smoothing technique used, and
the number of training documents. These factors significantly influence the quality of a language
model and thus may influence classification performance. We will first discuss the relationship
between language modeling quality and classification performance. Then we will further analyze
the influence of each individual factor. We will also discuss other factors such as the influence of
prior information P(c) in Equ. (20), whether character or word level models should be applied, and

analyze the success and failure of the model.

of the system [52, 17].
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Figure 2: Relationship between classification performance and language modeling quality

6.1 Relationship between accuracy and perplexity

Figures 2 shows the relationship between classification performance and language modeling quality
on the Greek authorship attribution task. (The other data sets have similar curves.) The upper
part of the figure shows classification performance and the lower part shows language modeling
quality measured by average entropy across all testing documents (bits per character). We can
see that classification performance is almost monotonically related to language modeling quality.
However, this is not absolutely true. Since our goal is to make a final decision based on the ranking
of perplexities, not just their absolute values, a slightly superior language model in the sense of
perplexity reduction (i.e. from the perspective of classical language modeling) does not necessarily
lead to a better decision from the perspective of categorization accuracy.

The influence of language modeling can further be decomposed into three factors: order of the
n-gram model, smoothing techniques, and number of training documents. We analyze these factors

individually below.

6.2 Effects of n-gram order

Relaxing the naive Bayes independence assumption to consider local context dependencies is one

of the main motivations of the CAN Bayes model. The order n is a key factor in determining the
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quality of n-gram language models. If n is too small then the model will not capture enough context.
However, if n is too large then this will create severe sparse data problems. Both extremes result in a
larger perplexity than the optimal context length and decrease classification performance. Figures 3
illustrates the influence of order n on classification performance in the previous five experiments
(Greek authorship attribution, Greek text genre classification, English topic detection, Japanese
topic detection and Chinese topic detection) using absolute smoothing. From the curves, one can
see that as the order increases, classification accuracy increases, presumably because the longer
context better captures the regularities of the text. However, at some point accuracy begins to
decrease and entropy begins to increase as sparse data problems begin to set in. Interestingly,
the effect is more pronounced in some experiments (Greek genre classification) but less so in other
experiments (topic detection under any language). The sensitivity demonstrated in the Greek genre
case could still be attributed to the sparse data problem (over-fitting in genre classification could be
more serious than other problems). Data sparseness also explains why the context information does
not help in the Chinese data beyond 2-grams. The performance increases 3 to 4% from 1-gram to
2-gram models, but does not increase any more. There are 3573 most commonly used characters in
Chinese compared to 100 (upper case, lower case, and punctuation) in English. Data sparseness is
much more serious in Chinese than in English. Also, most Chinese words consist of 1 to 2 characters.
Bi-grams have been found very effective in Chinese IR [27]. However, longer context information
does not help significantly improve classification accuracies in Greek and English at the word level
(except for Witten-Bell smoothing, which may be due to its poor performance on uni-gram models).
Bi-gram models generally outperform uni-gram models. However, the over-fitting problem in word
level models set in earlier because the sparse data problem at the word level is more much serious
than at the character level.

Overall, relaxing independence assumptions can help in cases where there is sufficient training
data to reduce the sparse data problem, such as with character level models. However, when one
does not have sufficient training data, it becomes important to use short context models that avoid
sparse data problems. These results may offer another explanation of why the naive Bayes classifier

is preferred in practice, because normally one can not get sufficient labeled training data to train a
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large-context model.
The optimal order n of n-gram models depends on language and task, which in practice can be
determined by cross validation.
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Figure 3: Influence of the order n on classification performance

6.3 Effects of smoothing technique

Another key factor affecting the performance of a language model is the smoothing technique used.
We illustrate the results on the 20 Newsgroup data sets with character level and word level models
in Figure 4 and Figure 5 respectively (other data sets have similar curves).

Here we find that, Laplace smoothing over-fits very quickly. Overall, Laplace smoothing is not
a good choice for smoothing naive Bayes models. Other smoothing techniques perform similarly
on character models but vary significantly on word level models. On word level models, absolute
smoothing and linear smoothing outperform other smoothing techniques. However, in character
level models, for the most part, one can use any standard smoothing technique (except Laplace
smoothing) and obtain comparable performance. One reason that the smoothing technique does
not make a big difference for character level models is that character level models have a very small

vocabulary.
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Figure 4: Results on 20 newsgroup data using character level models

6.4 Influence of training size

Clearly, the size of the training corpus can affect the quality of a language model. Normally with
a larger training corpus more reliable statistics can be recovered which leads to better prediction
accuracy on test data. To test the effect of training set size we obtained an additional 10 documents
from each author in the group B Greek data set. In fact, this same additional data has been used
in [45] to improve the accuracy of their method from 72% to 87%. Here we find that the extra
training data also improves the accuracy of our method, although not so dramatically.

Figure 6 shows the improvement obtained for n-gram language models using absolute smoothing.
Here we can see that indeed extra training data uniformly improves attribution accuracy. On
the augmented training data the best model (tri-gram) now obtains a 92% attribution accuracy,
compared to the 90% we obtained originally. Moreover, this improves the best result obtained in
[45] of 87%. However, our improvement (90% to 92%) is not nearly as great as that obtained by [45]
(71% to 87%). However, this could be due to the fact that it is harder to reduce a small prediction

error. A similar phenomenon also occurs with other smoothing techniques.
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Figure 5: Results on 20 newsgroup data using word level models (Laplace smoothing omitted for

clarity)

6.5 Choice of priors

The prior P(c) in Equ.(20) can be empirically computed from training data, or sometimes can be
assumed to be uniform if we do not know its true distribution. In the Japanese topic detection
experiments, the data had 24 categories and documents were distributed unevenly between cate-
gories (with a minimum of 1747 and maximum of 53975 documents per category). This imbalanced
distribution could cause some difficulty if one assumed a uniform prior over categories. However,
with an empirical prior distribution learned from training data, we observe that the results do not
change significantly from simply using a uniform prior. The comparison of using a uniform prior
versus an empirical prior is shown in Table 17 (with absolute smoothing). There is a significant
improvement for uni-gram models when using an empirical instead of uniform prior. However, the
difference becomes smaller and eventually can be ignored as higher order models are used. Ba-
sically, The direct empirical distribution computed from training data is not very helpful in text

classification tasks. However, optimizing the priors based on held out data sets are helpful [11, 47].

6.6 Character level versus word level

For many Asian languages such as Chinese and Japanese, where word segmentation is hard, char-

acter level CAN Bayes models are well suited for text classification because they avoid the need for
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Figure 6: Influence of training size on accuracy

‘ n ‘ Uniform prior ‘ Empirical prior ‘
1 0.33 0.38
2 0.66 0.67
3 0.75 0.76
4 0.81 0.81
5 0.83 0.83
6 0.84 0.84
7 0.84 0.84
8 0.83 0.83

Table 17: Uniform prior versus empirical prior on Japanese topic detection results

word segmentation. For Western languages such as Greek and English, one can work at both the

word and character levels. Table 18 compares character and word level results on the Greek and

English experiments.

Task Character level | Word level
Greek authorship attribution 90% 96%
Greek genre detection 86% 81%
English topic detection (20news) 89.1% 88%

Table 18: Character level versus word level results

In the Greek authorship attribution task and movie review sentimental classification task, word

level models significantly outperform character level models. However, in other experiments, charac-

ter level models outperform word level models. It seems that for informal texts, such as Newsgroup
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data and other on-line data, character models have an advantage since that they can capture some
regularities that word level models miss in this case, such as spelling errors. By relaxing the con-
text, character level models can also capture regularities at the word level, and even phrase level
regularities. However, it is not clear whether a character or word model should be used for a specific

text. Perhaps combining the two levels could result in more robust and more accurate results.

6.7 Overall assessment

Most of the results we have reported here are comparable to (or much better than) the start of the
art results on the same data sets. For example, our 90% accuracy for Greek authorship attribution
is much better than the 72% reported in [44]. Our 86% Greek genre classification accuracy is better
than the 82% reported in [45] which is based on a much more complicated analysis. Our 89.13%
accuracy on the 20 Newsgroups data set is better than the best result, 87.5%, reported in [38]
which is based on a combination of SVMs and error correcting output coding (ECOC). Our 86.7%
accuracy on the Chinese TREC data is better than the 81.7% achieved by SVMs. Overall, the chain
augmented naive Bayes classifier works very well, even though it is a much simpler technique than
these other methods and it is not specialized to any particular data set.

The success of this simple method, we think, is due to the effectiveness of well known statistical
language modeling techniques, which surprisingly have had little significant impact on the learning
algorithms normally applied to text categorization. Nevertheless, statistical language modeling is
also concerned with modeling the semantic, syntactic, lexicographical and phonological regularities
of natural language—and would seem to provide a natural foundation for text categorization prob-
lems. One interesting difference, however, is that instead of explicitly pre-computing features and
selecting a subset based on arbitrary decisions, the language modeling approach simply considers
all character (or word) subsequences occurring in the text as candidate features, and implicitly con-
siders the contribution of every feature in the final model. Thus, the language modeling approach
completely avoids a potentially error-prone feature selection process.

However, language modeling based approach does not win in all cases. We also found that in

the Reuters-21578 data set, SVMs still significantly outperformed our language modeling based
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classifiers. In this case, the reason appears to be that the sparse data problem in this data set is
very severe in some categories (such as corn, ship, and wheat). Here, a traditional SVM classifier
with an explicit feature selection procedure may have an advantage since the feature selection
procedure may be able to select a few words which are sufficient to distinguish the categories,
whereas the language modeling approach does not have enough data to obtain reliable probability
estimates. This suggests that straightforwardly applying language model based classifiers to multi-
way classification might be problematic. However, in [47] a compression based language modeling
approach was applied to the same data set and comparable performance was achieved by optimizing
the parameters. Nevertheless, language modeling based classifiers still improve plain naive Bayes
classifiers in this case.

We found that the performance of a classifier depends both on the language and the task. For
example, SVMs achieve state of the art performance on Reuters data. However, they do not perform
well on Chinese and Japanese classification tasks (see our experiments, also see He et al. [16]). SVMs
do not perform significantly better than naive Bayes on the 20 Newsgroup data either [38] Overall,
our findings suggest that different classifiers are superior for different languages and tasks, although

character level n-gram models are general and robust.

7 Relation to previous research

7.1 Relaxing the naive Bayes independence assumption

Relaxing the independence assumption of the Naive Bayes model is a much researched idea in
machine learning, and other researchers have considered learning tree augmented naive Bayes clas-
sifiers from data [14, 24]. However, learning the hidden tree structure is problematic, and our chain
augmented naive Bayes model, being a special case of TAN Bayes, better preserves the simplicity
of the naive Bayes classifier while introducing some of the additional dependencies of TAN Bayes.
The extra complexity introduced by the CAN model is mainly on extracting the n-grams and their
frequencies from the training corpus, which can be done efficiently in a single pass. Work on con-

sidering context information for learning text classifiers also include context sensitive rule learning
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and on-line learning [7].

7.2 N-gram models in information retrieval

N-gram models have been extensively used in text retrieval, particularly in Asian language text
retrieval, such as Chinese and Japanese [26]. N-gram models are also used in English information
retrieval for phrase weighting in IR [49]. In text classification, n-gram models have also been
previously investigated [4, 8, 21]. However, they have typically used n-grams as features for a
traditional feature selection process, and then deployed classifiers based on calculating feature vector
similarities. In our CAN Bayes models, we do not perform explicit feature selection at all (although
of course we have to choose a few factors, such as the order n, smoothing technique and vocabulary
size). Thus, in our case, all n-grams remain in the model, and their importance is implicitly

considered by their contribution to perplexity.

7.3 Language models for text classification

In principle, any language model can be used to perform text classification based on Equ. (18).
However, n-gram models are extremely simple and have been found to be effective in many ap-
plications. Interestingly, language modeling research has been conducted in parallel and mostly
independently in the speech recognition and text compression communities. In text compression,
character level n-gram models are widely used, e.g., the PPM (predication by partial matching)
model [2]. The PPM model has been a benchmark in text compression for decades. However, in
speech recognition, research has focused on word level n-gram models.

These different tasks have motivated different strategies for smoothing. For example, the PPM
model deals with out of vocabulary words with an escape method, which works in a fashion similar
to the back-off model although essentially a weighted linear interpolation n-gram models [2, 46].3
However, in statistical language modeling research, many other different smoothing strategies have

been proposed, as briefly discussed in Section 3. It has been found that “Witten-Bell smoothing”

8The smoothing method “C” used in [50], namely PPMC, has often been mistakenly referred to as “Witten-Bell
smoothing”, although it was originally invented by Alistair Moffat [34]. It has been found that PPMC and its variants
PPMD [20], PPM* [46], perform well in text compression.

32



(or PPMC) does not perform well on word level language modeling (although we also find that it
performs well at character level) and other smoothing techniques such as Good-Turing and absolute
smoothing perform better. (An interesting question is how these smoothing techniques will perform
in text compression, although this is irrelevant to this paper.)

PPM model have recently been found to be effective in text mining [51] and promising results
were also obtained in text classification [47]. A PPM model is trained incrementally as text is
read in. Building such an adaptive PPM model is expensive however [2], and our back-off models
are relatively much simpler. Using compression techniques for text classification has also been
investigated in [3], where the authors seek a model that yields the minimum compression rate
increase when a new test document is introduced. However, this method is found not to be generally
effective nor efficient [15]. In our approach, we evaluate the perplexity (or entropy) directly on test

documents, and find the outcome to be both effective and efficient.

8 Conclusion and Future work

We have presented a chain augmented naive Bayes classifier (CAN) based on statistical n-gram
language modeling. Our CAN Bayes model captures dependence between adjacent attributes as a
Markov chain. By using better smoothing techniques than Laplace smoothing we obtain further
performance improvements. Our CAN Bayes modeling approach avoids explicit feature selection by
considering every feature in the model and measure their importance implicitly. The CAN model
is able to work at either the character level or the word level, which provides language independent
abilities to handle Eastern languages like Chinese and Japanese just as easily as Western languages
like English or Greek.

The approach is evaluated on four different languages and three different text classification
problems. Surprisingly, we obtain state of the art or better performance in most cases. We have
experimentally analyzed the influence of different factors that can affect the accuracy of this ap-
proach, and found that for the most part the results are robust to perturbations of the basic method.

We have also analyzed the successes and failures of the model. To us, these results suggest that

33



basic statistical language modeling ideas might be more relevant to other areas of natural language
processing than commonly perceived.

We are currently extending the CAN model in many aspects. In particular, the current model is
trained in a supervised fashion, which requires enough labeled training documents to obtain good
performance. However, labeled training data is not easy to obtain. An important issue is how to
extend it to incorporate unlabeled data. We are also doing further analysis on its performance on
Asian languages such as Chinese and Japanese, since the character level CAN model avoids word

segmentation problems in these languages.
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