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Abstract

In this work, we present a new semantic lan-
guage modeling approach to model news sto-
ries in the Topic Detection and Tracking (TDT)
task. In the new approach, we build a unigram
language model for each semantic class in a
news story. We also cast the link detection sub-
task of TDT as a two-class classification prob-
lem in which the features of each sample con-
sist of the generative log-likelihood ratios from
each semantic class. We then compute a lin-
ear discriminant classifier using the perceptron
learning algorithm on the training set. Results
on the test set show a marginal improvement
over the unigram performance, but are not very
encouraging on the whole.

1 Introduction

TDT is a research program investigating methods for au-
tomatically organizing news stories by the events that
they discuss (Allan, 2002a). The goal of TDT consists of
breaking the stream of news into individual news stories,
to monitor the stories for events that have not been seen
before and to gather stories into groups that each discuss
a single topic.

Several approaches have been explored for compar-
ing news stories in TDT. The traditional vector space ap-
proach (Yang et al., 1999) using cosine similarity has by
far been the most consistently successful approach across
different tasks and several data sets.

In the recent past, a new probabilistic approach called
Language Modeling (Ponte and Croft, 1998) has proven
to be very effective in several information retrieval tasks.
One of the attractive features of language models is that
they are firmly rooted in the theory of probability thereby
allowing a researcher to explore more sophisticated mod-
els guided by the theoretical framework.

Allan et al (Allan et al., 1999) applied language mod-
els to the first story detection task of TDT and found that
its performance is on par with the traditional vector space
models, if not better. In the language modeling approach
to TDT, we measure the similarity of a news story

�
to

a topic by the probability of its generation from the topic
model ✁ . Using the unigram assumption of indepen-
dence of terms, one can compute the probability of gen-
eration of a news story as the product of probabilities of
generation of the terms in the story, as shown in the fol-
lowing equation:

✂☎✄✆�✞✝ ✁✠✟☛✡
☞ ✌✍☞✎
✏✒✑✔✓

✂☎✄✖✕ ✏ ✝ ✁✠✟ (1)

where
✕ ✏ is the i-th term in the story. The topic model ✁

is typically evaluated from the statistics of a set of stories
that are known to be on the topic in consideration.

One potential drawback of the unigram language
model is that it treats all terms on an equal footing and
seems to ignore semantic information of the terms. We
believe that such information could be useful in determin-
ing the relative importance of a term to the topic of the
story. For example, terms that belong to the named-entity
type such as person, location, organization may convey
more information about the topic of the story than other
entity types. Likewise, one might expect that nouns and
verbs play a more important role than adjectives, adverbs
or propositions in determining the topic of the story.

The present work is an attempt to extend the language
modeling framework to incorporate a model of the rela-
tive importance of terms according to the semantic class
they belong to.

The remainder of the report is organized as follows.
Section 2 summarizes attempts made in the past in cap-
turing semantic-class information in information retrieval
related tasks. We present the methodology of the new se-
mantic language modeling approach in section 3. In sec-
tion 4, we present details of the link detection task and



its evaluation. Section 5 describes the experiments per-
formed and presents the results obtained. In section 6
we analyze the performance of the new model. Section
7 ends the discussion with a few observations and lays
down the path to future work.

2 Past work

Traditionally NLP techniques have not met with much
success in the IR domain. However, after several ad-
vances in tasks such as automatic tagging of text with
high level semantics such as parts-of-speech (Ratna-
parkhi, 1996), named-entities (Bikel et al., 1999),
sentence-parsing (Charniak, 1997), etc., there is increas-
ing hope that one could leverage this information into IR
techniques. Traditional vector space models (Salton et
al., 1975) and the more recent language models (Ponte
and Croft, 1998) tend to ignore any semantic information
and consider only word-tokens or word-stems as basic
features.

We know of no prior work in the language model-
ing framework that tries to incorporate semantic informa-
tion into IR models. However, in vector space modeling
framework, there have been a few attempts. For example,
Allan, et al (Allan et al., 1999) use an ad-hoc weight-
ing scheme to weight named-entities higher than other
tokens in their vector space models for the new event de-
tection task of TDT. They do not report any significant
improvements in their results. Additionally, the weight-
ing scheme is empirical and they present no principled
approach to compute the weights.

In the field of ad-hoc retrieval, emerging research on
integrating NLP tools into retrieval models seems encour-
aging. Mihalcea and Mihalcea (Mihalcea and Mihalcea,
2001) show that retrieval effectiveness can be improved
by indexing words with their semantic classes such as
parts-of-speech, named-entity-type, WordNet synonyms,
hypernyms, hyponyms, etc.

In this work, we present a principled approach to inte-
grating semantic information into the language modeling
framework and show how to compute the relative impor-
tance of various semantic classes automatically.

3 Semantic language models

Recall that our task involves analyzing and comparing the
content of news stories by the topics that they discuss.
The topic of a news story is typically characterized by an
event, one or more key players which may include per-
sons or organizations (the who? of the event), a location
to which the event is associated (the where? of the event),
a time of occurrence of the event (the when? of the event)
and a description of the event (the what? of the event).
Hence, when comparing news stories, it makes sense to
compare those features between the stories that answer

the above mentioned four ‘wh’ questions (Allan et al.,
2002b). However, extracting these features may not be
a trivial task. It may need a deep understanding of the
semantics of the story.

As a first step towards that end, we can leverage
the ability of statistical taggers that can recognize au-
tomatically all instances of named-entities such as per-
sons, locations, organizations, and parts-of-speech such
as nouns, verbs, adjectives, etc., in a news story. As an
approximation to our exact answers to the four ‘wh’ ques-
tions, we will assume that the set of tokens labeled as per-
sons and organizations by the taggers correspond to an

answer to the who? question, the set of dates correspond
to the when? question, the set of locations to the where?

question and lastly, the set of nouns, verbs and adjectives
to the what? question. Our hope is that these categories
of named-entities and parts-of-speech help us capture the
semantics of the news story. Hence we will address these
categories as semantic classes in this work and our model
as semantic language model. Our model is a two-stage
process in which the first stage involves computing class-
specific likelihood ratios while the second stage consists
of combining the ratios using a weighted perceptron. The
ensuing discussion presents the mathematical description
of the two stage process.

3.1 Class-specific likelihood ratio

Let � ✡✂✁☎✄ ✓✝✆✟✞✠✞✡✆ ✄ ☞ ☛ ☞✌☞ be the set of semantic classes.
Let ✄ ✄✆✕ ✟ be a relation that maps a given occurrence of
a word

✕
to its semantic class ✄✎✍✏� . Then, for any

story
�

, we define the list of features ✑ ✏ ✄✆� ✟ that belong
to class ✄ ✏ as follows:

✑ ✏ ✄ � ✟ ✡✒✁ ✕ ✓✓✆✔✞✡✞✠✆ ✕✖✕ ✝✘✗ ✕✙ ✑ ✓ ✄✆✕ ✙ ✍ � ✟✛✚ ✄ ✄ ✄✆✕ ✙ ✟☛✡✒✄ ✏ ✟ ☞
(2)

where ✜✠✡ ✝ ✑ ✏ ✄ � ✟ ✝ . In other words, ✑ ✏ ✄✆� ✟ represents
the list of all tokens in the story

�
that fall into the cate-

gory ✄ ✏ . Thus, each story is now represented as a set of
feature-lists of all the semantic-classes as shown below:

�✣✢ ✁☎✑ ✓ ✄✆� ✟ ✆✟✞✠✞✡✞✠✆ ✑ ☞ ☛ ☞ ✄✆� ✟ ☞ (3)

For each semantic class ✄ ✏ and story
�

, we define the
class-specific semantic language model ✁ ✏ ✄✆� ✟ as fol-
lows:

✂☎✄✖✕ ✝ ✁ ✏ ✄✆� ✟ ✟ ✡✥✤✧✦ ✄✆✕ ✆ ✑ ✏ ✄✆� ✟ ✟✝ ✑ ✏ ✄✆� ✟ ✝✩★ ✄✫✪✭✬ ✤ ✟✮✦
✄✆✕ ✆ ✑ ✏ ✄✰✯✲✱ ✟ ✟✝ ✑ ✏ ✄✳✯✲✱ ✟ ✝

(4)
where ✦ ✄✖✕ ✆ ✑ ✏ ✄✆� ✟ ✟ is the number of occurrences of a
word

✕
in a story

�
in the class ✄ ✏ and

✯✲✱
is a gen-

eral English collection, while ✤ is a smoothing parameter
that lies between ✴ and

✪
. Thus, the class-specific se-

mantic language model ✁ ✏ ✄✆� ✟ is a smoothed probability



distribution of words in class ✄ ✏ of story
�

. This is anal-
ogous to the standard document language models used by
IR researchers.

Given two stories
� ✓ and

�✁�
, the semantic class spe-

cific likelihood of
�✂�

with respect to
� ✓ is given by:

✄ ✏ ✄✆�✁� ✝ � ✓ ✟ ✡ ☎ ✜ ✄ ✂☎✄ ✑ ✏ ✄✆� � ✟ ✟ ✝ ✁ ✏ ✄✆� ✓ ✟✂☎✄ ✑ ✏ ✄ �✆� ✟ ✟ ✝ ✁ ✏ ✄✳✯✲✱ ✟ ✟

✡ ☎ ✜ ✄
✕
✎
✙ ✑✔✓ ✄

✂☎✄✖✕ ✙ ✝ ✁ ✏ ✄✆� ✓ ✟ ✟✂☎✄✖✕ ✙ ✝ ✁ ✏ ✄✳✯✲✱ ✟ ✟ ✟✞✝
✟✡✠☞☛✍✌ ✎✑✏✒✟✒✌✔✓✖✕✗✕ ✟

(5)

where ✜ ✡ ✝ ✑ ✏ ✄✆� � ✟ ✝ . We compute the log-
likelihood ratio instead of just the generative probability✂☎✄✆� � ✝ ✁ ✄ � ✓ ✟ ✟ to overcome the tendency of the genera-
tive probability to favor shorter stories.

The generative semantic-class-specific general English
model is given by:

✂☎✄✆✕ ✝ ✁ ✏ ✄✰✯✲✱ ✟ ✟ ✡ ✦ ✄✖✕ ✆ ✑ ✏ ✄✰✯✲✱ ✟ ✟✝ ✑ ✏ ✄✰✯✲✱ ✟ ✝ (6)

3.2 Weighted Perceptron approach

Now, all that remains to be done is to com-
bine the semantic class-specific log-likelihood scores✘ ✄ ✓ ✄ �✁� ✝ � ✓ ✟ ✆✔✞✡✞✠✆ ✄ ☞ ☛ ☞ ✄ �✆� ✝ � ✓ ✟✒✙✛✚ in a principled way to
obtain the overall similarity score of

� ✓ with respect to�✁�
. Towards that end, we cast the link detection task as

a two-class classification problem, the two classes being
‘on-topic’ and ‘off-topic’. In other words, each story-
pair

✄✆� ✓ ✆ �✁� ✟ is a sample and the classification task in-
volves assigning the label ‘on-topic’ or ‘off-topic’ to the
story pair. We compute the semantic-class-specific log-
likelihood scores for all classes and treat them as com-
ponents of the feature vector ✜ of the sample as shown
below: ✢ ✏ ✄✆� ✓ ✆ �✁� ✟☛✡ ✄ ✏ ✄ �✁� ✝ � ✓ ✟ (7)

We use a linear discriminant function that is a linear
combination of the components of ✜ for classification as
shown in the following equation:

✣ ✄✥✤ ✟ ✡✧✦ ✚ ✤
(8)

where
✤

is the augmented feature vector given by
✤ ✡✘ ✪ ✆ ✜★✙✛✚ , ✦ ✡ ✘ ✕✪✩ ✆ ✕ ✓ ✆✟✞✠✞✡✆ ✕ ☞ ☛ ☞ ✙✛✚ is the weight vector. In

particular
✕✫✩

is called the bias or threshold weight. For
a discriminant function of the form of equation 8, a two-
class classifier implements the following decision rule:
Decide ‘on-topic’ if ✣ ✄✗✤ ✟✭✬ ✴ and ‘off-topic’ otherwise.
The linear discriminant function clearly constitutes a per-
ceptron. Figure 1 shows a graphical representation of
the perceptron that takes the semantic-class-specific log-
likelihood scores as input.
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Figure 1: A graphical representation of the semantic lan-
guage model

As the figure indicates, for each story pair✄✆� ✓✓✆ � � ✟ , we build semantic-class-specific models✘ ✁ ✓ ✄ � ✓ ✟ ✆✔✞✡✞✠✆ ✁ ☞ ☛ ☞ ✄✆� ✓ ✟✒✙ from story
� ✓ as given by

equation 4. We also construct the semantic class-specific
feature lists ✁☎✑ ✓ ✄ � � ✟ ✆✔✞✡✞✠✆ ✑ ☞ ☛ ☞ ✄ � � ✟ ☞ from story

� �
as

defined in equation 2 and then compute the feature vector✜ ✡ ✘ ✄ ✓ ✄✆�✁� ✝ � ✓ ✟ ✆✟✞✠✞✡✆ ✄ ☞ ☛ ☞ ✄✆�✁� ✝ � ✓ ✟✮✙✯✚ where each com-
ponent likelihood ratio is computed as given in equation
5. We then perform an inner product of the augmented
feature vector

✤
and the weight vector ✦ of the percep-

tron and the resulting score is output as shown in the
figure.

The standard perceptron learns the optimal weight vec-
tor ✦ by minimizing its misclassification rate on a train-
ing set (Duda et al., 2000). However, in TDT, misses
(classification of an on-topic story pair as off-topic) are
penalized 10 times more strongly than false alarms (clas-
sification of an off-topic story pair as on-topic) (Allan,
2002a). We have therefore incorporated these penalties
into the criterion function to force the perceptron learn
the optimal classification based on TDT’s cost function.

4 Link Detection task and Evaluation

In this section, we describe one of the tasks called link de-
tection, on which we performed the experiments reported
in this work.

Link detection requires determining whether or not
two randomly selected stories

✄✆� ✓ ✆ �✁� ✟ discuss the same
topic. The evaluation methodology of a link detection
system requires the system to output a score for each
story pair that represents the system’s confidence that
both stories in the pair discuss the same topic. The
system’s performance is then evaluated using a topic-
weighted Detection Error Trade-off (DET) curve (Mar-
tin et al., 1997) that plots miss rate against false alarm
over a large number of story pairs, at different values of
decision-threshold. A Link Detection cost function ✄✫✰ ✏ ✕✲✱
is then used to combine the miss and false alarm proba-



bilities at each value of threshold into a single normalized
evaluation score (Allan, 2002a). We use the minimum
value of ✄ ✰ ✏ ✕✲✱ as the primary measure of effectiveness
and show DET curves to illustrate the error trade-offs. It
may be useful for the reader to remember that, since the
DET curve is an error-tradeoff plot, the closer the curve
is to the origin, the better is the performance, unlike the
standard precision-recall curve familiar to the IR commu-
nity.

5 Experiments and results

We have used Identifinder (Bikel et al., 1999) and Jtag
(Xu et al., 1994) respectively, to tag each term by its
named-entity type and its part of speech category. Addi-
tionally, we have used a list of 423 most frequent words
to remove stop words from stories. Stemming is done us-
ing the Porter stemmer (Porter, 1980) while the model is
implemented using Java.

As a training set, we have used a subset of TDT3
corpus that consists of news stories from eight English
sources collected roughly from October through Decem-
ber 1998. We have used manual transcriptions of stories
when the source is audio/video. The training set consists
of 7200 story pairs. For the general English model for this
set, we have used the same TDT3 natural English manu-
ally transcribed set consisting of 37,526 news stories.

For the test set, we have used a randomly chosen sub-
set of natural English, manually transcribed stories from
TDT2 corpus. It consists of 6,363 story pairs and the gen-
eral English statistics are derived from 40,851 stories.

In the unigram language modeling approach to link
detection, which we have used as baseline in our ex-
periments, we build a topic model ✁ ✄ � ✓ ✟ from one of
the stories

� ✓ in the pair. We then compute the log-
likelihood ratio

✄ ✄ �✁� ✝ � ✓ ✟ of the second story
�✁�

with
respect to ✁ ✄ � ✓ ✟ similar to equation 5 but considering
the entire document as a single feature list. The semantic
language model score, on the other hand, is computed as
described in section 3.

Sometimes we may use a symmetrized version of the
formula, as shown below:

�✂✁☎✄✝✆✝✞ ✄ � ✓✝✆ � � ✟☛✡ ✪
✟ ✄ ✄ ✄ � � ✝ � ✓ ✟ ★ ✄ ✄✆� ✓ ✝ � � ✟ ✟ (9)

However, in this work, we have considered only the
asymmetric version of the formula to maintain simplic-
ity of the scoring function. For fair comparison, we have
used an asymmetric version of the baseline unigram lan-
guage model too.

We have considered the categories in figure 2 as our
semantic classes. Note that only terms that are not classi-
fied as persons, organizations or locations are considered
as candidates for nouns. The numbers in the table indi-
cate the weight assigned by the perceptron to each class.

We have trained the perceptron using the 7200 labeled
story-pairs of the training set.

The class All corresponds to the unigram model and
consists of all the terms of the story. Note that some of
the classes are defined as the union of two or more sub-
classes. We have done this to nullify the labeling error of
the named-entity and parts-of-speech taggers. For exam-
ple, we have noticed that Identifinder mislabels Persons

as Organizations and vice versa quite frequently. Our
hope is that creating a new class that is a union of both
Persons and Organizations will offset such tagging er-
rors.

Class Perceptron weight

Persons(P) 0.034998
Organizations(O) 0.0258486
Locations(L) 0.0374133
Nouns(N) 0.134969
Verbs(V) -7.99771e-05
Adjectives(A) 0.017435
Adverbs(Ad) -0.0010557
P ✠ O 0.0647334
P ✠ O ✠ L 0.106417
N ✠ V 0.138696
N ✠ V ✠ A 0.16157
All 0.279056

Figure 2: Semantic classes and their weights

The optimum class-weights as learnt by the Percep-
tron offer some interesting insights. First we note that
the class All receives the highest weight and this seems
quite intuitive since this class contains all the informa-
tion in the story. However, somewhat surprisingly, the
class ✡☛✠✌☞✍✠✍✎ receives higher weight than the class✂ ✠✍✏✑✠ ✄ indicating that the former class contains more
topical information than the latter. Also, note that Per-

sons are more important than Locations which are in turn
more important than Organizations which seems to agree
with common sense.

Next we trained the unigram model on the training set
and found the optimum value of the smoothing parameter✤ to be ✴ ✞ ✟ . We have used the same value for the smooth-
ing parameter in all the classes of the class-specific lan-
guage models and combined the class-specific likelihood
scores using the perceptron weights. A comparison of the
performance of semantic language model and unigram
model on the training set is shown in the DET curve of
figure 3. Quite disappointingly, the results indicate that
the overall performance as indicated by the minimum cost
in the DET curve has only worsened.

Figure 4 presents a comparison between unigram and
semantic language models on the test set. The smoothing
parameters and the perceptron weights are set to the val-
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Figure 3: Comparison of semantic LM and unigram per-
formance on training set

ues learnt on the training set. This time, however, we note
that the minimum cost of the semantic language model is
slightly lower than that of the unigram model, but the im-
provement is very insignificant.

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

False Alarms probability (in %)

lambda = 0.2

Random Performance

Perceptron weighted class-specific LM

Perceptron weighted class-specific LM TW Min DET Norm(Cost) = 0.1248

Unigram

Unigram TW Min DET Norm(Cost) = 0.1260

Figure 4: Comparison of semantic LM and unigram per-
formance on test set

6 Discussion

In this section, we first briefly touch upon the variations
in the model we considered and the various experiments
we performed, but could not report in detail owing to
space constraints. Secondly we discuss why we think the
model’s performance is unsatisfactory.

We have considered a simple mixture model to start
with, wherein each class-specific model ✁ ✏ ✄ � ✓ ✟ gener-
ates a list of features in its class ✑ ✏ ✄✆�✁� ✟ but the model
itself is sampled with a prior probability of

✂☎✄ ✁ ✏ ✄ � ✓ ✟ ✟
which we made dependent on

✝ ✑ ✏ ✄ � ✓ ✟ ✝ . This model’s
performance is found to be far below that of the uni-
gram approach and hence we abandoned it to favor the
perceptron-weighted likelihood ratios.

In terms of experiments done, we started out with the
basic semantic classes of

✂ ✆ ✏ ✆ ✄ ✆ ✡ ✆ ☞ ✆ ✎ and ✎✁� with-

out considering unions of the classes. We found that tak-
ing unions improved performance and we report the list
of classes whose combination performed the best.

Coming to the second part of our discussion, we are
yet to perform exploratory data analysis to understand the
reasons behind the unsatisfactory performance of the new
approach, but we believe the reasons could be three-fold:

Firstly, it is possible that we are operating the semantic
language model at a sub-optimal level. For example, we
have used the same value of the smoothing parameter that
we have learnt for the unigram model in all the classes of
the semantic language model. It is possible that different
classes may require different levels of smoothing for op-
timum performance. We believe one could use a gradient
descent algorithm on TDT’s cost function to learn from
the training set the optimum values of the smoothing pa-
rameters for different classes.

Secondly, a linear discriminant function that a percep-
tron implements is an overly simplistic classifier and may
not be doing a good job on separating the on-topic pairs
from the off-topic ones. A non-linear classifier such as an
SVM (Burges, 1998) could help improve our accuracy.

Lastly, it is possible that the unigram model is already
capturing the relative importance of terms that we are try-
ing to model using our semantic language models. The
likelihood ratio score we use in the unigram approach be-
haves similar to the tf-idf weights, which we know are
a powerful statistic to capture the relative importance of
terms. If this were true, then the semantic language model
may be rendered redundant.

The real reasons will only be revealed by an analysis
of the data and we hope to do this as part of our future
work.

7 Conclusions and Future work

In this work, we have presented a novel approach for link
detection task of TDT. The new approach has three key
ideas, namely modeling the relative importance of terms
by their semantic classes through a new semantic lan-
guage modeling approach, casting the link detection task
as a two-class classification problem and learning the op-
timum linear discriminant function using the perceptron
learning algorithm. We believe this is one of the earli-
est works that attempts incorporating semantic informa-
tion into the language modeling framework. Although
we have built the model specifically for the link detec-
tion task, it is general enough to be extended to the other
tasks of TDT such as Tracking, New Event Detection and
Clustering.

The results on train and test sets indicate that there is a
little or no improvement in the performance from the new
model as compared to the unigram approach.

As part of our future work, we would like to under-
stand the reasons behind the unsatisfactory performance



of the new model and try out a few improvements sug-
gested in section 6. The possible improvements could
consist of finding the optimal smoothing parameters for
each semantic class and using better non-linear classifiers
like SVM. Another possible area of improvement is to
consider more semantic classes such as dates, numbers,
etc.

We would also like to build systems for other tasks in
TDT based on semantic language models and test their
performance. We believe that semantic information is
more critical in tasks such as New Event Detection which
involves identifying the first story that discusses a par-
ticular event. New events are typically characterized by
mentions of new persons, locations or actions and our se-
mantic models are capable of capturing exactly such in-
formation.

Additionally, it has been suggested that statistical mod-
els such as the aspect model (Hoffman, 1999) and the
latent Dirichlet allocation (Blei et al., 2001) which gen-
erate words from a mixture of aspect-models can be ex-
ploited by modeling semantic classes as the aspects. We
will be studying the applicability of these ideas to the cur-
rent task as part of our future work.

We believe the main contribution of our work lies in
our attempt at incorporating semantic information in the
language modeling framework and combining scores in
a principled way. We believe we have only taken a first
step in this direction and much remains to be done as part
of future work.
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