IRr- 107

Clarifying Search
A User-Interface Framework for Text Searches

Ben Shneiderman

Department of Computer Science and Human-Computer Interaction Laboratory, University of
Maryland, College Park
(ben@cs.umd.edu)

Don Byrd and W. Bruce Croft

Center for Intelligent Information Retrieval, University of Massachusetts at Amherst
(dbyrd,croft@cs.umass.edu)

Abstract: Current user interfaces for textual database searching leave much to be desired:
individually, they are often confusing, and as a group, they are seriously inconsistent. We
propose a four-phase framework for user-interface design: the framework provides common
structure and terminology for searching while preserving the distinct features of individual
collections and search mechanisms. Users will benefit from faster learning, increased
comprehension, and better control, leading to more effective searches and higher satisfaction.

Contents

Introduction
The problem
Towards a Solution
The Four-Phase Framework for Search
Formulation
Action
Review of results
Refinement
Building Effective User Interfaces
Case Studies
Conclusions
Appendix 1: Definitions
Appendix 2: Feedback from Web Search Tools
Appendix 3: Terminology Survey
Acknowledgements
References

This material is based on work supported in part by the National Science Foundation, Library of
Congress, and Department of Commerce under cooperative agreement number EEC-9209623, by
NRaD Contract Number N66001-94-D-6054, by NASA contract NAG-528-95, and by NSF
contract IRI-96-15534.

Any opinions, findings, conclusions and/or recommendations expressed herein are those of the
authors and do not necessarily reflect those of the sponsors.

This paper appeared, in a slightly earlier version but with many live links, in the January 1997
issue of D-Lib Magazine on the World Wide Web (www.dlib.org).

Introduction

The problem. We believe that an opportunity exists to improve user interfaces for textual
database searching dramatically. The ideal user interface is as simple as possible, and it makes
key features as clear as possible. But many of the current text-search interfaces—especially on
the World Wide Web—are neither simple nor clear: they are often needlessly complex, and
they very often obscure key features. The result is confusion, frustration, and failure for
intermediate and advanced users as well as novices. Zero-hit outcomes occur on 30% of
searches at some services, while huge numbers of hits distract users in many other cases.
While online search services such as Infoseek, AltaVista, Lycos, WebCrawler, and Open Text
are widely used, public and professional concern about the difficulty of finding information is
great (Flynn, 1995; Hatlestad, 1996; Somerson, 1996). But we believe that improved designs
can lead to a far greater number of positive outcomes. Recent studies appear to confirm that
when users are given more information on and control over their searches, their performance
and satisfaction increases (Koenemann and Belkin, 1996).

Improved user-interface design is clearly part of the solution; yet design has its own set of
challenges. Consider the diversity of the user community a broadly accessible resource like the
Web proposes to serve. One of the main sources of diversity, though by no means the only
one, is differences in experience among users (Shneiderman, 1992):

First-time users need an overview to understand the range of services...plus buttons to
select actions. Intermittent users need an orderly structure, familiar landmarks,
reversibility, and safety during exploration. Frequent users demand shortcuts or macros
to speed repeated tasks and extensive services to satisfy their varied needs.

Poor user-interface designs can be improved. But even then, as users move from one search
service to another, inconsistencies can cause slower performance, uncertainty, mistaken
assumptions, and failures to find relevant documents. For example, the search string *“Hall
effect” could produce (among many other possibilities) a:

« search on the exact string “Hall effect”

* case-insensitive search on the string “hall effect”

« probabilistic search for “Hall” and “effect”

« probabilistic search for “Hall” and “effect”, with higher weights if “Hall” and “effect” are
in close proximity

« error message indicating missing AND/OR or other operators/delimiters

* Boolean search on “Hall”” AND “effect”

* Boolean search on “Hall” OR “effect”

Many existing systems give little or no indication of which interpretation they are using. Nor
does the above list hint at all the query-processing transformations in common use: there are
also questions of stemming, stop words (see Appendix 1 for definitions of underlined words),
relative weights of fields, etc. Finally, in many systems the results are displayed in a relevance
ranking whose meaning is a mystery to many users (and sometimes a proprietary secret).

The suggestions given here are designed to be complementary to ongoing research in
information retrieval interfaces and visualization. See, for example, Rao et al (1995),
Shneiderman (1994), and Van House et al (1996), as well as various papers in the annual
ACM SIGIR proceedings (ACM).

Towards a Solution. Based on experience with many systems (Shneiderman, 1992) and on
recent effort with the Library of Congress’s THOMAS (Croft, Cook and Wilder, 1995) and

American Memory projects, we propose a four-phase framework for thinking about text-search
user interfaces. We expect the framework to be of interest to information retrieval specialists
who are concerned about user interfaces. Note, however, that this paper addresses only
interfaces for finding information by searching. Browsing—of indices, alphabetical lists of
terms, news articles, etc.—may be equally important in some applications, but it has its own
set of challenges.

Admittedly, user-interface differences sometimes result from functionality differences: no
Boolean system (in the usual sense of the term) can do probabilistic searches. Nonetheless,
inconsistencies can and should be reduced greatly, and those that remain can and should be
made clear. The basic automobile user interface is something we now take for granted, but it
took many strange meanders over several decades to reach this level of standardization (Oliver
and Berkebile, 1968; Buxton, 1989); and remaining inconsistencies like left/right variations
from country to country still cause serious problems for travelers. As software designers, we
should be able to do much better than we are doing now, and thereby to spare our users
millions of conceptual fatalities.

In the remainder of this paper, we outline the four phases; make recommendations as to how,
from the user-interface standpoint, to implement the phases; and show how two existing
systems (one Web-based, one standalone) could be redesigned in accordance with our
recommendations. We believe that designers armed with this information will be in a good
position to satisfy the needs of all users, both in standalone situations and over networks
including the World Wide Web.

The Four-Phase Framework for Search

The four-phase search process gives great freedom to designers of specific systems to offer a
variety of features in an orderly and consistent framework. The phases are: formulation
(what happens before the user starts a search); action (starting the search); review of
results (what the user sees resulting from the search); and refinement (what happens after
review of results and before the user goes back to formulation with the same information
need).

Actually, before performing a search, users must consider their information need and clarify
their search goals. But this is just what a computer system cannot help with.

1. Formulation: This is the most complex phase in that it involves decisions of several
types, each of which may itself be complex. These decisions include the sources of the search,
i.e., where to search; which fields of documents to search; what actual text to search for; and
what variants of that text to accept. Some systems actually walk the user thru each of these
decisions in succession, but they cannot always be made in a predetermined order; nor are we
convinced they exhaustively cover the query-formulation possibilities.

a. Sources: The first step in performing a search is normally to decide where to search
(Marchionini, 1995). This is often a single physical database, but increasingly it is multiple
and distributed databases, accessed across a network.

Even if technically and economically feasible, searching all libraries or all collections in a
library is frequently not the preferred decision. When users are confident they know where
the truly relevant material is, they often prefer to limit the scope of their searches to a
specific library (say, NASA, Princeton, or the DIALOG system), a specific collection in a
library, or a specific range of documents in a collection.

In most cases, users decide “by inspection” where to search. However, this decision can
also be made by an instance of exactly the same procedure as the final search. Specifically,
some systems support a process called “collection selection”, in which the user’s query is
run against a special database that describes the contents of all known databases (Callan et
al, 1995). The result, instead of a list of best-matching documents, is a list of best-
:natching databases. The user can then run their query against one or more databases in the
ist.

b. Fields: Each document in a collection may have multiple fields (sometimes called
attributes, components, or tags). Users may wish to limit their search to specific fields of
documents within a collection. For example, users searching on common terms might
prefer to retrieve only documents whose title contains that term, or at least to give a higher
rank to documents whose title contains that term: see for example the elaborate weighting
algorithm used by THOMAS (Croft, Cook, and Wilder, 1995).

Searches may also be restricted by structured fields (year of publication, volume number,
language, media type, publisher, etc.). For example, searchers in the Congressional
Record may wish to restrict searches to items involving a specific member of Congress.

c. What to search for: There are various ways to express what to search for in full text;
the most important are probably (1) unstructured text, (2) text with embedded operators,
and (3) text with operators specified separately. Pure unstructured-text interfaces are
unusual: most of the popular Web search services (AltaVista, Infoseek, Lycos, etc.) and
other systems such as INQUERY accept either unstructured text or text with embedded
operators. An example of the latter is Infoseek’s “city-guide +Boston” (the words “city”
and “guide” must appear in close proximity, and the word “Boston” is required). Finally,
Open Text’s Power Search uses text with separate operators. All three ways can be
effective, but only if they are used properly.

A key issue here is that of phrases. In many situations, especially with short queries,
searches on meaningful phrases are much more effective than searches on the words of the
phrase. Using phrases will generally increase precision at the expense of recall. For
example, for someone searching for information on air pollution, the phrase “air pollution”
is likely to find fewer irrelevant documents (higher precision) than the pair of words “air”
and “pollution”—though it will tend to overlook relevant documents that refer to “air
quality” or “atmospheric pollution” (lower recall). In particular, phrases facilitate searching
on names: for example, a search on “James Billington” should not turn up “Jesse James”.
It should be easy for users to specify, and easy for them to know if they have specified,
that a series of words should be considered a phrase.

Unstructured text, approach (1), is often called “natural language”, and indeed, it looks like
natural language, but this can be extremely misleading. For example, many systems treat
“and” and “not” as stop words. In such a system, the query “bees and not honey” means
the same thing as just “bees honey”: compared to the query “bees”, it is more likely to
retrieve information about honey, not less. Even if the system pays attention to words like
“and” and “not”, it may parse a complex query differently from the user’s intention.
Similarly, a user might well assume that semicolons between words will be taken as an
indication that the words are not part of a phrase, but Alta Vista has exactly the opposite
interpretation. The only real solution to this kind of ambiguity is with feedback informing
users of how the system interpreted their queries, but it is very difficult to give this kind of
feedback in a way that will be clear to nontechnical persons.

In theory, text with embedded operators, approach (2), can be completely unambiguous,
including specifying phrases; it can also specify fields. However, our experience has
shown consistently that a great many users will have trouble with this approach. One
reason is lack of standardization: the syntax and meaning of embedded operators vary
considerably from one system to another, so it is easy to get confused. For example, in
Alta Vista advanced search and Yahoo!, a “wildcard” (matching anything) is indicated with
“*#7 in Lycos, it’s “$”. In Infoseek and Alta Vista, quotation marks around a series of
words indicates the words must appear in close proximity; in Lycos, quotation marks have
no such effect and in fact seem to be ignored. Another problem is the danger of inadvertent
activation: innocently using text that the user thinks of as unstructured, but which contains
characters or strings that will be interpreted as embedded operators. For example, some
systems (WebCrawler and INQUERY among them) use parentheses to delimit phrases or
other groupings; in such a system, pasting in text containing parentheses might result in
prematurely ending a grouping.

Other than embedded operators, the only way we know of to specify phrases
unambiguously is with an implementation of approach (3): the program considers the
contents of every text-entry box as a phrase, and clearly says so on the screen. Then
multiple entry boxes must be provided to aliow for multiple phrases. (Of course, a text-
entry box must also accept a single word.) If choices of Boolean operations, proximity
restrictions or other strategies for combining the boxes are available, then users should be
able to express them; regardless of whether any choices are available, users must be told
what combining technique is being used. Ideally, users and/or service providers should
have control over stop lists (common words, single letters, etc.); as a minimum, users
should be warned when they try to search for a stop word.

The basic issue is always this: Does the program interpret the query the way the user
intended it, and—even if it does—does the user know that the program interprets it that
way? A significant advantage of approach (3) is that, correctly implemented, it is probably
the easiest for users to understand.

It is important to allow searching structured fields (controlled-vocabulary text, dates, etc.)
in databases that also contain unstructured text at the same time as text fields are searched.
The user-interface issues for specifying “what to search for” in structured fields are the
same as for standard database systems.

d. Variants: Users are very often unsure of the exact value of the field they want; indeed,
there may not be any single value that is appropriate. As a result, users may want variants
to be accepted. In structured fields of text databases, as in traditional databases, this may
include a range on a numeric or date field. In unstructured text fields, interfaces may allow
user control over:

» capitalization (case sensitivity)

* stemmed versions: searching for “teach” finds words like “teacher”, “teaching”,
“teaches”

* partial matches: searching for “biology” retrieves “sociobiology” and “astrobiology”

* phonetic variants, e.g., from N-grams or soundex-like methods: searching for
“Johnson” finds “Jonson”, “Jansen”, and “Johnston”

* synonyms: searching for “cancer” finds “malignant tumor”

» abbreviations/acronyms: searching for “Digital Equipment Corporation” finds “DEC”

* broader or narrower terms from a thesaurus (searching for “New England” finds
“Vermont”, “Maine”, “Rhode Island”, “New Hampshire”, “Massachusetts”, and
“Connecticut”, and vice versa).

In addition, this item should include stop words. (Of course, the fact that some words are
stopped has nothing to do with variants in the normal sense.)

In all cases, the user interface should make it clear how variants are handled.

2. Action: Searches may be started explicitly or implicitly. The typical usage process in
current systems is to have users click on a Search button to initiate the search and then wait for
the results. But a very appealing alternative is that of “dynamic queries”: there is no Search
button but the result set is continuously displayed and updated as phases of the search are
changed. See, for example, the commercial system Folio Viewer, or research prototypes like
Ahlberg and Shneiderman (1994) or Shneiderman (1994). This approach requires adequate
screen space and high bandwidth, plus, for a large database, very rapid processing: whether it
is feasible depends very much on the situation. However, when it is practical, the advantages
are great: users can broaden, narrow, or refocus their search several times in as many seconds.
Designers may also allow users to choose between approaches.

In situations where it is not practical to actually re-run the query and update results
continuously—for example, when the database and the user are connected by a network with
limited bandwidth—the “query preview” approach is worth considering (Doan et al, 1996). In
this approach, changes to the query simply update a display (perhaps just an estimate) of the
number of hits. The query is not actually re-run until the user requests the full results,
presumably when they are satisfied that the number of hits is neither zero nor so high as to be
cumbersome. However, it is not yet clear how such an approach can be applied to full-text
information retrieval.

A final comment: users should have an obvious way to stop the search in case they feel it’s
taking too long. Most if not all popular Web browsers have a Stop button, so this should not
be an issue for Web interfaces. In addition, many window systems have a standard way of
doing this that does not rely on any visible part of the user interface (henceforth “UI”), but less
sophisticated users may not know that or may not remember how to activate it. (One would
hope that this function would rarely be needed in dynamic-query systems, whose design
response times must be very brief.) If the search interface includes both Search and Stop
buttons, they should be close together.

3. Review of results: For some time, information retrieval interfaces have let users specify
result set size (for example, a maximum of 100 documents), contents (which fields are
displayed), sequencing of documents (alphabetically, chronologically, relevance ranked,...),
and, occasionally, clustering (by field value, topics,...). All of these capabilities can be
valuable, but they all simply try to make a list of documents easier to handle. A query against a
large database, even a query that is well focused, can produce so many potentially-useful hits
as to be overwhelming—say, several hundred or more. Fortunately, much more can be done to
display results in a useful form.

Recent work in information retrieval interfaces, capitalizing on general information-
visualization research, has dramatically expanded the limited traditional palette of display
techniques. For example, LyberWorld (Hemmje et al, 1994) displays document icons in a
circle, with terms around the circumference “pulling” the documents towards themselves; the
terms can be moved and the strengths of their pulls varied. Rao et al (1995) describes such
techniques as tilebars, perspective walls, cone trees, and document lenses. Swan and Allan
(1996) discuss three-dimensional network displays, with the viewpoint adjustable in real time,
to support clustering. Finally, “virtual reality” flythroughs of simulated document spaces are
being explored intensively. For example, the Web page for Apple Computer’s HotSauce

says “Download the HotSauce fly-through plug-in to fly through 3D representations of Web
space right away.”

Search interfaces should also provide helpful messages to explain search results and to support
progressive refinement. For example, if a stop word or misspelling is eliminated from a search
input window, or stemmed terms, partial matches, or variant capitalizations are included, users
should be made aware of these changes to their query. If the two words in a phrase are not
found proximally, then feedback might be given about the occurrence of the words
individually. If multiple phrases are being sought, then perhaps documents containing all
phrases should be shown first and identified, followed by documents containing subsets, but
if no documents are found with all phrases, this would be indicated. A fairly elaborate decision
tree (perhaps 50 to 100 branches) of search outcomes and messages might be specified.

4. Refinement: One of the most important ways in which current information retrieval
technology supports refining searches is relevance feedback. A search interface can support
relevance feedback in a variety of ways. A recent article (Koenemann and Belkin, 1996)
describes a user test of several ways, and suggests that users should be able to see and
manipulate the words relevance feedback adds to the user’s query. (Using the term “relevance
feedback” in a user interface is not very satisfying: it is rather unintuitive, and it refers to the
system’s perspective, not the user’s. But, at this point, it is almost completely standard. The
only alternatives we have seen are “more like this” and Infoseek’s and WebCrawler’s “similar
pages”. Another possibility might be “high relevance”.)

Another aspect of refinement is supporting successive queries. As searches are made, the
system might keep track in a history buffer to allow review of earlier searches. In any case,
progressive refinement should be convenient.

Finally, a system might make search results and the settings of each phase objects that can be
saved, sent by e-mail, or used as input to other programs, for example visualization or
statistical tools. But these are mostly matters of convenience, not refining the search.

Building Effective User Interfaces

Our goal in this section is to provide designers with general guidelines for effective user
interfaces for information retrieval.

User-interface design is a large topic and a growing discipline (Shneiderman, 1992; Preece,
1994; Baecker et al., 1995). Guidelines documents from commercial providers such as Apple,
Microsoft, and IBM are widely available and contain hundreds of good suggestions. Short lists
of “golden rules” have been provided by several authors; Shneiderman (1992) offers eight
rules that can be useful here. Rephrased for the context of information retrieval and the four-
phase framework, they are:

1. Strive for consistency. Ensure that terminology, instructions, layout, color, and fonts are
used consistently across search user interfaces. For example, changing the search-initiation
button label from “search” to “query” or “browse” has been shown to slow user performance
and lower satisfaction significantly (Mahajan and Shneiderman, 1996). Based on the user
survey described in Appendix 3 and on our experience, we recommend using the terminology
we have used above or the alternatives in Table 1.

Table 1. Terminology

Recommended term Alternative

Sources “Databases™.

What to Search for “Phrases” (if the contents of an input box will be treated as a
phrase) or just “Search for”.

Action Nothing, i.e., omit the label entirely.

Search “Start Search” may be clearer in some contexts, especially on

the Web, where a button labelled “Search” might simply jump
to a search page.

Changes to the location, size, or color of buttons also slow and confuse users, though to a
lesser extent.

2. Provide shortcuts for skilled users. An obvious example here is the keyboard equivalents for
menu commands that systems like the Mac OS and Microsoft Windows provide: these are
particularly helpful because they’re self-documenting. As another example, users who already
know a term or document identifier should not have to perform a time-consuming search or
navigate through a lengthy series of menus and dialogs. (A separate issue is whether long
series of menus and dialogs are desirable at all: see below.)

3. Offer informative feedback. This is the point we have emphasized in the discussion of the
four-phase framework. The user should be informed about all aspects of the search they are
preparing to do: the sources, fields, what is being searched for, and what variants are being
allowed. When the search is complete, it should be obvious to the user what happened and
why.

For example, why was a given document retrieved? In “conventional” text databases,
presumably because words that appear in the query (or variants of them) also appear in the
document, and simply highlighting them in a display of the document text is usually sufficient.
But in hypertext (i.e., on the Web), a document may have been retrieved partly or entirely
because of documents it links to, and things are not so easy. (Unfortunately, this difficulty is
compounded by the fact that Web search tools never offer a “custom” display of pages they
retrieve, so there is no way to see the retrieved document with query words highlighted.)
Another example: when zero-hit or overwhelming-number-of-hit results are produced, users
should be given some suggestions as to what to do next. A final example: it is critical to make
clear what is being searched for, but many popular search tools do not. To see this, try the
query “and or”—an extreme case, but one a student of linguistics or logic might conceivably
give—in Infoseek, Lycos, or Yahoo. (See Appendix 2 for details of how this query behaves in
a number of Web search tools.)

4. Design for closure. Users should know when they have searched a complete database or
have viewed every item in a browse list. Traversing a deep menu tree is disorienting, especially
when backtracking and exploration are expected. Under most situations, a broader tree with
fewer levels is much better, since it allows users to reach their destination in fewer steps.
Broad, shallow trees also reduce short-term memory load.

5. Offer simple error handling. Syntax errors should be prevented where possible; all error
messages should be specific, constructive, and no more technical than necessary; and changes
to search parameters should be easy to apply. For example, one error message from
XINQUERY says “eval_query "" 50 "" inq_eval_query called with zero length query.”:

nearly ‘inco'mprehensible to most non-programmers. A far preferable statement would be
something like “No search text was given. Enter text and try again.”

6. Permit easy reversal of actions. Every action should be reversible so users can go back to a
previous state in a session. In our context, the best example is probably keeping a history of
queries given and letting users re-issue them. This is particularly valuable if the complete
context of each query—for example, relevance feedback—is captured as well.

7. Support user control. In a well-designed interface, users initiate action, monitor progress of
long searches, and always feel in control. Most users greatly prefer interfaces with no enforced
sequence of actions; they should be able to set parameters for a search in whatever order they
prefer. Another way to give users a sense of control is to provide a visual overview of an entire
database (Ahlberg and Shneiderman, 1994): then visual feedback about search outcomes help
users gain a better understanding of their progress.

8. Reduce short-term memory load. Keep a session history, so users can always go back and
reuse previous effort. While spreading information over several screens may be graphically
appealing, the burden of shifting from one screen to another is large. Studies show that more
compact presentations on fewer screens are more effective. Compact presentations do take
slightly longer to scan, but much less time than scanning several spread-out presentations.
Similarly, in web page design, compact vertical presentations—reducing the need to scroll—
are highly beneficial.

One additional rule specific to text-search interfaces is worth mentioning, especially because to
some extent it contradicts rule 8: Allow plenty of space in text-entry boxes. This is particularly
important because longer search text very often gives better recall and/or precision, and so
users should be encouraged to use long search strings.

Case Studies: Two User-interface Redesigns

To clarify both the framework and the user-interface guidelines, we will now give “before” and
“after” examples of two text-search interfaces. One is Web-based; the other is a standalone
application for a desktop computer.

Case Study 1: Web Interface

A recent version of the search page (Fig. 1) for the Library of Congress’s THOMAS system
enables users to find text in the Congressional Record by full-text search. (Note that this is not
the current version. While we were finishing this paper, Library of Congress redesigned the
THOMAS page themselves; as of this writing, their page, located at
http://thomas.loc.gov/home/r104query.html, has a significantly-improved version.) It is typical
in many ways of search pages currently on the Web. With a modest amount of effort,
knowledgeable users should be able to find what they are looking for, but it does leave several
features unexplained and could be troubling to first-time users. For example, the page has
multiple sets of search and clear buttons that perform the same function and may be confusing.
The controls that allow a user to search certain sections are located near the “Word/phrase”
box, but are not near the other attribute items such as date range and/or Congressperson. The
control for the maximum number of items to return is below the final search button, where it
may be overlooked by users scanning from top to bottom. Handling of variants, such as case-
sensitivity and stemming, is not mentioned. The valid date range for the date range selector is
not given. Finally, a list of Congresspersons would help users when entering a name.

® File Edit Uiew Go Bookmarks Options Directory Window

YTy

Netscape: '

= E= ey = — e pegrp

G Bl ' r o O @

1

ggrg Full B!l of gqnglo Be - 04th Congress =R

h Full Tex

SEARCH: Keywond | (Yupunowunt/ nw oy
LIMIT: Member of Congress | Date

e) wtt ¥ e of s | S e et N WSS DS D D XDy ke,

SEARCH CONGRESSIONAL RECORD TEXT:

Type your search in the box below, Press any “Search” button to begin.

[sEARCH) (CLEAR |

Keywvordiphrase: [Help]
|State Department budget
E.g., Loz s vear, falunnd deigel, swnddnr sy, sk podfetiu
Search in: (@ All sections () Senate section (O House section (O Extensions of Remarks

(SEARCH][CLEAR |

1. Member of Congress: Only those debates!speeches where the following member spoke or submitted
remarks for insextion in the Sxxvy’

| éranks [Help]
{Enter member last name only, e.g., 4, guphu)

LIMIT YOUR SEARCH TO:

2. Date: Only those debates/speeches which appeared in the Axuyf between:
and | [Help)
E.g., 3R and %%

[SEARCH] (CLEAR)

Maximum number of items 0 be retwrned: [100
LURer SRR DAY B ARV T NN SRR DAY LU SRt deeTiean oy,

;ﬂ SEARCH CONGRESSIONAL RECORD INDEX :
| Congress and Session: 104 - 2nd (1996) - 104 - 13t (1995)

iderman{
riteQueries.t
eryForMS¥ind

JorwebiR

rySyntaxSurve
JrageQuerylenc
hilyH/querySy

Jests/Reports

luerg f
ralinqueryUlf

ild

Guided by the four-phase framework, the revised version (Fig. 2; at
http://www.cs.umd.edu/projects/hcil/People/bas/workingExamples/congRec 104.html) uses an
HTML table to organize the components. It starts out by clearly stating the Sources of the
search, including the valid dates of the 104th Congress. The Fields section, whose elements
limit the search, contains radio buttons for selecting a section of the text, a drop-down box for
choosing a member of Congress, and a date range selector. The inclusion of a drop-down box
eliminates the burden of spelling a Congressperson’s name correctly. The date range now
specifies valid dates for this search. (It would be better to replace the two boxes with a double
box slider to specify the date range, allowing for rapid adjustments to the search.) Variants
allowed are described for the user. Three phrases can be entered, one to a box (note, however,
that in this example only the first box is functional). The maximum number of results to return
can be set in the Results section. This section also provides the user with information on the
sort order of the results. Finally, only one set of search/clear buttons appears.

As of this writing, 800x600-pixel displays seem to be about average. On such a display, the
current search interface takes up about two screens, so scrolling is necessary to view all
elements of the search. The revised interface fits on one 800x600 screen.

Overall, the the functionality of both searches is the same. However, we believe that the
changes will shorten learning times, improve user effectiveness, reduce errors, increase
retention, and raise satisfaction.

Case Study 2: Standalone Interface for a Desktop Computer

XINQUERY (Fig. 3) is a front end for CIIR’s INQUERY retrieval engine; it runs under X
Windows. XINQUERY supports single-database-at-a-time searches. Note that all major user-
interface areas appear within a single window:

* In the upper left, a bargraph showing document-by-document scores for the retrieved
documents (the area is blank until a query is run). Each bar in the bargraph corresponds to
a document title, and the length of each bar corresponds to the relevance-score number to
the left of the title.

* In the upper right, a text-entry area, into which an unstructured or structured query is
entered.

* Just below those areas and across the window, an area in which a summary of the results
(i.e., list of retrieved documents, with numeric scores estimating their relevance) is
displayed. This area is also used to control relevance feedback: note the checkboxes under
the column heading “RF”.

* Further down still and across the window, an area in which the text of one of the retrieved
documents may be displayed, with text matching the query highlighted. To display a
document, the user double-clicks either a document title or its bar in the bargraph.

In addition, the window displays a number of buttons, all of the instantaneous kind; the name
of the database currently being used; and some information about the search results.

XINQUERY'’s user interface exhibits many deficiencies (not all visible from these screen
shots). To point out some of the more serious:

1. The actual numeric scores given for documents are virtually meaningless, even to
experienced INQUERY users. Relative scores shown by the heights of the bars are much more
useful, but it’s not easy to see the close relationship between bars in the bargraph and
documents in the results area.

10

Netscape. Search Full Teut of the Congressmnal Record - ll]4th Congress ==HE
i ‘VE_
ot
ar
03
sk
tec
BROWSE: _d_vzg..rvmvm!msz Tssues by Dane?Parq Coupopesu/ Bt ter Eihe
[Sources [Congressional Record entries for the 104th Congress (1995-1996). ::\ 1
| Sections o search : 4 Mock
® All sections (O Senate section) House section (O Extensions of Remsrks rm

Member of Congress: Only those debates/speeches where the selected member
Fields spoke or submitted remarks for ingextion in the Sx2wf
| FRANKS,B. | [Help]

Date: Between
(171795 and [12/31/96 {Help]

Search is case-insensitive.
Se&rch will stem all worrls entered in Phrases. E.g., “join" will search for "join", “joined”, “joining”, ete..

' [State Department budget
|B.g., Line item veto, balanced budget, gasoline tax, water pollution | Help]
Entries with the highest relevance will appear firstin the list.

1Maximum number of entries to display:
Larger valuss may slow response time.

[SEARCH] [Clear

SEARCH CONGRESSIONAL RECORD INDEX .
Congress and Session: 104 - 2nd (1996) - 104 - 13t (1995)

BROWSE:

Congresianal Recond 13sues by Date and Part
Page citations and bill references in the Daily Digest are hyperlinked o the full-text (upouivay/ Fxryy and text of
legislanon databases for the 104th Congress.

104 LDOC O

'C ear Rel Docs| Clear/Restore_Queryl Run Query[
Tltle :

Business BrieF - Handg &. Harman. @ Second-Perl Ny
- Biant “Group Inc, @ Builds Eclectic Mix @ With Asper|: (i
3890921—0019j f[Lettéh§iﬁéfthéuEditéﬁzﬁﬁ”*ThewRawﬁIfﬁﬁhﬂ@~706‘Sugaﬁ,si :
HSJ890929-0116‘~~‘:1; Borden Plans to'Shrink:Dairy Business, @ Streanline |
- Corporate Focus: @ Miles Will Lead Kraft General Fod

oh
,become more stable and as, operat,ing
peuuve pos.xt.mn. e .

o Prev Doc Next Doc f‘
BEREO

Fig. 3

2. The appearance of the entire UI in one window strongly suggests tight coupling between
query display and results; but results are not updated until the user explicitly runs a query. As a
consequence, the query and the results shown can easily be “out of sync”.

3. The only indications of what variants are in use are incomplete, vaguely worded, and
available only through menu commands with unintuitive names.

4. Only one document can be viewed at a time, and not much of that document at a time, since
much of the window is occupied by other “widgets”.

5. There’s a *query history” mechanism to support refining queries, but only for the current
sesston: a user can save only individual queries.

6. Many error messages take the form of a beep when they occur: to find out what the problem
is, the user must open a special error-list window. Even then, many of the messages are nearly
incomprehensible to a non-programmer. The example we gave before, “eval_query " 50 "*
inq_eval_query called with zero length query”, is fairly typical.

7. It’s not as obvious as it could be whether relevance feedback is in use.

We began work on a new front end for INQUERY early in 1996. The current version,
Wilnquery, is shown in Fig. 4; it is written in Visual Basic, and runs under Windows 95 and
Windows NT. The version of Winquery shown is similar to XINQUERY in many ways: it
also supports single-database-at-a-time searches, and much of the user interface is similar.
However, Winquery addresses many of XINQUERY’s problems along the lines of the four-
phase framework, though it follows the framework less strictly than the THOMAS redesign.
Changes to the XINQUERY trouble spots we listed are as follows:

1. There is no separate bargraph area. Instead, the bar representing each document’s score
appears horizontally, to the left of the document’s title in the sumary. The numeric scores are
normally hidden, but can be displayed if the user wants them.

2. To reduce the chances of a user incorrectly assuming results displayed correspond to the
query displayed in the query-text window, the summary is headed by the query whose results
it contains. In addition, query sequence numbers above the query-text window and with the
summary-area heading indicate whether the two correspond or not.

3. The status of stemming, stopping, and case sensitivity (which are features of the databasc
and cannot be changed) are shown underneath the database name at all times.

4. Several documents (currently a maximum of four) can be shown at once. Each appears in a
separate window, which can be as large or small as desired.

5. Files of queries can be opened, modified, and saved. The history of queries issued in a
session can be saved.

6. Error messages are straightforward, and they appear in modal windows when the error
occurs. For example, trying to run a query with with an empty query-text field simply says
“No query given. Type or paste something into the query area and try again.” (While this is
certainly an improvement for most first-time or intermittent users, note that an expert might find
XINQUERY’s default beep adequate and might prefer not to be bothered with a modal
window. This issue could be addressed in several ways, e.g., with a preference to choose
between the two methods.)

11

y'31q

Undes the plan, Borden intends to sell or close 65 of its 265 plants world-wide within three yeats §
Of those plants, 45 preduce food or consumer goods and 20 are dairy facifities.

BY: Ilaw flsh health

*__Jen’s nondairy businesses.

“Haguire, an analpst at Merrill Lyn:

WSJ890815-(Business B nef Handy & Harman: @ Second-Period Net Fell 1 ﬁ '
Gl

WSJB830918-{ Giant Group Inc. @ Builds Eclectic Mix @ With Aspen Deal @ ----
WSJ830921-(Letters to the Editor: @ The Raw Truth @ On Sugar Subsidies

WSJ83909239-(Borden Plans to Shrink Daity Business, (@ Streamline Food, Consume:

ooooooooo |
WwNOUs|wN =

WSJ830928-(Corporate Focus: @ Miles Will Lead Kraft General Foods @ - @
WSJ8390928-(Technology & Health: @ Genetic Medicines @ Used for Epile|
WSJ8310134 Letters to the Editor: & Raw Language
WSJ830815-(Raw Steel Output Declines
WSJ890822-(Raw-Steel Production Falls

;] @miaw [Ifood WM business

Vg
|
1

0y

ears and is now seeking to cons(‘ii:ﬁz
itions that have added $3.1 billic{.-;
a and Eimer's glue. |

en was moving decisively to sus

1o them.

orden's eamings would have rise’ 3
* 1] RE

 Jn Airwaps Inc. is at fiist glance puzzling:;

pt magnate Buit Sugarman, who holds a/|
““Jays had a piopensity for overseeing an
hodgepodge.

ng.

Jiding a major recycled newsprint mill lha]

| raw material for this business is cheg)

“Jar from Media General Inc. as partof a ¢
- Jheld a big stake in an entertainment co

;O e s A T

But Giant's core business in cement making in fact had been involved in resource recover
Mr. Sugarman has made nonses about selling the cement operation since 1987,

3Gl R liE Wi M ET T

7. If relevance feedback was used in evaluating a query, the caption above the summary area
says so. If relevance feedback is set for the query that will be evaluated if the “Search” button
is pressed, the button’s label says “Search with RF”,

Aside from addressing XINQUERY s deficiencies, Winquery has the unusual feature of
breaking the score bars into colored segments to form a “stacked histogram”, where each
segment shows the contribution of a word in the query to the document’s score, according to
the legend shown at the bottom of the window. This is reminiscent of Hearst’s tilebars (Rao et
al, 1995), but the resemblance is mostly superficial. Tilebars provide information that stacked
histograms omit, namely where words are used in each document; stacked histograms give
information tilebars omit, namely the documents’ relative scores and how much each word
contributed to each document’s score. (It might appear easy to infer a word’s contribution from
a tilebar, but this is not so, since most systems assign different words very different weights.)
For example, the first document’s high ranking came mostly from the word “raw”, with a
smaller contribution from “business”. A user can also change the mapping of words to colors,
assigning as many words as they want to a single color. This facility comes under the rubric of
offering informative feedback.

A chart showing each user step and the corresponding system support can clarify a given

system’s strengths and weaknesses, and so may be useful both in designing and evaluating
systems. Table 2 is such a chart for Winquery.

Table 2. System Support for the Phases

Phase System support

1. Formulation

a. Sources Open menu command; current source is displayed at all times
b. Fields Embedded commands
c. Search for Edit text box; displayed at all times
d. Variants No options; treatment is displayed at all times; Show Parset
Query command
2. Action Start Search button and menu command
3. Review of Results In Preferences command, set maximum items to retrieve,

whether to display numeric scores, whether to show colors for
query-term-contribution; user can change assignments of terms
to colors; document display highlights matched words; can
display several documents at once

4. Refinement Relevance Feedback; support for query sets (user can choose
and re-issue or modify any query from a query set; the name of
the current query set is displayed at all times; query sets can be
saved)

Finally, in a complex interface with many options, it might also be useful to break the system
support down according to what it does for each category of user—for example, first-time,
intermittent, or frequent.

Conclusions

In summary, the four-phase framework focuses on:

1. Formulation:

12

* Sources: specify which libraries and/or collections to search and the search range
within them.

* Fields: each document in a collection may have multiple fields. Users specify which
text fields are to be searched. Searches may also be restricted by structured fields.

* What to search for: users select or type in text, perhaps as one or more phrases.
Users may have control over stop lists (common words, single letters, etc.).

* Variants: searches might allow user control over variant capitalization, stemmed
versions, partial matches, phonetic variants from soundex methods, and synonyms,
abbreviations, broader, or narrower terms from a thesaurus. In all cases, the user
interface should make it clear which variants, if any, are allowed.

2. Action: how does a search get initiated—explicitly (e.g., with a button), or implicitly
(e.g., when some aspect of the query is changed).

3. Review of results: conventional options are, for example, to specify result set size,
layout, sequencing (alphabetically, chronologically, relevance ranked, etc.), and contents
(which parts and fields are displayed). Less conventional interfaces might employ a wide
variety of techniques, including many based on information-visualization research.

4. Refinement: provide feedback on search results with informative messages and clustering
of results. For example, enable progressive querying, especially with relevance feedback;
history keeping; and extraction of results to files, perhaps for use in e-mail.

The sample Web interface we discussed above requires nothing more advanced than HTML
tables and forms, but in some cases, applying the framework successfully over the Web may
require more powerful tools such as Java. On the other hand, while we have thought mostly
about text situations and both of our sample interfaces are for full-text searching, we suspect
our framework will prove appropriate for multimedia as well as text.

Finding common ground will be difficult; not finding it would be tragic. While early adopters
of technology are willing to push ahead to overcome difficulties, the middle and late adopters
will not be so tolerant. In particular, the future of the World Wide Web as a universally
acceptable tool may depend on our ability to reduce the frustration and confusion of the masses
of users, while enabling them to reliably find what they need.

Appendix 1: Definitions

The following definitions may facilitate discussion.

Inadvertent activation, in human factors, means activating a user-interface feature without
intending to. In GUISs that use both single and double clicking extensively, a common mistake
of new users is to double click when they intend to single click: the result is inadvertent
activation of the double-click behavior.

An information need is the perceived need for information that leads to someone using an
information retrieval system in the first place.

Two terms are commonly used in the evaluation of information retrieval systems: precision and
recall. Precision is the ratio of the number of documents retrieved that “should” have been

13

retrieved—i.e., the number of retrieved documents that were really relevant to the query—to
the total number of documents retrieved. Recall is the ratio of the number of relevant
documents retrieved to the number of relevant documents in the database. Each can vary from 0
to 1, and the higher the value, the better.

Morris Hirsch (1996) has given an elegant statement of why these concepts are important:

If you use any text search system, you will soon encounter two language-related
problems: (1) low recall: multiple words are used for the same meaning, causing you to
miss documents that are of interest; (2) low precision: the same word is used for
multiple meanings, causing you to find documents that are not of interest.

Relevance feedback is the process of taking retrieved documents that have been determined to
be good examples of what the user wants, and using them to produce an improved query.
Determining which retrieved documents are good ones is normally done by the user (for
example, clicking a “Similar Pages” button in Infoseek).

Stemming means converting words to their presumed roots. For example, “blacker”,
“blackest”, and “blacks” may all be converted to “black”.

Stop words are words that the system ignores, normally because they are assumed to be so
common as to carry little information useful for distinguishing relevant documents from non-
relevant ones, while burdening the system with much larger index files, data structures, and so
on.

A controlled-vocabulary field in a database is one that accepts only words or other values from
a pre-defined list. The term “controlled vocabulary” can also be applied to entire systems.

Unstructured text or free text (as distinguished from structured text or text involving controlled
vocabulary) is text in which any word or sequence of words might appear, and no word is
“reserved” to carry some special meaning. For example, in a system in which “and” is a
Boolean operator, “cats and dogs” would be structured text; in a system in which it is not a
Boolean operator, the same series of words might be unstructured text. Unstructured text is
often called *“natural language”, but this can be extremely misleading: see What to Search For
(above) for more details.

Appendix 2: Feedback from Web Search Tools for a Difficult Query

The query “and, or” is one a student of linguistics or logic looking for information about
conjunction and disjunction might conceivably give, but both words are often used as Boolean
operators; when they are not, they are often listed as stop words. For this query, as of early
November 1996:

* Yahoo responds “Please use a non-empty search string.”: surely more confusing than
helpful to almost any user.

* Excite responds “No query terms were found in index.” This is more sensible, but
excessively technical and again confusing.

* Infoseek responds “Infoseek found no results for your search.”: slightly better yet, but
still confusing, since it gives no indication of why.

* Lycos says “You searched all sites for: ‘and or’. You found 6001 relevant documents
from a total of 68,173,788 indexed Web pages: and”. So Lycos actually searched for and
found documents, but its response is still confusing because it apparently ignored the “or”.

14

* Open Text allows searching for “these words” or “this phrase”. Searching for words, it
says “Your search would have resulted in exactly 35,348,185 matches on the Open Text
Index. Please refine your search.” Searching for a phrase, it finds thousands of matches.

* WebCrawler responds clearly with “No documents matching ‘and, or’”.

* Alta Vista’s Simple mode makes clear what it did by saying (the numbers are word
counts) “Ignored : or: 46370646, and: 223696255. No documents match the query.”

* Alta Vista’s Advanced mode (in which “and” and “or” are treated as operators) says
“Syntax error(bad query)”: a rather technical statement, but probably justified for a mode
that is labelled “advanced”.

Removing the comma between “and” and “or”” had no effect in any case.
g y

Appendix 3: Results of a Survey on Terminology Preferences

We did a survey on “Terminology Preferences for Text-Searching Programs”. All of the
subjects were adult, native speakers of English with at least a high-school education. Of the 16
subjects, 7 were male and 9 female. Every subject had at least a little experience using
computers, but several had absolutely no experience with text searching. On the other end of
the scale, none was an expert on computers in general or an expert text searcher.

We showed subjects a “sample search page” that was actually a screen shot of an earlier
version of the redesign of THOMAS (Case Study 1, above), but with the labels “Sources”,
“Fields”, “Variants”, “Action”, and “Search” respectively replaced by “Term 1” thru “Term 5”.
For each of these, we explained the concept and asked the subjects for their preference. We
gave the subjects a list of possibilities, but encouraged them to choose a term of their own or
even nothing at all (i.e., leave that label blank).

Below are the questions and the subjects’ preferences. No number following a choice means
no one preferred it. “(S)” denotes choices suggested by the subjects; the other choices were
those we provided. To avoid ambiguity, terms containing nonalphabetic characters appear in
quotes.

Term 1 (Sources)

Universe: 2 Databases: 5 Scope: 1 Sources: 7
(S) “Search what?”: 1

Term 2 (Fields)
Fields: 9 Auttributes: 3 Filters Limits: 3
Restrictions: 1 S)

Term 3 (Variants)

Text variants: 1 Text matching: 3 Text matching options: 3 Variants: 3
Text handling: 1 Equivalents: 4 (S) “Note:” : 1

Term 4 (Action)
Initiation; 1 Start-up Query: | Submit: 1
Run: 3 Action: 6 (S) [leave the box cmpty]: 4

15

Term 5 (Search)

Scarch: 6 Start Search: 7 Run Run Query: 2
(S) Go: |

Acknowledgements

The authors wish to thank James Allan, Dave Aronow, Bill Berry, Pat Billingsley, Morris
Hirsch, Leah Larkey, Gary Marchionini, and Catherine Plaisant for their many helpful
comments, and Bryan Slavin for assistance in re-designing and implementing the THOMAS
web site for Case Study 1. In addition, Pat Billingsley’s assistance in designing and running
the terminology survey was invaluable.

References
ACM. Proc. ACM SIGIR Conferences (annual).

Ahlberg, Chris, and Shneiderman, Ben (1994). Visual Information Seeking: Tight coupling of
dynamic query filters with starfield displays. Proc. ACM CHI94 Conference , pp. 313-317 +
color plates.

Baecker, R., Grudin, J., Buxton, W., and Greenberg, S. (eds) (1995). Readings in Human-
Computer Interaction: Towards the Year 2000. Morgan-Kaufman Publishers, Los Altos, CA .

Buxton, W. (1989). On the Road to Brighton. SIGCHI Bulletin 20, 4, pp. 16-17.

Callan, J.P., Lu, Z., and Croft, W.B. (1995). Searching Distributed Collections with
Inference Networks. Proc. 18th Annual Int. Conference on Research and Development in
Information Retrieval (SIGIR 95), pp. 21-28.

Croft, W. Bruce, Cook, Robert, and Wilder, Dean (1995). Providing government information
on the Internet: Experiences with THOMAS. Proc. Digital Libraries 95 Conference, ACM,
New York . Also available at http:/csdl.tamu.edu/DL95/papers/croft/croft.html.

Doan, Khoa, Plaisant, Catherine, and Shneiderman, Ben (1996). Query Previews in
Networked Information Systems. Proc. Third Forum on Research and Technology Advances
in Digital Libraries, ADL '96 , IEEE CS Press, 120-129. Also available as TR 95-16 at
http://www.cs.umd.edu/projects/hcil/Research/tech-report-list. html#1996.

Flynn, Laurie (1995). Making searches easier in the web’s sea of data. New York Times (2
October 1995).

Hatlestad, Luc (1996). Internet search not over yet. Infoworld 18,39 (23 September 1996).
Hemmje, M., Kunkel, C. and Willett, A. (1994). LyberWorld - A Visualization User Interface
Supporting Fulltext Retrieval. Croft, W.B. and van Rijsbergen, C.J. (eds), Proc. 17th Annual
Int. Conference on Research and Development in Information Retrieval (SIGIR 94) , Springer
Verlag, 249-257.

Hirsch, Morris. Private communication (1996).

16

Koenemann, Juergen and Belkin, Nicholas (1996). A case for interaction: A study of
interactive information retrieval behavior and effectiveness. Proc. CHI 96 Human Factors in
Computing Systems, ACM Press, New York, NY, pp. 205-212.

Mahajan, Rohit and Shneiderman, Ben (1996). Visual & textual consistency checking tools for
graphical user interfaces. University of Maryland Technical Report CS-TR-3639. Also
available as TR 96-08 at http://www.cs.umd.edu/projects/hcil/Research/tech-report-
list.html#1996.

Marchionini, Gary (1995). Information Seeking in Electronic Environments. Cambridge
University Press.

Oliver, S.H., and Berkebile, D.H. (1968). The Smithsonian Collection of Automobiles and
Motorcycles. Smithsonian Institution Press, Washington.

Preece, Jenny, Rogers, Yvonne, Sharp, Helen, Benyon, David, Holland, Simon, and Carey,
Tom (1994). Human-Computer Interaction. Addison-Wesley, Reading, MA,

Rao, Ramana, Pedersen, Jan, Hearst, Marti, Mackinlay, Jock, Card, Stuart, Masinter, Larry,
Halvorsen, Per-Kristian, and Robertson, George (1995). Rich Interaction in the Digital
Library. CACM 38, 4, pp. 29-39.

Shneiderman, Ben (1992). Designing the User Interface: Strategies for Effective Human-
Computer Interaction: Second Edition. Addison-Wesley, Reading, MA.

Shneiderman, Ben (1994). Dynamic queries for visual information seeking. IEEE Software
11, 6, pp. 70-77.

Somerson, Paul (1996). Web Coma. PC Computing (August 1996), 57.
Van House, Nancy, Butler, Mark, Ogle, Virginia, and Schiff, Lisa (1996). User-Centered

Iterative Design for Digital Libraries: The Cypress Experience. D-Lib Magazine (February
1996), at http://www.dlib.org.

17

