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1 Introduction

We are concerned with programs that read and write persistent objects maintained in a database

or object store. Any given persistent object can refer to other persistent objects within the same

database. Such references are expressed via unique object identifiers (oids), as in (for example) [1].

We are specifically concerned with systems in which oids are not virtual memory addresses. The

central question we explore is whether it is profitable to replace oid references between memory

resident persistent objects with direct pointers. Such conversion is called pointer swizzling; similar

techniques were used in LOOM [2, 3]. The basic tradeoff in swizzling is obvious: the conversion

costs something up front (and at the end of the program, to convert pointers back to oids), but

saves a little each time a reference is followed. While the qualitative situation is clear, we want to

confirm it and describe the tradeoff quantitatively. We also want to relate swizzling costs to other

CPU costs in a program and to total costs including I/O time.

1.1 Related work

The cost of swizzling is relevant to persistent programming languages, database programming

languages, object oriented database systems, persistent object stores, and object servers. A persis-

tent programming language (PPL) is a programming language that includes a persistent memory

area (e.g., a heap of objects) that outlives the execution of any individual program. PPLs have

most often been designed as extensions of non-persistent programming languages. PS-Algol [4]

introduced the concept of a PPL. The E language [5, 6, 7, 8] is a more recent PPL based on C++;

Alltalk [9, 10] is one based on Smalltalk [11].

A database programming language (DBPL) is similar to a PPL but adds database features such

as bulk data (sets or relations) and attribute based retrieval (queries). Pascal-R [12] is an early

DBPL effort based on Pascal that has since moved on to Modula and is now called DBPL [13, 14].

Other DBPLs include O++ [15, 16], ADABTPL [17], FAD [18], Gemstone [19], and CO2 [20].

E might also be called a DBPL since it has some support for bulk data management; the

dividing line between PPLs and DBPLs is fuzzy. General issues of DBPL design for object-

oriented languages are discussed in [21], and issues of types and persistence are discussed in

[22], which includes a survey of database and persistent programming languages. Swizzling is

directly relevant to the implementation of PPLs and DBPLs since such languages support general

computation with persistent objects.

Swizzling might also benefit execution of compiled queries in object-oriented databases

(OODBs), distinguished from traditional databases in that they manage objects having identity,
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etc. OODBs described in the literature include Exodus [23], DAMOKLES [24], CACTIS [25],

VBase [26], Gemstone [19, 27], O2 [28, 29], Orion [30], and Iris [31]. OODBs generally include

a data manipulation language; such a language may be classified as a DBPL if it is rich enough in

programming constructs.

Swizzling is also relevant to persistent object stores (POSs) and object servers, since appli-

cations using a store or server might benefit from converting objects from the store/server format

to a faster in-memory format. POSs and storage managers include the Exodus storage manager

[23, 32], O2 [29], and Mneme4 [33, 34, 35]. Mneme is the POS used for this study. There have

also been a number of designs related to virtual memory such as [2, 3, 36, 37, 38]. Object servers

include ObServer [39] and Gemstone [40].

We know of no prior studies of swizzling performance, and hence can offer no comparison with

directly related work. Published OODB benchmarks and performance studies include [41, 42, 43,

44, 45, 46].

1.2 Simplifying assumptions

To study swizzling and obtain clear results, we focus on application behavior patterns most affected

by swizzling, i.e., where swizzling is on the critical path. Consider a CAD design tool as an example.

In an edit session the tool loads an existing design file (or creates a new one), edits in virtual memory,

and then saves the file back to the database. This edit cycle will tend to be especially revealing of

swizzling costs, since swizzling typically occurs while data is being loaded, before the application

gains control, and likewise unswizzling occurs during the save operation, adding to its length.

On the other hand, design file editing (and similar operations such as design rule checking) is

computation intensive and reveal the benefits of swizzling too. As described later, we consider and

compare eager schemes, where all objects needed by the application are loaded and swizzled in

advance, and lazy schemes, where objects are loaded and swizzled on demand.

We adopted the load-work-save cycle as our application model because it is simple yet reveals

swizzling effects clearly. To make the impact of swizzling most clear, we make three assumptions:� Loading and saving perform minimal disk seeking or query processing, so I/O and CPU costs
are minimal and swizzling costs most visible.� There is no significant paging or buffer replacement, for the same reason.� Concurrency control and recovery impose no significant overhead.

4Mneme is the Greek word for memory; we pronounce it NEE-MEE.
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These assumptions are reasonable for significant aspects of interesting applications; CAD design

tools are a good example. First, CAD design files provide a natural grouping that can be clustered for

fast reading and writing, avoiding query processing or significant disk seeking overhead. Second,

CAD design files are usually loaded into virtual memory backed with enough real memory to

prevent substantial paging. Third, concurrency control can occur at the level of whole design files

or large subsets, adding minimally to the total cost of handling files of significant size. Recovery

can also be done at the level of entire files. We grant that logging or checkpointing may be desirable

for recovering work if a crash occurs during a long session. Logging will impose comparable costs

whether or not swizzling is used. Checkpointing can be treated as a save in the load-work-save

model, except that a load is not required after a checkpoint. While recovery may be of some

relevance, we obtained simpler results without it, and our approach can be extended to handle

recovery in the future.

We do not claim that these assumptions are realistic for all applications or for all parts of any

application. Rather, the assumptions are those conditions that most reveal the costs and benefits of

swizzling, and if the assumptions are violated then the costs/benefits are diluted by the additional

system overheads. In that sense the assumptions give an upper bound on the costs/benefits of

swizzling. Note also we do not claim to offer a general model of PPL, DBPL, OODB, or POS

performance, only a model that reveals the maximum impact of swizzling.

1.3 Plan of the paper

Our study of swizzling proceeds as follows. We define the load-work-save application model

and an analytic cost model suitable for comparing alternatives over a wide range of application

characteristics such as the number of objects loaded. We discuss the swizzling alternatives to be

compared, describe simple benchmark programs, and present measurements that fix the parameters

of the cost model for each swizzling alternative. Finally, we analyze and compare the resulting

models.

2 The Application Model

Our load-work-save (LWS) model of application behavior uses three concepts: objects, collections

of objects, and sessions of work upon collections.

For our purposes an object is a contiguous aggregation of some slots and some bytes. Each slot

may contain a reference to another object, a null reference (to no object), or possibly a non-reference

value, if the language (data model) allows tagged quantities. The bytes represent non-reference
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values such as integers, floating point numbers, and strings. For simplicity we assume the number

of slots and bytes in an object does not change after the object is created. Objects model the

individual records, arrays, strings, etc., of the application, and hence tend to be “small” (average of

40 to 50 bytes in a Smalltalk system for example). We will be concerned with how slots and bytes

add bulk to an object, the swizzling costs of references in slots, and the general costs of manipulating

slots and bytes within objects. Note that we model only structural properties of objects and do

not include any sort of type or class system, inheritance hierarchy, or operation/method invocation

mechanism. Our model is adequate because we are not concerned with object semantics but only

with implementation costs.

A collection is simply the set of objects used during the execution of an application. As

previously mentioned, we assume collections are clustered so that I/O costs are minimal and

swizzling costs most apparent. However, a collection need not be an entire database or file, and

inter-object references that are not used in a given session need not be considered, except to the

extent that they add bulk to the objects. A collection can always be thought of as a set of root objects

plus additional objects reachable from those roots via selected edges. In general, the selected edges

might be determined dynamically, but the overall collection is certainly known after the fact.

That is, the set of objects in a collection may not be known a priori and may be “discovered” as

computation proceeds. In some of our experiments we assume the collection is known beforehand

and consider the performance effects of eager vs. lazy loading. We will characterize collections in

terms of the number of objects they contain and average properties of those objects such as size,

number of slots, etc.

A session is a create-work-save or load-work-save cycle. For simplicity we assume sessions

either create a collection, or read and possibly modify an existing collection without creating new

objects. It would not be difficult to extend the model to allow incremental addition and removal

of objects in collections, but would complicate the presentation and analysis. A load-work-save

session breaks down in the obvious three basic activities of loading, working, and saving. Loading

and working are separate when all objects are loaded in advance (eager loading), and overlapped

in the case of lazy loading. Loading is further broken down into reading and swizzling. Reading is

the fetching of objects from persistent storage into buffers, and swizzling is the conversion (if any)

of the objects for the application’s use. Saving is similarly separated into preparing, unswizzling

objects and getting them into storage manager buffers as necessary, and writing, the actual transfer

of the buffers to persistent storage. In a create-work-save session creating replaces loading, and

is different in that creating is an in-memory operation, while loading involves persistent storage

access and swizzling.
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3 Techniques of Object Management

We now describe the various swizzling and object management alternatives relevant to our investi-

gation. First we describe the basic approaches, then implementation variations on those approaches,

and finally algorithmic details of the techniques used in our performance studies. Relevant aspects

of Mneme are discussed as necessary.

3.1 Basic approaches

There are three fundamental approaches to swizzling. First, we can simply not swizzle. Second,

we can convert objects between in-memory and on-disk formats in-place, in the object manager’s

buffers. Third, we can swizzle by making a separate in-memory copy of the object being swizzled,

leaving the buffer resident copy undisturbed. We call these schemes non-swizzling (NS), in-place

swizzling (IS), and copy swizzling (CS).

While the tradeoff between swizzling and not swizzling is fairly obvious, the relative merits of

in-place and copy swizzling are more subtle. In-place swizzling avoids making extra copies, and

thus has lower CPU and memory cost than copy swizzling. On the other hand, in-place swizzling

requires all objects be unswizzled before the object manager’s buffers are written back to persistent

storage, whereas copy swizzling requires unswizzling only of new and modified objects.

If we swizzle, we may do eager swizzling or lazy swizzling. In eager swizzling we swizzle

the entire collection of objects in advance. This requires being able to identify the collection

before using it, or at least bounding it. Eager swizzling avoids the overhead of dynamic checks for

unswizzled objects. Lazy swizzling, on the other hand, inserts dynamic checks so that the collection

can be “discovered” during execution rather than being identified or bounded in advance. In fact,

there is a spectrum between pure eager swizzling and pure lazy swizzling. For example, objects

might be aggregated into subgroups, with entire subgroups swizzled at a time, and subgroups

loaded and swizzled on demand rather than in advance. We consider only the two extremes since

intermediate approaches will be intermediate in cost. In sum we have five swizzling approaches:

non-swizzling, eager and lazy in-place swizzling, and eager and lazy copy swizzling.

3.2 Variations

If we do not swizzle, then every time we wish to manipulate an object we must present the oid

for the object to the object manager (OM), which must then locate the object (if it is resident) or

retrieve it (if it is not resident) and perform the manipulation for us. Instead of calling the OM for

each manipulation (a call interface), we might obtain a pointer to the object in the OM’s buffers
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and then manipulate the object directly (a pointer interface). We consider only the more efficient

pointer interface here. Note that while it is possible and reasonable for an application using a

pointer interface to cache some pointers, e.g., for the duration of a procedure call manipulating an

object, such pointers cannot be stored into the objects themselves—that would be swizzling. Note

also that retaining direct pointers into buffers requires pinning objects, and hence gets into details

of the specific OM’s features. If there is a series (one or more) of operations on an object where

we can cache a buffer pointer to the object across the entire series, we call that a visit of the object.

Each visit requires one oid lookup with a pointer interface, but possibly many lookups with a call

interface (one for each call).

For eager swizzling, and for unswizzling, there are two fundamental control strategies possible:

iteration through a set of objects identified in some other way (e.g., “all objects in file X”), and

recursion through the objects and their references (also called reachability). Recursion is more

general since it can be expressed in terms of object manipulations; iteration may have performance

advantages. We used recursion, for three reasons: it is more general; it likely costs at least as much

as iteration, so it gives a better upper bound on swizzling cost; and iteration was not supported by

the OM.

Lazy swizzling raises the additional problem of detecting uses of not yet swizzled objects. This

problem has many solutions, ranging from hardware support similar to (or built on) virtual memory

address translation to software only approaches. We investigated a software approach because it is

most general and gives an upper bound on swizzling cost.

3.3 Algorithms used

The only algorithm of interest for the non-swizzling scheme is object lookup. Mneme’s object

lookup technique is similar to virtual memory address translation. The version of Mneme used

here splits a 30-bit oid into 3 10-bit fields, as shown in Figure 1. The high order field indexes a

file table to obtain the base of a segment table for that file. The middle field indexes that segment

table, giving information about whether the segment is resident, and its memory location if it is.

If the segment is not resident, other information is used to locate the segment on disk and retrieve

it. In any case, the least significant 10 bits of the oid then index an object table at the beginning

of the segment to obtain an offset to the start of the object. This is shown in Figure 2. To allow

more objects to be retrieved at once, several of the segments just described can be grouped together

into a single physical unit, always stored contiguously. In Mneme parlance, the physical unit is

a physical segment, and what we called segments above are termed logical segments. Physical

segment layout is illustrated in Figure 3. For more information on Mneme see [35].
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L = Logical Segment # (10 bits)F = File # (10 bits) O = Object # (10 bits)

Figure 1: Mneme object id format

F

File table Segment table
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Object table
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Object

Data

Figure 2: Object lookup scheme used
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 = 

Figure 3: Physical segment data structure

Turning to swizzling, Figure 4 (a) sketches the code for eager in-place swizzling. The Swizzled

and MarkSwizzled actions test and set a field containing two bits, encoded as shown in Table 1. The

encoding is chosen so that the swizzled/unswizzled test examines one bit and the new/modified

versus unmodified test looks at the other. These two bits are stored in a 32-bit word at the start of

the object. The other 30 bits contain the oid if the object is swizzled (for later use in unswizzling)

and are zero otherwise.

00 new transient (non-persistent) object

01 unswizzled persistent object

10 swizzled modified persistent object

11 swizzled unmodified persistent object

Table 1: Encoding of the “swizzled” field of objects
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EagerInPlace (id) returns (pointer)

p: pointer := OMLookup (id)

if not Swizzled (p) then

MarkSwizzled (p, id)

for x := each slot offset in p do

if p[x] holds an oid then

p[x] := EagerInPlace (p[x])

return p

EagerCopy (id) returns (pointer)

p: pointer := CopyTableLookup (id)

if p is nil then

q: pointer := OMLookup (id)

p := AllocateCopy (SizeOf (q))

CopyTableEnter (id, p)

Copy contents of q to contents of p

MarkSwizzled (p, id)

for x := each slot offset in p do

if p[x] holds an oid then

p[x] := EagerCopy (p[x])

return p

(a) EIS (Eager In-place Swizzling) (b) ECS (Eager Copy Swizzling)

Figure 4: Code sketches for eager swizzling

Eager copy swizzling differs in important ways from eager in-place swizzling. First, copy

swizzling requires some means for locating the in-memory copy of a swizzled object given its oid,

similar to the OM lookup routine. Second, copy swizzling creates and fills in a (swizzled) copy of

the object. Figure 4 (b) sketches the code for eager copy swizzling.

Lazy swizzling is more complicated. If object X refers to object Y and both are resident, we

want the reference to be a direct pointer. But what if X is resident and Y is not? Can we swizzle

X under those circumstances, and if so, what does that mean? One approach is to tag slot contents

as to whether they are swizzled: if tagged as swizzled, then the slot contains the actual address of

the target object, if tagged as unswizzled, the oid. We call this edge marking. There is a major

disadvantage to edge marking. Slot contents can be fetched, passed around, and stored without

accessing the target object. Hence, by the time the target is accessed, we may have no idea where

the object reference came from, and it is costly to scan through all resident objects to find the

sources and swizzle them. One possibility is to use object lookups as necessary and do occasional

swizzling scans to amortize the scanning overhead.

Another approach to handling references to non-resident objects is to require that all object

references in resident objects be converted to pointers, with small pseudo-objects (we call them

fault blocks) standing in for non-resident objects, as shown in Figure 5 (a). A fault block contains

the oid of the target object, and is distinguishable from an ordinary object. We call this approach

node marking. When a reference is to be followed, if it refers to a fault block, we locate the target
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object (retrieving it if necessary) and change the fault block to point to the now-resident object

(see Figure 5 (b)). We call the updated fault block an indirect block. If a reference to be followed

refers to an indirect block, we thus locate the target object at the cost of an indirection. Similar to

edge marking, occasional scanning (perhaps by a garbage collector) can be used to bypass indirect

blocks, as shown in Figure 5 (c).

  fault block

  indirect block

  non−resident object

  resident object

(a) Fault blocks stand in for non−resident objects

T

(b) Target object (T) faulted in

T

T

(c) Indirect block bypassed by garbage collector

Figure 5: Node marking approach to lazy swizzling

A complete study of lazy swizzling would become involved in details of PPL/DBPL imple-

mentation, including available compiler optimizations, garbage collection techniques, etc.—well

beyond the scope of this study. We measured the cost of dynamic checking and swizzling, omitting

scanning. We carried this out using the following three rules. First, every reference in a swizzled

object is a direct pointer (i.e., node marking), to either a swizzled object or a resident, unswizzled

object. Second, every reference in an unswizzled object is an oid, which may refer to any object,

resident or not. Third, using an object requires that it be swizzled. If an object is unswizzled at

the start of a visit, it is immediately swizzled and any non-resident objects it references are made

resident (but not swizzled). This approach thus incorporates the effects of dynamic swizzling

checks, incremental swizzling, and incremental loading of segments from persistent storage, but

not scanning, and it performs some actions in a different order than would a real system. Thus we

offer only approximate measures of the real cost of lazy swizzling.
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4 The cost model

We desired a simple model of the cost of a session that would consider characteristics of both the

object collection and the work performed. Our measure of cost is total elapsed time for a session;

this is both simple and arguably the most important performance measure. We desired a small

number of variables to describe collections and sessions adequately, and settled on 4 collection

variables and 3 session variables. These variables are adequate, at least for the simple programs

we ran; they also have the virtue that they might be measured in practice for actual programs.

The variables are presented in Table 2. Collection variables n and b are obviously relevant,

and p is clearly related to swizzling. Variable i is necessary for modeling null/non-null references.

Note that b specifically excludes object headers and other overhead, but includes slots and all other

user data. Session variable u is important in considering how much work is done in preparing and

writing. Variable v is a measure of the number of times references are traversed (looked up), and

thus is important in determining the benefits of swizzling. Finally, w gives us something against

which to compare swizzling costs.

Collection variables

n number of objects in the collection

p average number of slots per object (“pointers”)

i average number of slots “initialized” (containing references)

b average number of user bytes per object, including slots

Session variables

u fraction of objects updated (modified) in the session

v average number of times an object is visited and operated upon

w average amount of work per object-visit (in �s)

Table 2: Collection and session descriptive variables

Session cost is a function of the variables, determined by a number of parameters, where the

parameter values depend on the swizzling approach selected and its actual implementation. We

measured the parameters for several approaches, and present and discuss them in some detail later.

We use upper case letters for the parameters to distinguish them from the variables. We consider

the create, load, work, and save phases separately, devising an equation for each. The equations

are weighted sums of products of the variables (the variables were chosen this way). It turns out

that the constant terms of the equations are negligible, so for convenience we omit them from the
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start. Note that pb is the average number of bytes devoted to slots in an object and pbi the average

number devoted to initialized slots.

Creation costs include overhead for each object, CO�n, and for initialization: CB�nb (per byte

costs), CS�np (per slot costs), and CI�ni (per initialized slot costs). Loading costs are time to read

the user data LB�nb, overhead for handling each object LO�n (including reading headers and other

overhead), overhead for handling each slot LS�np, and overhead in processing each reference (e.g.,

swizzling) LI�ni. Saving is similar to loading but adds terms depending on the fraction of objects

updated, u (this is always 1 for a create-work-save cycle). The cost of work is rather different,

consisting of a visit overhead V�nv (i.e., for following an object reference), and an actual work

term nvw (w is defined so that this term is not parameterized). Here are the resulting equations:

C = CB � nb + CO � n + CS � np + CI � ni

L = LB � nb + LO � n + LS � np + LI � ni

W = V � nv + nvw

S = SB � nb + SO � n + SS � np + SI � ni +

UB � nbu + UO � nu + US � npu + UI � niu

CWS = C + W + S

LWS = L + W + S

We can combine terms in the overall model to reduce the final number of parameters. Letting M

(for move) replace L and S, and P (for produce) replace C, S, and U (because u= 1), we obtain:

CWS = PB � nb + PO � n + PS � np + PI � ni + V � nv + nvw

LWS = MB � nb + MO � n + MS � np + MI � ni + V � nv + nvw +

UB � nbu + UO � nu + US � npu + UI � niu

We summarize the model parameters in Table 3 for future reference.

The linearities assumed in this cost model are reasonable, and they are borne out by the

experiments we ran. We note that the UB term is an oversimplification for situations more general

than those we actually measured. UB covers the costs of writing changed data back to the database,

and we assumed the number of bytes written back is proportional to the number of objects created

or updated. This assumption fails if the affected objects are few but are scattered across many

segments. The equations given are reasonable if logging is used, if u is close to 0 or to 1, or if

modified objects are clustered together. This limitation of the cost model can be overcome by

adding a new variable capturing the relative clustering of updates; for simplicity we stick with the

model presented above.

The model above has 13 parameters to be measured and expresses cost in terms of 7 variables.

As will be seen, however, some terms drop out for some swizzling approaches, and some turn out
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Two letter parameters: xy

Choices for x Choices for y

M (move) time per unit to load, prepare, and save B unit is bytes

U (update) time per unit to prepare and save modified objects O unit is objects

P (produce) time per unit to create, prepare, and save S unit is slots

I unit is initialized slots

One letter parameters

V time per object visit

Table 3: Summary of the cost model parameters

to be negligible in practice. More speculatively, some of the collection description variables may

tend to fall in narrow ranges, allowing further simplification.

5 Experimental methodology and results

To make performance measurements we wrote a simple program to create, traverse, and modify

collections of objects. It allowed us to control the independent variables of the cost model, such as

number and size of objects. We ran the program in the context of a particular hardware/software

configuration—a common workstation using the Mneme persistent object store. We now describe

the nature of the collections and sessions supported by the test program, the hardware/software

environment of the tests, what tests were performed, and the results of those tests.

5.1 Collections

To form collections, we needed a data structure supporting flexible adjustment of the collection

variables over wide ranges. We settled on binary trees augmented with extra edges. The parameters

of the trees are their height, properties of the internal nodes, and properties of the leaf nodes. Internal

nodes have at least two initialized pointers for supporting the tree structure, but may have more

pointers, any number of which may be initialized; such initialized pointers are self-loops, for

simplicity. Internal nodes may also have any number of bytes in addition to the pointers, to add

bulk to the objects. Tree height determines collection variable n, the number of pointers determines

p, the number initialized determines i, and the number of bytes determines b (given p). Trees were

chosen for simple construction and work traversal (swizzling considers all pointers); binary trees
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were chosen because they give the slowest growth of n with tree height and the lowest lower bound

on p.

Our data structure is general enough because the order of traversal and the detailed pattern of

pointers between objects is not important for the comparisons we make, so long as the same order

and pattern is used in every case. The fact that additional initialized pointers (beyond those needed

for the tree backbone) are self-loops might affect cache residency during swizzling, but locality of

data structure argues against our simplification as having a strong effect.

As previously discussed, object collections were always sized to fit in primary memory, though

they were large enough to be meaningful, generally on the order of 4 megabytes. We also assumed

that relatively small objects were the most interesting, extrapolating from the average object size in

heap based programming languages such as Smalltalk, which is on the order of 50 bytes, including

overhead, given 32-bit pointers. In most tests we considered sizes ranging from very small (e.g.,

no extra slots or bytes) up to 1K bytes, using a Fibonacci sequence to choose the sizes.

We designed this new benchmark so that we could control the collection variables and dis-

entangle the results to estimate the model parameters for swizzling. Existing benchmarks such

as the Sun Engineering Database Benchmark [41], its more recent simplification [42], and the

HyperModel benchmark [45] are designed to test overall object-oriented DBMS (or PPL or DBPL)

performance, and do not vary some of the variables significant for our model. In short, we needed

tests specialized to our task.

We used a number of series of collections in our measurements, described below so that others

can reproduce our test cases. Several Fibonacci series are used in the description: F(1, 233) = f1,

2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233g, F(2, 233) = F(1, 233) - f1g, and F(4, 932) = f4, 8, 12, 20,

32, 52, 84, 136, 220, 356, 576, 932g. Note that for height h there are 2h -1 objects in the tree. If

a table entry is written x / y, then x is for internal nodes and y for leaves. Finally, note that object

size b is 4 � slots + bytes, rounded up to a multiple of 4 bytes. The header size was 8 bytes for

non-swizzling and copy swizzling, and 12 bytes for in-place swizzling, to hold the object id of the

object for later unswizzling. These values are for Mneme; other object stores would give different

values. Headers are not included in b, though; their processing will show up as per-object rather

than per-byte costs.
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Series Height Slots Bytes Notes

VS (Vary Slots) 11–17 F(2, 233) 0 total size between 2 and 4 megabytes

VB (Vary Bytes) 11–17 2 F(4, 932) total size between 2 and 4 megabytes

VH (Vary Height) 14–19 2 0

VN (Vary n) 12–19 0 slots set for total size of 8 megabytes

SI (Slots Init) 12 2 / 233 0 slots initialized = F(2, 233)

BI (Bytes Init) 12 2 / 0 0 / 932 bytes initialized = F(4, 932)

II (Ints Init) 12 2 / 0 0 / 932 integers initialized = F (1, 233)

WS (Work Slots) 15 2 / 34 0

WB (Work Bytes) 15 2 / 0 0 / 84

5.2 Sessions

For each swizzling approach considered, we measured the cost of creating collections, the incre-

mental cost of initializing object contents, the cost of traversing the tree and doing some work

at each node, the cost of loading, and the cost of saving. Saving was further broken down into

preparing and writing, and we considered saving new collections, unmodified old collections, and

modified old collections, since the various schemes have different behavior across these cases.

Together these various measurements cover all aspects of work sessions.

To model work on individual objects, we devised activities to capture reading, updating,

and initializing of slots, bytes (individually), and integers (aligned groups of 4 bytes treated as

integers). We needed activities that were hard to optimize away or turn into block moves or other

block operations, since real work usually does not admit such optimizations; here is what we

devised:

Operation Item kind Calculation Performed

Reading Slots bump global counter if slot is null

Bytes add to global sum

Integers add to global sum

Updating Slots swap even-odd pairs of pointers

Bytes negate each byte

Integers negate each integer

Initializing Slots self loops

Bytes sequential values from global counter

Integers sequential values from global counter

Many of the operations include loop and recursion overheads, but these will be almost the same

for each scheme, so differences in measurements will still reveal differences in costs of the various

schemes. Further, the control structure of the test program (tree traversal) is about the simplest

possible, so it will tend to expose swizzling overheads as desired.
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5.3 Hardware and software used

All tests were performed on a DECStation5 3100 (Mips R2000A CPU6 clocked at 16.67Mhz)

running Ultrix 3.1. The system had 24 megabytes of main memory, of which 10% was used for

operating system disk buffers. The disk used for the tests was a relatively empty RZ56 drive (665

megabytes, SCSI, 24.3ms average access time, 16ms average seek time, 64Kbyte data buffer); the

software used ordinary buffered file I/O (as opposed to the raw disk device). All programs were

coded in C and compiled with the Mips C compiler version 1.31 at optimization level 2. The tests

were performed in single user mode and the process’s address space was locked into main memory.

We observed no paging or swapping during the tests. Tests were run once with recording turned off

and then repeated three times with recording on; this prevented events such as growth of the virtual

address space from affecting the experimental data. Whenever a load was to be performed, either

eager or lazy, we first read through a large file, to insure that none of the object collection’s data

was in the operating system disk cache. Note, though, that write/save tests completed as soon as

all bytes were passed to the operating system, so a significant quantity of data could be in operating

system disk buffers. The Mneme segment size was set to 32K bytes in all cases.

5.4 Experiments

For each scheme we determined the cost of creating objects, the incremental cost of initializing the

contents of objects as they are created, the cost of traversing a tree while doing some work at each

node, the cost of loading, and the cost of saving. For the swizzling schemes we also considered

lazy as well as eager loading, and we measured the cost of preparing as distinct from writing. Thus

we have measures of costs of all the phases of our work session model. For some activities we

measured the cost of non-persistent C code (NPC), as a general comparison. For non-swizzling

measurements, we used the Mneme routines that give direct access to objects in Mneme’s buffers.

We measured non-swizzling use of the Exodus storage manager, but report qualitative results only,

in the conclusion, since that storage manager was not specifically designed for our style of use. We

now describe the individual experiments and their results. We assemble these results into complete

models in Section 5.5.

5DECStation and Ultrix are registered trademarks of Digital Equipment Corporation.
6Mips and R2000 are trademarks of Mips Computer Systems.
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5.4.1 Creation

We measured non-swizzling, swizzling, and non-persistent C. We report in-place and copy swizzling

as a single number because both schemes act the same in creation: the objects are always created in

the application’s heap with Mneme objects created only during the prepare phase. Swizzling is very

similar to non-persistent C, except that non-persistent C may omit some object header information

and need not initialize all slots to non-garbage values. Hence, non-persistent C is a little faster, but

swizzling is still quite fast in this phase. Note also that the eager/lazy distinction makes no sense

in creation.

Creation was tested on collection series VS, VB, SI, BI, and II. The VS and VB tests showed

that per-object creation costs do not vary with the size of the objects, except for VS in the swizzling

scheme since it always initializes all slots explicitly. Non-persistent C avoids this cost entirely, and

non-swizzling starts with zero-filled memory, whose initialization cost is very low. The SI, BI, and

II collection series allowed us to measure the marginal cost of initializing object contents. Thus

we end up with a per-object allocation cost, and per-slot, per-byte, and per-integer initialization

costs, all obtained from simple regression fits of elapsed time versus number of objects, or elapsed

time per object versus number of slots, bytes, or integers initialized.7 Each of SI, BI, and II give an

estimate of the per-object cost. These estimates are close to each other; we present the BI estimates,

an arbitrary choice.

Table 4 shows the costs; columns labeled� give 95% confidence intervals throughout the paper.

Note that the marginal initialization costs are almost exactly the same for the various schemes;

the only significant variation is in the per-object cost. Recall, though, that this cost includes the

loop/recursion overhead of the test program. Taking the difference between the costs of Table 4

and the cost of no-work traversal (presented later) gives a better measure of the cost of allocation

by itself, though since the loops are different, the comparison is only approximate.

Per Object Per Slot Per Byte Per Integer

Scheme �s (�) �s (�) �s (�) �s (�)

NS 33.7 (.3) .394 (.009) .374 (.002) .401 (.007)

IS/CS 10.5 (.4) .393 (.005) .368 (.002) .399 (.008)

NPC 9.1 (.3) .387 (.007) .367 (.002) .385 (.005)

Table 4: Object Creation and Initialization Costs

7The swizzling per-slot cost was obtained from the VS series since the SI series does not vary the total number of

slots, and swizzling always initializes all slots.
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5.4.2 Work

Again we measured non-swizzling, swizzling, and non-persistent C. We expected non-persistent

C and swizzling to have essentially identical cost, and non-swizzling to cost more. As a baseline,

we measured no-work traversal on VS and VB. This was done with and without object residency

checks, to compare between eager and lazy swizzling when objects are actually resident. We also

varied, individually, the reading and writing of slots (using WS), and of bytes and integers (using

WB), to get a sense of the incremental cost of manipulating fields of objects, though those times

are not part of our cost model, except indirectly through the w factor.

The no-work results were obtained using collection sets VS and VB, which gave nearly identical

results. We performed linear regression of CPU time versus number of objects visited to obtain

per-object costs. The numbers for VS are presented in Table 5. We see that the cost of a residency

check for a resident object is 1.10�.05�s, less than 10% of the cost for no-work traversal. Also,

non-persistent C is apparently 2% faster than swizzling without residency checks. We attribute this

small difference to slight variations in the code generated by the C compiler.

Mneme object id lookup costs 8.32�.05�s more than a C pointer dereference (NS � NPC),

which includes the cost of a second call to Mneme to release the object. The release call takes

approximately 2.4�s, so lookup takes 5.9�s by itself. The release call may or may not be needed

depending on the approach taken for buffer management, concurrency control, and noting of

updates. Henceforth we will assume the release call is not needed. Therefore we will use the

adjusted NS values, and will adjust any other results as necessary to remove the cost of calls to

the release routine. Recent revisions to Mneme have reduced the lookup costs; we discuss the

implications later.

Per Object Ratio

Scheme �s (�) to NPC

NS 20.15 (.02) 1.70

NS (adjusted) 17.75 (.02) 1.50

IS/CS (with check) 13.14 (.03) 1.11

IS/CS (no check) 12.04 (.02) 1.02

NPC 11.83 (.03) 1.00

Table 5: Traversal with no work

The results for traversal with work are shown in Table 6. These were calculated by linear

regression of time per object versus number of slots, bytes, or integers read or written. There is
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virtually no difference between the schemes, which is only to be expected since they all manipulate

object contents directly via pointers. These results confirm that performance has not been sacrificed

in some surprising way.

Slot Read Byte Read Int. Read Slot Update Byte Update Int. Update

Scheme �s (�) �s (�) �s (�) �s (�) �s (�) �s (�)

NS .55 (.02) .32 (.00) .35 (.01) .45 (.02) 1.03 (.00) .44 (.02)

IS/CS .55 (.02) .32 (.00) .35 (.01) .46 (.02) 1.03 (.00) .44 (.02)

NPC .55 (.02) .32 (.00) .35 (.01) .45 (.02) 1.03 (.00) .44 (.02)

Table 6: Traversal with work

5.4.3 Loading

First we consider eager loading. This applies only to the swizzling schemes since non-swizzling is

inherently lazy. We used collection sets VS and VB, and combined their data. We analyzed the data

via multiple regression of elapsed time versus number of user bytes and number of objects loaded.

The per byte and per object costs are given in Table 7, along with the correlation coefficients (r2)

and the F statistic.8 Copy swizzling costs more per byte and per object, as might be expected.

However, in-place swizzling costs almost as much per object, partly because its headers are 4 bytes

larger, increasing costs by about 8�s per object. The table does not include the cost of looking up

each initialized slot (i.e., the slots beyond those used for the tree structure). We saw in Section 5.4.2

that that cost is 5.7�s/slot, independent of swizzling scheme.

Per Byte Per Object

Scheme �s (�) �s (�) r2 F

CS (measured) 2.17 (.09) 29.8 (1.0) .9903 3357

IS (measured) 2.04 (.05) 29.4 (0.8) .9962 8816

CS (predicted) 2.17 (.09) 25.5 (1.0)

IS (8 byte headers) 2.04 (.05) 21.2 (1.0)

Table 7: Eager loading and swizzling

The benchmark program used fairly simplistic processing for building and searching the resident

object table required for copy swizzling. On the one hand, a realistic table organization would cost

8High values of F indicate that most of the variance is accounted for by the linear regression, since F is (roughly

speaking) the ratio of the variance explained by the regression to the remaining variance.
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an estimated 4.5�s/object more for each id lookup and 5.0�s more for entering each object in the

table. On the other hand, a more clever approach would handle whole groups of objects at a time

and obtain considerable savings, an estimated reduction of 4.3�s per object of CPU time from the

current values. It could be that not all of this would show up in elapsed time reductions, since

CPU costs may currently be overlapped with I/O. Still we use 4.3�s as our best estimate, as shown

on the “predicted” line of the table. We do not believe that more clever approaches would help

in-place swizzling comparably. This means that because of its larger headers, in-place swizzling

actually costs more than copy swizzling for objects with up to 30 bytes of user data. If there were

some way to avoid the extra 4 bytes required by in-place swizzling then in-place would always be

faster than copy swizzling, as shown by the last line of the table. Though there is an element of

estimation involved, we will carry the copy swizzling adjustment through to the cost model so as

to give comparisons between how the schemes would be implemented in a complete system rather

than how they were coded in the benchmark program.

In another test, using data set VN, which keeps the data set size fixed but varies the number of

objects, we found that eager swizzling cost 28.3�0.8�s per object. This matches reasonably well

with the results in Table 7. The non-swizzling read time was 3.57�0.01�s per byte, giving a rate

of about 280,000 bytes per second.

Lazy loading with swizzling, measured as for eager loading, revealed higher per byte and per

object costs, though we must keep in mind that lazy swizzling includes traversal time, whereas

eager swizzling does not. The multiple regression results for lazy swizzling are shown in Table 8.

The non-swizzling results are also shown there, which were computed by performing a multiple

regression on results from data sets VH and VN. The predicted lazy copy swizzling cost deducts

the 4.3�s previously discussed, and an additional 2.4�s for a call used in the benchmark that can

be removed by a more clever implementation. Lazy in-place swizzling outperforms lazy copy

swizzling for objects having more than 8 bytes of user data. In the table we also include the eager

costs (ECS and EIS) with one no-work traversal (without residency checks) added in, and the

non-swizzling results, for comparison.

To summarize the loading results, copy swizzling, whether lazy or eager, is slightly faster for

small objects, but in-place swizzling’s lower cost per byte eventually wins out. This inversion

results from the extra 4 bytes per object required to implement in-place swizzling. If an alternative

implementation for unswizzling could be devised then in-place swizzling would always be faster

than copy swizzling. Laziness always costs more than eagerness. Not swizzling is the cheapest

approach for objects with at least 8 bytes of user data. Eager copy swizzling is predicted to be a

little faster for extremely small objects because swizzling whole segments of objects at a time in
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Per Byte Per Object

Scheme �s (�) �s (�) r2 F

LCS (measured) 2.56 (.10) 49.4 (1.1) .9951 6962

LIS (measured) 2.37 (.09) 44.3 (1.0) .9953 7272

NS (measured) 1.77 (.02) 42.8 (0.4) .9993 26832

LCS (predicted) 2.56 (.10) 42.7 (1.1)

LIS (repeated) 2.37 (.09) 44.3 (1.0)

ECS + traversal 2.17 (.09) 37.5 (1.0)

EIS + traversal 2.04 (.05) 41.4 (0.8)

NS (adjusted) 1.77 (.02) 40.4 (0.4)

Table 8: Lazy loading and swizzling, with comparison

tight loops will save a little compared with non-swizzling’s uniform use of general id lookup.

While the results give the intuitive orderings (lazy > eager, copy > in-place, and swizzling >
non-swizzling) for medium sized and large objects, it is a bit surprising that the costs for small

objects are so similar and that there are some inversions of the expected orderings. In Table 9 we

show the expected times for each scheme for several object sizes, and their ratios to the non-swizzled

times, to give a better sense of the relative performance of loading in each scheme.

Time (�s/object) Ratio to NS (%)

Number of user bytes Number of user bytes

Scheme 8 24 50 200 8 24 50 200 1
LCS 63 104 171 555 115 125 133 141 145

LIS 63 101 163 518 115 122 126 131 134

ECS 55 90 146 472 100 108 113 120 123

EIS 58 90 143 449 105 108 111 114 115

NS 55 83 129 394

Table 9: Loading cost comparison for various size objects

5.4.4 Writing

For measuring writing, we used collection series VH and VN. The idea was to determine clearly

how collection size and number of objects each affect writing cost. Write measurements were done

for the non-swizzling scheme; since we did not overlap preparing and writing, the write costs for

swizzling schemes are the same as for non-swizzling. We found that the number of objects had
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very little effect and that writing takes 3.38�0.09�s/byte; this is about 296,000 bytes/sec. These

numbers include header bytes, so per object costs must be calculated based on the number of header

bytes in each scheme.

5.4.5 Preparing

We measured preparing for in-place and copy swizzling using the same collections as for writing.

There are three subcases: new collections, unmodified old collections, and modified old collections,

as previously discussed. In all cases the number of objects and the number of slots were seen to be

significant cost factors. The size of the objects was significant only for new collections (because

new objects must always be copied into store objects) and for copy swizzled objects that are

modified (because they require copying back).

The results, presented in Table 10, show several things immediately. First, all byte copying has

essentially the same cost, 0.20�s per byte. Second, per slot costs are very close, about 0.40�s when

copying and 0.77�s when not. (This is not anomalous. Recall that slot costs are over and above

their per byte cost, so the total cost per slot in the copying cases is about 1.2�s.) Third, in the new

and old objects cases, copy and in-place swizzling perform similarly, with copy swizzling costing

slightly more per object. The only major difference between the swizzling cases is the handling of

modified objects, where copy swizzling definitely costs more. The copy swizzling per object costs

for the new and modified cases have been adjusted to remove 2.4�s for an unnecessary call.

The reason there are any prepare costs for old objects in the copy swizzling case is that we

used traversal of the object structure to find modified objects. If we devised some means other than

traversal to find the modified objects, then we could avoid most of the prepare costs for old objects

when copy swizzling.

Per Object Per Slot Per Byte

Scheme �s (�) �s (�) �s (�) r2 F

CS – new 29.6 (0.08) 0.40 (0.01) 0.20 (0.01) .9999 362679

IS – new 29.1 (0.13) 0.43 (0.02) 0.19 (0.01) .9999 181722

CS – old 4.6 (0.02) 0.77 (0.01) .9998 200728

IS – old 4.4 (0.03) 0.77 (0.01) .9996 86504

CS – modified 11.9 (0.07) 0.40 (0.01) 0.20 (0.01) .9997 87147

IS – modified 6.6 (0.04) 0.77 (0.01) .9996 94829

Table 10: Preparing
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To measure per-pointer prepare costs, we used data set SI, which varies the number of initialized

slots. The results are shown in Table 11. We see that copy swizzling consistently costs about 1.8�s

per slot, and in-place costs 1.9�s.

New Old Modified

Scheme �s (�) �s (�) �s (�)

CS 1.81 (0.01) 1.80 (0.01) 1.81 (0.01)

IS 1.89 (0.01) 1.90 (0.01) 1.89 (0.01)

Table 11: Prepare cost per initialized slot

5.5 Cost parameter values

The preceding tables allow us to calculate the parameters of the cost model for each scheme.

Here we present the resulting cost models for both load-work-save and create-work-save sessions;

Section 6 analyzes the models, compares the schemes, and derives results.

5.5.1 Load-work-save sessions

See Table 12 for the cost model parameter values for non-swizzling, and lazy and eager copy

and in-place swizzling. We calculated the parameters as follows:

MB This comes straight from the per byte costs in Tables 7 and 8.

MO The two primary components of MO are the per object loading costs (Tables 7 and 8) and
preparing costs (Table 10). The lazy schemes (NS, LCS, LIS) are adjusted by subtracting the
cost of one no-work traversal, since they include a traversal. We made one more adjustment.
There must be an initialized pointer referring to each object visited, which causes the first
visit to the object. Our experiments for measuring MO included the cost of processing that
initialized pointer, so the MI parameter will result in double counting. To prevent that, we
adjust MO by subtracting one MI from it. We adjusted the confidence interval on MO so that
the overall model gives the proper confidence interval.

MS This comes straight from the per slot costs in Table 10.

MI This has two components, loading (Section 5.4.3) and preparing (Table 11).

V This comes from Table 5.

UB There are two components, preparing (Table 10) and writing (Section 5.4.4). The prepare
cost is the difference between the modified and old costs, since MB takes the old cost into
account.
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UO This has a preparing component, the per object costs of Table 10 (a difference, as for UB),
and a writing component consisting of the per byte writing costs times the number of header
bytes (12 for in-place swizzling, 8 otherwise).

US This is the difference between the modified and old prepare costs. It may seem strange that
it is negative, but the modified case includes per byte costs that the old case does not; once
you add in the cost of the 4 bytes to hold the slot, the net is positive.

UI Since it is always zero in the measurements, we do not display UI in the tables.

Parameter

MB MO MS MI V UB UO US

Scheme �s (�) �s (�) �s (�) �s (�) �s (�) �s (�) �s (�) �s (�)

LCS 2.56 (.10) 26.5 (1.0) .77 (.01) 7.7 (.06) 13.14 (.03) 3.58 (.10) 34.3 (0.8) -.37 (.01)

LIS 2.37 (.09) 27.8 (0.9) .77 (.01) 7.8 (.06) 13.14 (.03) 3.38 (.09) 42.8 (1.5)

ECS 2.17 (.09) 22.4 (0.9) .77 (.01) 7.7 (.06) 12.04 (.02) 3.58 (.10) 34.3 (0.8) -.37 (.01)

EIS 2.04 (.05) 26.0 (0.8) .77 (.01) 7.8 (.06) 12.04 (.02) 3.38 (.09) 42.8 (1.5)

NS 1.77 (.02) 25.1 (0.4) 17.75 (.02) 3.38 (.09) 27.0 (0.7)

Table 12: Load-work-save parameter values

5.5.2 Create-work-save sessions

Table 13 presents the cost model parameter values for create-work-save sessions. Note that we

assume all slots and bytes are initialized. The parameters were calculated as follows:

PB This has three sources: creating (Table 4), preparing (Table 10), and writing (Section 5.4.4).

PO The sources are the same as for PB, but there is an adjustment similar to that for MO: one PI
is subtracted to avoid double counting initialized slots.

PS This has two sources, creating and preparing.

PI Preparing is the only source for this parameter (Table 11).

V As in load-work-save sessions, this comes from Table 5.
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Parameter

PB PO PS PI V

Scheme �s (�) �s (�) �s (�) �s (�) �s (�)

LCS 3.95 (.11) 65.3 (1.2) .79 (.02) 1.81 (.01) 13.14 (.03)

LIS 3.94 (.10) 78.3 (1.6) .82 (.03) 1.89 (.01) 13.14 (.03)

ECS 3.95 (.11) 65.3 (1.2) .79 (.02) 1.81 (.01) 12.04 (.02)

EIS 3.94 (.10) 78.3 (1.6) .82 (.03) 1.89 (.01) 12.04 (.02)

NS 3.75 (.09) 60.7 (1.0) .39 (.01) 17.75 (.02)

Table 13: Create-work-save parameter values

6 Analysis and discussion

In analyzing the cost models our goal is to determine criteria for choosing an approach to swizzling

(or choosing not to swizzle) based on performance. We begin with specific comparisons using the

cost models for Mneme presented in the previous section. In particular, we compare lazy versus

eager swizzling, copy versus in-place swizzling, and swizzling versus not swizzling, which is in

order of complexity of the analysis. We then consider what effect faster and slower id lookup

would have. Finally, we offer some limited extrapolations beyond Mneme to other styles of object

managers.

6.1 Lazy versus eager swizzling

Our experiments showed that lazy swizzling always costs more than eager swizzling. The only

load-work-save cost model parameters that are different between lazy and eager swizzling are MB,

MO, and V; the only create-work-save difference is V, which is the same as for load-work-save. We

show the differences (lazy � eager) and the ratios (lazy = eager) of these parameters in Table 14,

for both copy and in-place swizzling.

Laziness costs up to 16% or 18% more in loading (perhaps a bit more, given the confidence

intervals). This effect will be watered down by other costs of loading, especially the overhead

of swizzling initialized pointers (MI), and by writing (if there are updates), so in practice it will

not be as strong. We are not sure why there should be any effect of laziness on MB, but suspect

that it comes from I/O or cache effects that our elapsed time measurements cannot reveal. Slight

effects on MO are reasonable since the algorithms vary a little, though the magnitude in the copy

swizzling case is a little surprising. This comes about partly because the MB effect of the object

headers is added into MO.
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Parameter

MB MO V

Difference Ratio Difference Ratio Difference Ratio

Scheme �s (�) Value (�) �s (�) Value (�) �s (�) Value (�)

LCS vs. ECS .39 (.19) 1.18 (.10) 4.1 (1.9) 1.18 (.10) 1.1 (.05) 1.09 (.00)

LIS vs. EIS .33 (.14) 1.16 (.07) 1.8 (1.7) 1.07 (.07) 1.1 (.05) 1.09 (.00)

Table 14: Differences and ratios of lazy and eager swizzling parameters

The effect on V is the most expected: laziness involves continual dynamic checks that eagerness

avoids. We see that in our benchmark setup the overhead is 9%. Since there is little code in the

benchmark traversal beyond the recursion itself, programs that do real work would effectively

reduce this overhead. While it would take us too far off the subject here, we note that it may be

possible to use compiler techniques and program annotations to substantially reduce the number

of object residency checks performed at run time [47, 48, 6, 7, 8]. This suggests that software-

versus hardware-mediated object residency checks may not be a substantial performance issue,

and that the strongest argument in favor of page trapping techniques for object faulting is that they

do not require compiler support to be transparent to the programmer. The reason that residency

checking in software may be acceptable is that current CPU cycle times are very much faster than

I/O retrieval times. We will have more to say on this point later.

6.2 Copy versus in-place swizzling

Copy swizzling costs more per byte (MB, UB) but less per object (MO, UO). The higher cost per

byte is expected (because of copying) and is 6% or 8%. However, the difference is about as large

as the confidence interval. We can be reasonably certain there is a difference, but its magnitude

is more questionable. At any rate, it is not a huge difference and affects only the swizzling and

unswizzling phases of the model, not the work phase.

More surprising is in-place swizzling’s higher cost per object. As previously discussed, this

comes from its need for an additional 4 header bytes, to support unswizzling. If the cost of loading

and writing those extra bytes is subtracted out, then in-place swizzling is indeed a little faster

than copy swizzling. Perhaps it would have been better to build a separate table mapping object

addresses back to their ids. This would avoid reading and writing the extra bytes, though it would

add some CPU overhead for building and searching the table. If that overhead is small enough,

then in-place swizzling would be more attractive.
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As it is, copy swizzling can be up to 14% to 18% faster for sessions involving update and 5%

to 14% faster for read-only sessions. This would happen only for very small objects, and even

then is diluted a bit. On very large objects, in-place swizzling has an advantage of up to 6% or 8%

(the per byte difference discussed above). If we eliminated the extra 4 header bytes, in-place’s per

object advantage would be 45�10% in the lazy case and 26�10% in the eager case, which would

be watered down by other factors, and reduced substantially by the additional table maintenance.

For create-work-save sessions, copy and in-place swizzling cost about the same, except for the

per object costs (PO). Again, the extra 4 header bytes make in-place swizzling cost more (20�5%),

and if the header bytes could be removed it would cost slightly less (4%, but less than the confidence

interval so not statistically significant).

If we could avoid unswizzling costs for unmodified old objects in the copy swizzling case,

then the relationship of copy and in-place swizzling would change in interesting ways. The copy

swizzling model parameters would be affected as follows: MO would drop by 4.6�s, MS by .77�s,

and MI by 1.8�s, while UO would go up by 4.6�s and US by .77�s. Also, UI would have to be

reintroduced and set to 1.8�s. We would get the differences and ratios between copy and in-place

swizzling shown in Table 15. Because the differences are still positive for MB and UB, as object

size increases, eventually the copying cost will outweigh the benefits of copy swizzling, but unless

a session is update intensive, copy swizzling will usually perform better than in-place swizzling.

The tables in the swizzling versus non-swizzling discussion give further projections of these effects.

Another point is that we did unswizzling using a recursive walk through the objects, rather

than iteration over an object table. The iteration is likely to be faster, since it can avoid per

object procedure call costs; we estimate it will cost about 1�s, which is 3.4 to 3.6�s less than

the benchmark program’s cost. This applies to both copy and in-place swizzling, but it is most

important if we are trying to skip over unmodified objects when copy swizzling. Further, iteration

would actually be required in practice, since changes might make some objects unreachable via

the recursive walk, and we would fail to unswizzle those objects properly. (Note that even though

the objects might be unreachable from the paths we traverse, they may still be reachable from

elsewhere in the store, so we cannot simply claim they are globally unreachable and hence garbage

to be reclaimed.)

6.3 Swizzling versus not swizzling

In all cases there are net per byte, per object, and per slot overheads to swizzling, and an advantage

on each visit. We show the actual differences in Table 16. The rows labeled LIS8 and EIS8

give lazy and eager in-place swizzling values adjusted to remove the extra 4 header bytes, for
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Parameter, �s (�)

Scheme MB MO MS MI UB UO US UI

LCS-LIS now .19 (.19) -1.3 (1.9) -0.10 (.02) .20 (.01) -8.5 (2.3) -.37 (.01)

projected .19 (.19) -5.9 (1.9) -.77 (.01) -1.90 (.01) .20 (.01) -3.9 (2.3) .40 (.01) 1.80 (.01)

ECS-EIS now .13 (.14) -3.6 (1.7) -0.10 (.02) .20 (.01) -8.5 (2.3) -.37 (.01)

projected .13 (.14) -8.2 (1.7) -.77 (.01) -1.90 (.01) .20 (.01) -3.9 (2.3) .40 (.01) 1.80 (.01)

Table 15: Current and projected differences of copy and in-place swizzling parameters

comparison. The lines labeled LCSP and ECSP give the projected costs for copy swizzling that

avoids traversal to find modified objects. This assumes that there is no cost for unmodified objects,

and that the total cost for each modified object is as before. In fact, there will be either a small

iteration cost per unmodified object (e.g., the estimated .8�s for iteration that tests a modified flag

in each object) or additional cost when working (to record in a table which objects are modified, so

the unmodified objects need not be touched at all). Also, an iterative approach will likely reduce

the total cost for modified objects. However, the projection gives a sense of the maximum possible

performance of copy swizzling for read-only sessions.

Though some MO differences are negative, note that, since there must be at least one initialized

pointer pointing at each object, each object has at least one MI cost, and the average object size

must be at least 4 bytes. Taking these facts into account, the MO advantage of swizzling never

overcomes the MI and MB cost, so the net per object cost of swizzling is always positive. The

same kind of argument pertains to US, since each US cost involves 4�UB.

Parameter

MB MO MS MI V UB UO US UI

Scheme �s (�) �s (�) �s (�) �s (�) �s (�) �s (�) �s (�) �s (�) �s (�)

LCS .79 (.12) 1.4 (1.4) .77 (.01) 7.7 (.1) -4.6 (.1) .20 (.19) 7.3 (1.5) -.37 (.01)

LCSP .79 (.12) -3.2 (1.4) 5.9 (.1) -4.6 (.1) .20 (.19) 11.9 (1.5) .40 (.01) 1.80 (.01)

LIS .60 (.11) 2.7 (1.3) .77 (.01) 7.8 (.1) -4.6 (.1) 15.8 (2.2)

LIS8 .60 (.11) -6.8 (0.9) .77 (.01) 7.8 (.1) -4.6 (.1) 2.3 (1.8)

ECS .40 (.11) 2.7 (1.3) .77 (.01) 7.7 (.1) -5.7 (.0) .20 (.19) 7.3 (1.5) -.37 (.01)

ECSP .40 (.11) -7.3 (1.3) 5.9 (.1) -5.7 (.0) .20 (.19) 11.9 (1.5) .40 (.01) 1.80 (.01)

EIS .27 (.07) 0.9 (1.2) .77 (.01) 7.8 (.1) -5.7 (.0) 15.8 (2.2)

EIS8 .27 (.07) -7.3 (1.0) .77 (.01) 7.8 (.1) -5.7 (.0) 2.3 (1.8)

Table 16: Swizzling minus non-swizzling parameter values (load-work-save)
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What are the extremal cases of swizzling versus non-swizzling? It is easy to calculate the

maximum possible advantage to swizzling in each scheme, by taking the limit as the number of

visits goes to infinity. Lazy swizzling can take as little as 74% the time of non-swizzling, and eager

swizzling can take as little as 68%. The down side of swizzling is much worse, and occurs as we

allow object size to go to infinity, with the objects full of initialized pointers. Table 17 shows these

limit ratios. Note that in these limits, per object costs do not matter, so the header size issue of

in-place swizzling does not arise. If all objects are updated, the maximum ratio is diluted to about

1.5.

Scheme LCS LIS ECS EIS

Ratio (�) 2.64 (.10) 2.55 (.09) 2.42 (.09) 2.36 (.07)

Table 17: Worst case limits of swizzling/non-swizzling time

Of course, one is more likely interested in typical rather than extremal cases, but there is not

a lot of hard evidence (yet) as to what might be typical for persistent object systems and object-

oriented databases. We can, however, extrapolate from existing object systems such as Smalltalk

and Trellis9 [49]. In Smalltalk the average object size exclusive of headers is about 40 bytes, half

of which are devoted to slots. This suggests that about half of object contents are pointers, but that

would be an overestimate since many slots in Smalltalk objects contain integers. A better estimate

would be that half of the slots (i.e., one quarter of the space in objects) is devoted to slots containing

pointers, the vast majority of which are initialized. Every Smalltalk object also includes a pointer

to its class object, but we will not count that since special, faster techniques might be used to handle

type/class markers in object headers. In sum, then, we might assume an average of 2 initialized

pointers per object in 2.5 slots per object. A remaining question is whether or not the number of

pointers per object will generally scale with object size or stay relatively fixed. Rather than taking

a position on this issue, we will consider two “typical” models, one with a fixed number of pointers

per object (2 initialized pointers in 2.5 slots) and one with a varying number (20% of user data

containing initialized pointers, with 25% of user data being slots).

Under the fixed model, MO subsumes MS and MI, and under the varying model MB subsumes

them. Similarly UO (or UB) subsumes US and UI. The net result is that we have reduced the number

of model variables to be considered and can make more concrete comparisons. Specifically, we

can determine the number of visits to each object required to pay back the cost of swizzling each

9Trellis, a registered trademark of Digital Equipment Corporations, was formerly called Trellis/Owl.
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byte in the object and the per object swizzling cost. That is, we can determine the number of visits

v required to break even (or achieve other levels of relative performance) given the object size b;

the form of the equation is v = c + a � b, with c and a determined by the model and our fixed or

varying number of pointers assumptions. Note that c is the number of visits required to pay back

the per object costs and a is the number of visits per byte required to overcome the per byte costs.

Tables 18 and 19 give the values of c and a for the various schemes, and show v for an illustrative

range of object sizes b. The tables give the calculations for read-only sessions; sessions involving

update generally take a few more visits to pay back the total swizzling and unswizzling cost.

Parameters v for various values of b (�)

Scheme c (�) a (�) b = 20 b = 40 b = 100 b = 200

LCS 4.06 (.38) .17 (.03) 7.5 (.9) 10.9 (1.5) 21 (3) 38 (6)

LCSP 1.87 (.35) .17 (.03) 5.3 (.9) 8.7 (1.5) 19 (3) 36 (6)

LIS 4.39 (.36) .13 (.03) 7.0 (.9) 9.6 (1.4) 17 (3) 30 (6)

LIS8 2.33 (.26) .13 (.03) 4.9 (.8) 7.5 (1.3) 15 (3) 28 (5)

ECS 2.56 (.27) .07 (.02) 4.0 (.7) 5.4 (1.1) 10 (2) 17 (4)

ECSP 0.79 (.25) .07 (.02) 2.2 (.7) 3.6 (1.0) 8 (2) 15 (4)

EIS 3.23 (.26) .05 (.01) 4.2 (.5) 5.1 (0.8) 8 (2) 13 (3)

EIS8 1.80 (.21) .05 (.01) 2.7 (.5) 3.7 (0.7) 7 (2) 11 (3)

Table 18: Visits for break-even, fixed number of pointers per object

Parameters v for various values of b (�)

Scheme c (�) a (�) b = 20 b = 40 b = 100 b = 200

LCS .30 (.31) .27 (.03) 5.6 (.9) 10.9 (1.5) 27 (3) 53 (6)

LCSP -.69 (.30) .24 (.03) 4.0 (.9) 8.7 (1.5) 23 (3) 46 (6)

LIS .59 (.29) .23 (.03) 5.1 (.8) 9.6 (1.4) 23 (3) 46 (6)

LIS8 -1.47 (.19) .23 (.03) 3.0 (.7) 7.5 (1.3) 21 (3) 44 (5)

ECS -.47 (.23) .15 (.02) 2.4 (.6) 5.4 (1.1) 14 (2) 29 (4)

ECSP -1.28 (.22) .12 (.02) 1.2 (.6) 3.6 (1.0) 11 (2) 23 (4)

EIS .16 (.21) .12 (.01) 2.6 (.5) 5.1 (0.8) 13 (2) 25 (3)

EIS8 -1.27 (.17) .12 (.01) 1.2 (.4) 3.7 (0.7) 11 (2) 24 (3)

Table 19: Visits for break-even, varying number of pointers per object

Because of the wide range of values, there is no simple answer to whether or not swizzling is

a good idea—it depends strongly on the application’s characteristics, both in terms of the objects
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it manipulates and in terms of the work it performs on them (number of visits, etc.). While the

break-even numbers are useful, it is also important to know how sensitive the relative costs are if

the number of visits is varied. We checked this and found that, in the region near the break-even

point, increasing (decreasing) the number of visits by a factor of 2 decreased (increased) the cost

ratio (swizzling / non-swizzling) by about 10%. That is, for swizzling to take 90% the time of

non-swizzling, you need twice as many visits as indicated in the tables; for swizzling to be within

20% of non-swizzling, one needs only one quarter of the visits in the tables; etc. Thus the cost

ratio is not extremely sensitive to the number of visits. We also see in Tables 20 and 21 that the

worst case (namely v = 1) for swizzling “typical” objects is usually within 20% to 40% of the

non-swizzling cost, which is readily reduced if there is any significant work being done or there are

more visits. Though we cannot dismiss the costs as being insignificant, they are small enough that

other factors might override the potential performance advantage or disadvantage of swizzling.

Fixed number of pointers

Scheme b = 20 b = 40 b = 100 b = 200

LCS 1.38 (.06) 1.40 (.06) 1.42 (.07) 1.43 (.07)

LCSP 1.25 (.05) 1.31 (.06) 1.38 (.07) 1.41 (.07)

LIS 1.35 (.05) 1.35 (.06) 1.34 (.06) 1.34 (.06)

LIS8 1.23 (.05) 1.27 (.05) 1.30 (.06) 1.32 (.06)

ECS 1.22 (.05) 1.22 (.05) 1.22 (.06) 1.22 (.06)

ECSP 1.09 (.05) 1.13 (.05) 1.18 (.06) 1.20 (.06)

EIS 1.23 (.04) 1.21 (.04) 1.18 (.04) 1.17 (.04)

EIS8 1.13 (.03) 1.14 (.04) 1.14 (.04) 1.15 (.04)

Table 20: Swizzling/non-swizzling for one visit, fixed number of pointers per object

The general nature of the results is the same for create-work-save sessions. The main difference

is that, since persistent objects must be created in all cases, the relative costs are closer and swizzling

pays back a little sooner.

6.4 Understanding swizzling costs

It is a matter of viewpoint whether or not one views the plus or minus 30% range of swizzling

advantage/disadvantage as “large” or “small”. Many real applications will add enough work to

dilute the costs or benefits, too, so it may not matter all that much. However, at first glance one

might expect swizzling to cost a lot less than it actually does—after all, it consists merely of storing

the results of object id lookups performed in the non-swizzling case, does it not? That naive view
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Varying number of pointers

Scheme b = 20 b = 40 b = 100 b = 200

LCS 1.27 (.05) 1.40 (.06) 1.54 (.07) 1.61 (.07)

LCSP 1.18 (.05) 1.31 (.06) 1.46 (.07) 1.53 (.07)

LIS 1.24 (.05) 1.34 (.06) 1.46 (.06) 1.52 (.07)

LIS8 1.12 (.04) 1.27 (.05) 1.42 (.06) 1.49 (.07)

ECS 1.11 (.05) 1.22 (.05) 1.34 (.06) 1.40 (.07)

ECSP 1.01 (.05) 1.13 (.05) 1.26 (.06) 1.32 (.06)

EIS 1.12 (.04) 1.21 (.04) 1.30 (.04) 1.34 (.04)

EIS8 1.02 (.03) 1.14 (.04) 1.26 (.04) 1.32 (.04)

Table 21: Swizzling/non-swizzling for one visit, varying number of pointers per object

overlooks at least two important factors. First, swizzling examines and converts all pointers in

each object, whereas an application may use only some of the pointers. Further, since objects are

likely loaded in groups, and because there may be some economies of scale to swizzling a set of

objects all at once, swizzling may tend to touch and convert more objects than a non-swizzling

approach. The second factor is that one must also be able to un-swizzle objects, which requires

maintaining some kind of reverse mapping. We saw that storing the inverse map in the objects for

in-place swizzling led to noticeable degradation; it may be possible to get better performance with

a separate table, but it will cost more than the EIS8/LIS8 projections shown in previous tables.

Why does lazy swizzling cost more than eager swizzling? One reason is that lazy swizzling, in

our implementation, involves continual residency checks avoided by eager swizzling. As previously

mentioned, we believe most of these can be eliminated. Even if they are, there appears to be some

residual overhead. We hypothesize that laziness does not achieve as much I/O overlap, and hence

misses more disk revolutions, and also that laziness, because it leads to more switching back and

forth between user code and swizzling code, gives poorer instruction and data cache performance.

Unfortunately our measurement approach could not confirm or deny these hypotheses, so we have

no definitive explanation of the higher cost of laziness.

We have been over the issue of copy versus in-place swizzling several times. It seems to

surprise some people that copy swizzling is not drastically more expensive than it is. One reason

copy swizzling may work well is that the necessary copying is quite efficient in the architecture

we used, and may be less so in other machines. In particular, the data cache on the MIPS does

not load missing blocks before a store proceeds, so copying results in fewer cache misses than on

some other machines. The copying routine (memcpy) is also very tightly coded. Another point is

that a significant amount of the overhead in swizzling and unswizzling is in the control part of the

31



algorithm: recursing from object to object, looping through the pointers in each object, etc. As

previously noted, we believe that we can reduce costs by using iteration rather than recursion. Also,

copy swizzling has the advantage of not needing to unswizzle unmodified objects. By providing

efficient means to find the modified objects and avoid work on the unmodified ones, we can expect

useful algorithmic performance improvement too.

6.5 Swizzling in the future

There are several projections we can try to make based on the present study. First, what if object

id lookup was faster (or slower)? All the schemes depend on id lookup, and hence it would speed

swizzling. However, it would also speed non-swizzling by the same absolute amount, so the

performance gap would widen because the non-swizzling V parameter would decrease. Also, the

sensitivity of swizzling costs to object size, specifically to the number of initialized pointers (MI),

would decrease, since the MI parameters would decrease. Overall one would expect non-swizzling

to be a little more attractive. In systems where id lookup costs are higher, swizzling would tend to

be more attractive than in our study.

What effect will faster CPUs have? While it is hard to predict the effects of future cache

implementation strategies such as two-level caches, if CPU speeds increase faster than disk I/O

speeds (a combination of seek time and transfer rate since we cannot expect always to obtain

sequential reads) then swizzling will be less of an issue because I/O time will be a larger fraction

of total time.

What are the prospects for reducing the overheads of swizzling? First, compile-time techniques

can reduce the number of residency checks required for lazy swizzling. Also, operating system

improvements can make page trapping more attractive for detecting object faults, even though some

systems use it already (because they demand transparency). In sum, we believe that laziness will

not be a significant issue, and that the eager swizzling measurements give a better sense of the future

of swizzling. Second, we can use program annotations and compiler modifications to swizzle some

pointers but not all. Given adequate profiling, and program behavior that is predictable enough,

this will allow us to obtain the advantages of swizzling and non-swizzling, as well as eager and lazy

approaches, simultaneously. Third, compiler generated type-specific code, i.e., swizzling routines

customized to each type, may offer improvement, by avoiding loops and unnecessary object header

examination and interpretation. Fourth, we can use iteration rather than recursion, when it is

possible and reasonable. This will significantly reduce the per object overheads of swizzling and

unswizzling. Finally, we can avoid processing unmodified objects in the copy swizzling case.

If all of these steps are taken, and the benefits are as we expect, then we should achieve
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performance close to that of the projected eager copy swizzling case shown in the tables. If that

is true, then swizzling would usually be advantageous if the number of visits is more than just a

few, and the maximum penalty would be about 30%. Eager in-place swizzling would be almost as

good, especially if most objects are updated.

7 Summary and conclusions

We articulated a model of working with objects, introducing the notions of collections of objects,

and work sessions, and breaking work sessions down into distinct phases for measurement and

analysis. We described several methods for managing objects, namely lazy versus eager and copy

versus in-place swizzling, as well as not swizzling. We designed and performed experiments to

evaluate the schemes and predict their performance. The experimental results support a simple and

clear work session performance model, which allows us to draw some conclusions about swizzling,

especially in the context of the Mneme object store.

7.1 Conclusions

First, the results support the general expectation that swizzling saves time if one does enough

computation with the swizzled objects. The time savings of swizzling are up to 25% to 35%

for applications that do a lot of pointer chasing but not much work with individual objects. In

extreme cases swizzling can cost more than twice as much as not swizzling, but a more reasonable

expectation is that if objects are visited only once, swizzling costs 20% to 40% more than non-

swizzling, with the cost of swizzling recovered in anywhere from a few visits to a few tens of

visits. It is clear that if an application visits objects only once or a few times, swizzling is unlikely

to help and may hurt some. However, swizzling does not result in orders of magnitude impacts on

performance, and it is reasonable to choose a swizzling scheme (or not to swizzle) based on factors

other than performance. We mentioned a number of possible improvements that reduce swizzling

cost and the potential disadvantages of swizzling; the potential advantages of swizzling are limited

by the difference between traversing a swizzled or unswizzled data structure, which is not related

to the swizzling improvements.

Second, the cost of swizzling goes up with increasing object size and increasing number of

pointers to be considered and swizzled. Thus the nature of the collections of objects used in an

application determine the extent to which swizzling is beneficial. If we knew more about the

collections used in various applications, then we could make more definitive judgments as to

whether swizzling is desirable.
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Third, as expected, lazy swizzling costs more than eager swizzling, though our measurements

do not admit explanation of all of the difference. We speculate that lazy swizzling does not achieve

the same degree of CPU-I/O overlap and has poorer cache locality. Similarly, copy swizzling costs

more than in-place swizzling, for objects of the same size, when objects are updated. It is interesting

that our implementation of in-place swizzling is slower than copy swizzling for small to medium

sized objects, because we use 4 additional bytes in the disk representation of objects for in-place

swizzling. (The 4 bytes are reserved to hold the object’s id for unswizzling.) This experience

demonstrates how important it is to control per-object space overheads, because of their impact on

time performance. We also saw that copy swizzling is generally faster than in-place swizzling in

sessions with few updates, if we can avoid processing unmodified objects when unswizzling.

Fourth, since copy swizzling does not cost much more than in-place swizzling, and frequently

less, we conclude that given adequate main memory one should use copy swizzling rather than

in-place swizzling, because copy swizzling allows much more general transformations between

disk and memory formats. Both styles of swizzling can handle issues such as byte order and floating

point format, but copy swizzling is more suited to extracting or constructing the fields of objects

needed by a specific application, and can help mask schema differences by admitting change of

representation of objects in the swizzling/unswizzling process.

Fifth, the cost of object residency checks is not large relative to total cost. This suggests that

hardware- versus software-mediated residency checking is not an important performance issue.

We note in this context that we believe one can eliminate a significant number of residency checks

through compiler optimization and partial eagerness (swizzling most, but not all, pointers eagerly,

in the knowledge that the application is very likely to traverse them).

Sixth, the work session model of application behavior allowed us to construct a simple perfor-

mance model, using parameters of the data set that are relatively easy to measure. Our experiments

showed that both the work session model and the performance model derived from it, are reasonable

in practice, at least for certain kinds of application behaviors.

Finally, to summarize the conclusions: the costs or benefits of swizzling depend substantially

on an application’s use of objects, both in the sense of the size and “shape” of the objects (number of

pointers, etc.) and in the sense of how the application visits and works on the objects. However, the

costs and benefits are not usually large, so others factors may determine which swizzling approach

to use. We suggest that, given adequate memory, copy swizzling may be the best approach because

of its flexibility.
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7.2 Future work

Considerable work remains on these topics. The work session model of applications needs addi-

tional evaluation to determine its applicability to important practical settings. The performance

model can be strengthened by further validation. The models, experiments, and object manage-

ment techniques can be extended to a client/server or other distributed model. Constants in the

performance model might be determined for other hardware and software combinations. By study-

ing actual object collections we can establish typical values for the independent variables of the

performance model. The question of lazy versus eager swizzling needs further investigation. A

cost model allowing objects to be created and destroyed while accessing an existing collection

would be more general.
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