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Abstract

The World Wide Web has become an invaluable information resource but the explosion of

available information has made web search a time consuming and complex process. The

large number of information sources and their different levels of accessibility, reliability

and associated costs present a complex information gathering control problem. This paper

describes the rationale, architecture, and implementation of a next generation information

gathering system – a system that integrates several areas of Artificial Intelligence research

under a single umbrella. Our solution to the information explosion is an information gath-

ering agent, BIG, that plans to gather information to support a decision process, reasons

about the resource trade-offs of different possible gathering approaches, extracts informa-

tion from both unstructured and structured documents, and uses the extracted information

to refine its search and processing activities.
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1 Introduction and Motivation

The vast amount of information available today on the World Wide Web (WWW)

has great potential to improve the quality of decisions and the productivity of

consumers. However, the WWW’s large number of information sources and their

different levels of accessibility, reliability, completeness [5], and associated costs

present human decision makers with a complex information gathering planning

problem that is too difficult to solve without high-level filtering of information. In

many cases, manual browsing through even a limited portion of the relevant infor-

mation obtainable through advancing information retrieval (IR) and information ex-

traction (IE) technologies [6,39,12,40] is no longer effective. The time/quality/cost

tradeoffs offered by the collection of information sources and the dynamic nature

of the environment lead us to conclude that the user should not serve as the detailed

controller of the information gathering (IG) process [45].

Our solution to the information explosion is to integrate different Artificial Intelli-

gence (AI) technologies, namely scheduling, planning, text processing, information

extraction, and interpretation problem solving, into a single information gathering

agent, BIG (resource-Bounded Information Gathering) [42,43], that takes the role

of the human information gatherer. In response to a query, BIG locates, retrieves,

and processes information to support a decision process. To evaluate our generic

approach, we have instantiated it for the software domain. BIG’s area of expertise

is in helping clients select software packages to purchase. For example, a client

may instruct BIG to recommend a database package for Windows 98, and spec-

ify desired product attributes as well as constraints on such things as the amount

of money they are willing to pay for such a product, and on the amount of time

and money to spend locating information about database products. The client may

also control how BIG searches by specifying a preference for information preci-

sion versus coverage. A preference for coverage will result in more products being

discovered, but with less information about each product. A preference for greater

precision results in BIG spending more resources to construct very accurate mod-

els of products by gathering additional corroborating information. In response to a

query, BIG plans, locates, and processes relevant information, returning a recom-

mendation to the client along with the supporting data.

The complexity of our objective mandates a high level of sophistication in the de-

sign of BIG’s components. Indeed, several are complex problem solvers in their

own right. A planner and associated task assessor are responsible for translating a

client’s information need into a set of goals and generates plans to achieve those

goals. In the example above, the planner would generate plans detailing the alterna-

tive ways to fetch database product information and the alternative ways to process

the information. To support reasoning about time/quality/cost trade-offs, and thus

a range of different resource/solution paths, the planner enumerates several distinct

plans for achieving the goals and describes them statistically in three dimensions,
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duration, quality, and cost, via discrete probability distributions. Another sophis-

ticated problem solving component, the Design-to-Criteria [60–62] (DTC) agent

scheduler, examines the possible solution paths within the plan, selects a set of ac-

tions to carry out and schedules the actions – coping with an exponential scheduling

problem in real-time through the use of approximation and goal directed focusing.

The resulting single-agent schedule contains parallelism and overlapping execu-

tions when the primitive actions entail non-local processing, such as requests that

are issued over the network.

As BIG retrieves documents, another problem solver, an Information Extraction

(IE) system [25] works in conjunction with a set of semantic, syntactic, and site-

specific tools, to analyze the unstructured text documents. Information from this

analysis is used for decision making and refinement of other information gathering

goals.

Other complex components in BIG include a framework for modeling domain

tasks, a web server information database, and a task assessor to assist in trans-

lating the problem solver’s domain plans into a domain independent representation

appropriate for use by the Design-to-Criteria scheduler and other high-level com-

ponents. We will return to the agent architecture (see Figure 3) in greater detail in

Section 3.

Fig. 1. BIG’s User Interface

Let us consider a high level example to illustrate some of BIG’s capabilities and

to set a context for further discussion. A client is interested in finding a word pro-

cessing program for the Macintosh. The client submits goal criteria that describes
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desired software characteristics and specifications for BIG’s search-and-decide pro-

cess. A snapshot of the system’s user specification form is given in Figure 1.

The search parameters are: duration importance of 100%, soft time deadline of 10

minutes, hard cost limitation of $5, and in terms of precision versus coverage, 50%

of the weight is given to precision and 50% to coverage. This translates to a pref-

erence for a fast search / decision process, possibly achieved by trading-off cost

and quality for the fast search. This also indicates that the user wants the process

to take ten minutes or less and cost no more than $5
✠

if the search process incurs

expenses when gathering information. The user also expresses no preference for

coverage or precision – BIG can trade-off one in favor of the other. The product

parameters are: product price $200 or less, platform: Macintosh. Additional prod-

uct evaluation features are discussed in more detail in Section 5.5. The client is an

experienced home-office user who desires a result relatively quickly and does not

want to spend much money on the search, and who is primarily concerned with

getting most power for the dollar in the product.

BIG’s task assessor uses the supplied criteria to determine which information gath-

ering activities are likely to lead to a solution. Candidate activities include doc-

ument retrieval from known word processing software makers such as Corel and

Microsoft, as well as from consumer sites containing software reviews. Other ac-

tivities pertain to document processing options for retrieved text. For a given doc-

ument, there are a range of processing possibilities, each with different costs and

advantages. For example, the heavyweight information extractor pulls data from

free format text, fills templates and associates certainty factors from the extracted

items. In contrast, the simple and inexpensive pattern matcher attempts to locate

items within the text via simple grep-like behavior. BIG’s task assessor handles the

process of laying out these problem solving options by emitting a task structure that

describes the alternative ways to perform tasks and quantifies them statistically via

discrete probability distributions in terms of quality, cost, and duration.

These problem solving options are then considered and weighed by the scheduler

– it performs a quality/cost/time trade-off analysis and determines an appropri-

ate course of action for BIG. The schedule is executed; multiple retrieval requests

are issued and documents are retrieved and processed. In this case, data extracted

from documents at the Corel site is integrated with data extracted from reviews at

the Benchin site to form a product description object (model) of Corel WordPer-

fect. Additional search and processing leads to the discovery of 14 other competing

products. The decision maker, based on the product models constructed, indicates

that the product that best satisfies the user’s specifications is Corel WordPerfect

✠
There is no cost associated with accessing data in the experiments reported in this paper

thus the cost constraint specified by the user does not alter BIG’s behavior. However, as

detailed in [44], experiments with BIG involving situations where accessing data from se-

lected sites incurs cost, the cost constraints specified by the user are accounted for in BIG’s

information gathering process.
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3.5. BIG returns this recommendation to the client along with the gathered infor-

mation, corresponding extracted data, and certainty metrics about its extraction and

decision processes.

Fig. 2. BIG’s Final Decision for Sample Run

The primary distinguishing characteristics of this research are:

Active Search and Discovery of Information BIG does not rely entirely upon a

pre-specified set of sites from which to gather information. BIG also utilizes

general URL search engines and sites / information sources discovered during

previous problem solving sessions. Most importantly, uncertainty in the extracted

information and the absence of crucial information drives further search. We

provide examples in Section 4.4.

Resource-bounded Search and Analysis BIG problem solves to meet real-time

deadlines, cost constraints, and precision, coverage and quality preferences. BIG

reasons about which actions to take to produce the desired result and plans ac-

cordingly. This is accomplished through the use of the Design-to-Criteria sched-

uler and by employing an end-to-end, rather than reactive, control process. These

issues are discussed in Sections 3, 4, and 5.

Opportunistic and Top-down Control BIG blends opportunistic, reactive, prob-

lem solving behaviors with the end-to-end scheduling view required to meet real-

time deadlines and other performance constraints. This enables BIG to work

within a high-level, structured plan without sacrificing the dynamism needed

to respond to uncertainties or inconsistencies that arise in models derived from

gathered information. We will discuss the details in Section 5.4.
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Information Extraction and Fusion The ability to reason with gathered informa-

tion, rather than simply displaying it for the user, is critical in the next generation

of information gathering systems. BIG uses research-level extraction technology

to convert free format text into structured data; the data is then incorporated and

integrated into product models that are examined by BIG’s decision process, re-

sulting in a product recommendation. Details are provided in Sections 3, 4, and

5.

Incorporation of Extracted Information In addition to building product models,

extracted information is incorporated in BIG’s search as it unfolds. For example,

competitor products discovered during the search are included in BIG’s informa-

tion structures, possibly resulting in new goals to pursue additional information

on these products. We provide further details in Sections 3 and 4, and cover an

example in Section 5.

This approach to web-based information gathering (IG) is motivated by several ob-

servations. The first observation is that a significant portion of human IG is itself

an intermediate step in a much larger decision-making process [45]. For example,

a person preparing to buy a car may search the Web to find out what car mod-

els are available, examine crash test results, obtain dealer invoice prices, or exam-

ine reviews and reliability statistics. In this information search process, the human

gatherer first plans to gather information and reasons, perhaps at a superficial level,

about the time/quality/cost trade-offs of different possible gathering actions before

actually gathering information. For example, the gatherer may know that Microsoft

CarPoint site has detailed and varied information on the relevant models, but that

it is sometimes slow, relative to the Kelley Blue Book site, which has less varied

information. Accordingly, a gatherer pressed for time may choose to browse the

Kelley site over CarPoint, whereas a gatherer with unconstrained resources may

choose to browse-and-wait for information from the slower CarPoint site. Human

gatherers also typically use information learned during the search to refine and re-

cast the search process; perhaps while looking for data on the new Honda Accord

a human gatherer would come across a positive review of the Toyota Camry and

would then broaden the search to include the Camry. Thus, the human-centric pro-

cess is both top-down and bottom-up: structured, but also opportunistic. A detailed

discussion on the specifics of this type of opportunistic problem solving is pre-

sented in Section 5.4. [9] provides a further exposition on issue of exercising and

balancing various types of top-down and bottom-up control.

The second observation that shapes our solution is that Web-based IG is an instance

of an interpretation problem. Interpretation is the process of constructing high-

level models from low-level data using feature-extraction methods that can produce

evidence that is incomplete or inconsistent. In our current domain this corresponds

to a situation where the software product descriptions generated from the raw web

documents may not contain all the desired information, or duplicate information

from different sources may be contradictory. Coming from disparate sources of

information of varying quality, these pieces of uncertain evidence must be carefully
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combined in a well-defined manner to provide support for the interpretation models

under consideration.

In recasting web-based IG as an interpretation problem, we face a search problem

characterized by a generally combinatorially explosive state space. In the IG task,

as in other interpretation problems, it is impossible to perform an exhaustive search

to gather information on a particular subject, or even in many cases to determine the

total number of instances of the general subject that is being investigated. We first

argue that an IG solution needs to support constructive problem solving [11,10]

in which potential answers (e.g. models of products) to a user’s query are incre-

mentally built up from features extracted from raw documents and compared for

consistency or suitability against other partially-completed answers. Secondly, any

solution to this IG problem needs to support reasoning about tradeoffs among re-

source or time constraints, the quality of the selected item, and the quality of the

search, analysis and decision processes. Because of the need to conserve time, it

is important for an interpretation-based IG system to be able to save and exploit

information about pertinent objects learned from earlier forays into the WWW.

In connection with this incremental model-building process, an interpretation-based

IG problem solution must also support sophisticated scheduling to achieve inter-

leaved data-driven and expectation-driven processing. Processing for interpretation

must be driven by expectations of what is reasonable, but, expectations in turn

must be influenced by what is found in the data. For example, during a search to

find information on word processors for Windows 98, with the goal of recommend-

ing some package to purchase, an agent finding Excel in a review article that also

contains Word might conclude based on IE-derived expectations that Excel is a

competitor word processor. However, scheduling of methods to resolve the uncer-

tainties stemming from Excel’s missing features would lead to additional gathering

for Excel, which in turn would associate Excel with spreadsheet features and would

thus change the expectations about Excel (and drop it from the search when enough

of the uncertainty is resolved). Where possible, scheduling should permit parallel

invocation of IE methods or requests for WWW documents.

Thus far we have outlined a large information gathering system designed to lever-

age the strengths of several AI subfields to address the complex task of using a large

and unstructured information source like the Internet to facilitate decision making.

In the remainder of this paper, we discuss related research in Section 2, and present

the BIG agent architecture and its key components in Section 3. We then present

a detailed execution trace of BIG in Section 4. In Section 5 we present other in-

teresting research issues addressed by BIG using details from actual BIG runs. We

also demonstrate in this section the flexibility of the architecture to different user

objectives and software genres through empirical results. Conclusions and future

directions are presented in Section 6.
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2 Related Research

2.1 Web Based Information Assistance

The exponential growth of the Web has not gone unnoticed by the research and

commercial communities. The general solution, as one researcher so aptly put it

[22], is to “move up the information food chain,” in other words, to build higher-

level information processing engines that utilize existing tools like generalized

search engines (e.g., Infoseek and AltaVista). We first look at three approaches

used in information processing circles. One class of work toward this end is the

meta search engine. Meta search engines typically issue parallel queries to mul-

tiple search engines like AltaVista and Infoseek, customizing the human client’s

query for each search engine and using advanced features of the search engines

where available. Examples of this include SavvySearch [32] and MetaCrawler [22];

commercial meta search products are also available [33,64]. Some of these tools

supplement the IR technology of the search engines – for example, if a particular

advanced query technique such as phrase matching is missing from the search en-

gine, MetaCrawler will retrieve the documents emitted from the search engine and

perform its own phrase techniques on the documents. Other supplementary features

provided in meta search engines include clustering candidate documents Since meta

search engines build on the services offered by several URL search engines, their

results generally offer wider Internet coverage. However, since their output is of-

ten just a list of URLs generated by the same processing techniques used in URL

search engines, it tends to suffer from the same problem as the output from URL

search engines themselves – too much raw data.

A second class of related work is the personal information agent [2,52]. Rather

than making single queries to a large number of sites, these agents begin from one

or more specific points on the Web and selectively pursue links in search of rele-

vant information.
✡

They are concept-driven, obtaining their area of interest either

through hard-coded rules, explicit questionnaires or simple learning techniques.

These systems are not as fast as the meta search systems, but their design goal has

a somewhat different focus. Personal information agents are typically used to ob-

tain a small number of highly relevant documents for the user to read, either all at

once or continuously over an extended time period. Thus, because of the potential

overhead for both link traversal and dynamic document processing these systems

tend to sacrifice speed for document quality.

The third class of work addressing the information food chain is the shopping agent.

Shopping agents typically locate and retrieve documents containing prices for spec-

ified products, extract the prices, and then report the gathered price information to

✡
The colloquial term “spidering” includes this directed traversal along with more undi-

rected search strategies.
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the client. For example, the original BargainFinder [37] and the more recent Shop-

bot [21] both work to find the best available prices for music CDs. These tools

often differ from meta search engines and personal information agents in that they

typically do not search the web to locate the shopping sites, instead, the systems

designers develop a library containing known shopping sites and other information

such as how to interact with a particular store’s local search engine. Some shop-

ping agents also integrate some of the of the functionality offered by the personal

information agents. For example, the commercial Jango [35] shopping agent lo-

cates reviews as well as extracting price and very specific product features from

vendor web sites. Research in these systems often focuses on how to autonomously

learn rules (akin to wrappers [49]) for interacting with each store’s forms and for

processing the output, in contrast to having a human manually encode the rules.

Consider the different attempts to move up the information food chain. The meta

search engines provide information coverage, independence from the nuances of

particular search engines, and speed. They also provide a measure of robustness

since they are not tied to a particular search engine. Personal information agents

combine IR techniques with simple heuristics to qualify documents for the client’s

review. Shopping agents provide information processing facilities to support the

human client’s information gathering objective – for example, to find the best price

for a music CD. Our work extends these ideas by combining many of the charac-

teristics that make the systems individually effective within their areas of expertise.

Like the meta search engines, BIG can use multiple different web search tools to

locate information on the web. In contrast to the meta search engines, BIG learns

about products over time and reasons about the time/quality trade offs of different

web search options. Akin to the personal information agents, BIG gathers docu-

ments by actively searching the Web (in conjunction with web search engines).

BIG, however, goes one step further by also performing information extraction on

the data it retrieves. Like the shopping agents, BIG gathers information to support a

decision process. However, BIG differs from shopping agents in the complexity of

its decision process and in the complexity of its information processing facilities.

Through IE technologies, BIG processes free format text and identifies and extracts

product features like prices, disk requirements, and support policies.

2.2 Database Research

Some aspects of BIG relate closely to issues raised by heterogeneous database sys-

tems (HDBS) [59,36]. Such databases must potentially gather data from multiple

sources, which may each have different performance, content and cost. At a high

level, these two problems are thus very similar. Both BIG and HDBS aim to pro-

vide transparent access to a heterogeneous set of information sources from a single

access point. BIG, however, has additional concerns which HDBS typically do not
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address. BIG’s set of information sources is more dynamic than a typical HDBS,

and is composed of a mixture of search engine and single-point items. The infor-

mation BIG deals with is also unstructured and noisy. As more information sources

become available which are designed to be accessed by agents, HDBS techniques

may become more applicable to the overall problem we are addressing.

Some of BIG’s problem solving and scheduling activities are analogous to tech-

niques used in database query optimization. The query optimization process in a

centralized database system is concerned with how best to structure information re-

quests and manage the processing which must take place on the resulting data. In a

distributed database system, a query optimizer has the additional burden of possibly

choosing from among several information sources and processing locations which

each have different benefits and drawbacks [29,27,3]. These operations are analo-

gous to the scheduling activity done in BIG, which makes similar decisions. Both

tasks must consider such issues as expected server performance, data structure, ac-

tivity parallelism and how best to manage the retrieved information. An important

difference between a conventional query optimizer and BIG’s scheduling process is

the amount of user input involved. BIG uses the Design-to-Criteria agent scheduler,

which takes into account the user’s preferences when generating the schedule. For

instance, one user may be willing to spend a lot of money in exchange for a very

short but high quality search, whereas another may be willing to spend more time

to save money. DTC allows several metrics to effect its behavior, allowing a de-

gree of customization not permitted by typical database query optimization. These

tradeoffs will be covered in more detail in later sections and are presented more

fully in [60–62].

2.3 Other Related Issues

Technologies developed in mainstream information retrieval research may also help

BIG find and extract information more reliably. Metadata information, such as

RDF/PICS/XML [51] allow web page authors to provide concise information in

a format sufficiently structured to simplify interpretation. Widespread adoption of

these formats would greatly improve the effectiveness of programs like BIG. Other

technologies, facilitating general inter-application (e.g. Z39.50 [1]) and inter-agent

(e.g. KQML [24]) communication, can also assist by providing the standards neces-

sary for simple information transfer. In some sense, HTTP currently fills this role,

but more suitable protocols exist for the task at hand. A practical drawback with

these new techniques is that they have not yet become widespread enough to make

them viable. If and when standards such as RDF become widely accepted it seems

clear that systems like BIG will be able to make more effective use of available

information.

Grass and Zilberstein’s work [26] is closely related to our basic approach, but dif-
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fers in that the decision process is centered around a Bayesian network and their

approach to scheduling is more reactive. BIG is also related to the WARREN [15]

multi-agent portfolio management system, which retrieves and processes informa-

tion from the Web. However, BIG differs in its reasoning about the trade-offs of

alternative ways to gather information, its ambitious use of gathered information

to drive further gathering activities, its bottom-up and top-down directed process-

ing, and its explicit representation of sources-of-uncertainty associated with both

inferred and extracted information. BIG shares some characteristics with database-

centric, structured-resource, approaches like TSIMMIS [28], SIMS [4], and the

Information Manifold [47], but differs in that its focus is on resource-bounded in-

formation extraction and assimilation coupled with discovery.

The time / quality / cost trade-off aspect of our work is conceptually similar to

[31,30,14,54] and formal methods [23,26] for reasoning about gathering informa-

tion, except that our trade-off analysis focuses on problem solving actions (includ-

ing text processing) and other agent activities rather than concentrating only on the

trade-offs of different information resources, i.e., our work addresses both agent

control level and information value.

With respect to the development of digital libraries, our research is aimed at par-

tially automating the function of a sophisticated research librarian, as in [63]. This

type of librarian is often not only knowledgeable in library science but also may

have a technical background relevant to the interests of the research domain. In ad-

dition to locating relevant documents for their clients, such librarians often distill

the desired information from the gathered documents for their clients. They often

need to make decisions based on resource concerns such as the trade-offs between

billable hours and solution quality and the resource time/quality/cost constraints

specified by a given client; or whether certain periodicals are available in-house,

and if not, how long it will take to get them and what they will cost. We see the

partial automation of a sophisticated librarian as a natural step in the evolutionary

development of a fully automated digital library.

BIG also relates to research in interfaces and dialogues between human users and

agents [53], though the extraction of software requirements from the user and the

agent/user interaction is not the focus of this research. In the future, we envision

a dynamic human/agent interface in which the client can provide online guidance

to BIG to help focus the search and decision processes. In fact, BIG’s architecture

was designed partly to support such activities and it is one of the strengths of the

flexible control paradigm used in BIG.
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Fig. 3. The BIG Agent Architecture

3 The BIG Agent Architecture

The overall BIG agent architecture is shown in Figure 3. The agent is comprised

of several sophisticated components that are complex problem-solvers and research

subjects in their own rights. The most important components, or component groups,

follow in rough order of their invocation in the BIG agent.

Server and Object Information Databases The object database stores informa-

tion objects constructed by BIG during an information gathering session. Objects

represent entities from the application domain (e.g. software packages, cars) gen-

erated by BIG, about which it will make a decision. Objects may be incompletely

specified; field values may be uncertain through lack of information or because

of contradictory information. These uncertainties are explicitly represented as

sources of uncertainty data structures (SOUs) [7,8]. This enables BIG to plan to

find information that either corroborates the current information or reduces con-

flicts with the current information, thereby decreasing the degree of uncertainty.

The object database is also used to store information from previous searches –

thus BIG can learn and improve / refine its knowledge over time.

The server information database contains numerous records identifying both

primary (e.g., a review site) and secondary (e.g., URL search engine) information

sources on the Internet. Within each record are stored the pertinent characteristics

of a particular source, which consist of such things as its quality measures, re-

trieval time and cost, and relevant keywords, among others. The server database

is used by the task assessor to help generate its initial sketch of information gath-

ering options and again during the actual search process by the RESUN planner.

Both the server and object databases grow dynamically at runtime. At the

start of the experimental runs described in Section 5.6, the server database is

seeded with a small number (10 - 20) of generic information sources (e.g., ven-
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dor sites and search engines), while the object database is empty. New sources

are added to the server database as they are discovered, and new characteristics

about known sources (i.e. average response time, file size, references) are used

to update existing entries. The object database is grown in a similar manner by

adding new products as they are found and revising records of known products.

The information in these databases is part of a feedback loop, which improves the

quality of data available to BIG for each query it processes. The server database

is further augmented by an off-line spider process which fills the database with

sources that meet general, easily checked characteristics (i.e. keyword matching,

minimum textual content).

Blackboard Component The Blackboard functions as a multileveled database for

the information the system has discovered and produced thus far. Unlike the ob-

ject database mentioned above, the blackboard is a runtime specific tool - it is

more efficient to access, but the information will be lost when the system is

shut down. Useful information from the blackboard is therefore saved into ob-

ject database for future use. Our current blackboard organization has four levels:

User-Goal, Decision, Object, and Document, in order of decreasing abstraction.

The layered hierarchy allows for explicit modeling of concurrent top-down and

bottom-up processing, while maintaining a clear record of supporting and con-

tradictory evidence. The information at a given level is derived from the level(s)

below it, and it in turn supports the hypotheses at higher levels. For example,

when evaluating the appropriateness of a particular decision hypothesis, the sys-

tem examines the reliability of the text extraction processes used to generate the

properties of the object. The objects themselves are each supported by the var-

ious documents from which they were generated. Figure 4 shows the four-level

structure of our current blackboard and examples of the types of objects which

are stored there.

In this example, the Corel Wordperfect 3.5 product object in the object level

provides supporting evidence to the Corel Wordperfect 3.5 recommendation made

at the the decision level. There are several kinds of SOUs shown associated with

the “Object” and “Document” levels in the figure; these SOUs help identify those

objects which potentially require further processing. The “partial-support-sou”,

for example, indicates that there are important features such as platform or pro-

cessor, missing from this object. The problem solver would at some point notice

this deficiency and attempt to resolve the uncertainty by retrieving and process-

ing related documents.

Task Assessor The task assessor is responsible for formulating an initial infor-

mation gathering plan and for revising the plan as new information is learned.

The task assessor manages the high-level view of the information gathering pro-

cess and balances the end-to-end, top-down constraints of the Design-to-Criteria

scheduler and the opportunistic bottom-up RESUN planner (both discussed be-

low). It heuristically generates a network of high-level plan alternatives that are

reasonable, given the user’s goal specification and the desired performance ob-

jectives, in terms of time deadline and information coverage, precision and qual-

ity preferences.
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User-Goal

Decision

Object

Price: $200

Platform: Mac

Product: Corel Wordperfect 3.5

Action: Buy

Confidence: 0.775

Price: $159.95

Platform: Macintosh

Overall quality:1.87

Product name: Corel WordPerfect 3.5

partial-support-sou: missing important features

uncertain-support-sou: uncertain about some features

Genre: Word Processing

Text-content: <page text>

Document URL: http:search.outpost.com/search...

no-support-sou: missing all information besides name

no-explanation-sou: no object supported by this document

Fig. 4. BIG’s Blackboard Structure

The TÆMS [18] task modeling language is used to hierarchically model the

information gathering process and enumerate alternative ways to accomplish

the high-level gathering goals. The task structures probabilistically describe the

quality, cost, and duration characteristics of each primitive action and specify

both the existence and degree of any interactions between tasks and primitive

methods. TÆMS task structures are stored in a common repository and serve as

a domain independent medium of exchange for the domain independent agent

control component. In the single agent implementation of BIG, TÆMS is pri-

marily used to coordinate and communicate between the scheduler (below) the

task assessor, and the RESUN planner.

Design-to-Criteria Scheduler Design-to-Criteria [60–62] is a domain indepen-

dent real-time, flexible computation [30,14,54] approach to task scheduling. The

Design-to-Criteria task scheduler reasons about quality, cost, duration and uncer-

tainty trade-offs of different courses of action and constructs custom satisficing

schedules for achieving the high-level goal(s). The scheduler provides BIG with

the ability to reason about the trade-offs of different possible information gather-

ing and processing activities, in light of the client’s goal specification and behav-

ior preferences, and to select a course of action that best fits the client’s needs in

the current problem solving context. The scheduler receives the TÆMS models

generated by the task assessor as input, produces a schedule in soft real-time [62],

and returns the generated schedule to the RESUN planner for execution.
➓

The

➓
For a typical BIG task structure, having 25-30 primitive actions, schedule time is on the
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resulting schedule may contain segments of parallel activities when the primi-

tive actions entail non-local processing, e.g., issuing requests over the network.

The non-local activities can be embedded within primitive actions or explicitly

modeled as primitive actions with two components, one for initiation and one

for polling to gather results, separated by propagation delays. This enables the

agent to exploit parallelism where possible and where the performance of the

parallel activities will not adversely affect the duration estimates associated with

its activities.
➔

In summary, the scheduler is what enables BIG to address real-time deadlines

and to trade-off different aspects of solution quality (e.g., precision, coverage).

The scheduler does not simply trade-off time and cost, it is what determines how

the process should be accomplished and the appropriate time allocations given

to operations or particular classes of operations (e.g., information search and

retrieval versus text processing).

RESUN Planner The RESUN [7–9] (pronounced “reason”) blackboard based plan-

ner/problem solver directs information gathering activities. The planner receives

an initial action schedule from the scheduler and then handles information gath-

ering and processing activities. The strength of the RESUN planner is that it

identifies, tracks, and plans to resolve sources-of-uncertainty (SOUs) associated

with blackboard objects, which in this case correspond to gathered information

and hypotheses about the information. For example, after processing a software

review, the planner may pose the hypothesis that Corel Wordperfect is a Win-

dows 98 word processor, but associate a SOU with that hypothesis that identifies

uncertainty associated with the extraction technique used. The planner may then

decide to resolve that SOU by using a different extraction technique or finding

corroborating evidence elsewhere. RESUN’s ability to represent uncertainty as

symbolic, explicit factors that can influence the confidence levels it maintains

for hypotheses provides the cues for an opportunistic control mechanism to use

in making context-sensitive decisions. For example, they might be used to adap-

tively engage in more unrestricted Web retrieval when a reference to a previ-

ously unknown product is encountered, or to engage in differential diagnosis to

discriminate between two software products’ competitive features.

This hints at an interesting integration issue. RESUN’s control mechanism is

fundamentally opportunistic – as new evidence and information is learned, RE-

SUN may elect to work on whatever particular aspect of the information gath-

ering problem seems most fruitful at a given time. This behavior is at odds with

the end-to-end resource-addressing trade-off centric view of the real-time [62]

Design-to-Criteria scheduler, a view necessary for BIG to meet deadlines and

order of 10 seconds on a Digital Alphastation 6000.➔
This distinction is important because the duration estimates associated with actions are

constructed assuming the dedicated efforts of the agent. In cases where multiple activities

are performed in parallel, and the activities require 100% of the local processor, perfor-

mance degradation will affect the actual run times of activities and result in schedules that

do not perform as expected.
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address time and resource objectives. Currently RESUN achieves a subset of

the possible goals specified by the task assessor, but selected and sequenced by

the scheduler. However, this can leave little room for opportunism if the goals

are very detailed, i.e., depending on the level of abstraction RESUN may not

be given room to perform opportunistically at all. Improving the opportunism

via a two-way interface between RESUN and the task assessor is an area of fu-

ture work (Section 6). Experiments with different cost models for web sites and

scheduling with different trade-offs, using the the current interface model, are

presented in [44].

To work effectively, BIG must be able to perform search and discovery on

the Web. The search space size and dynamism of this environment require an

agent to 1) respond to data driven opportunities and uncertainties that arise dur-

ing problem solving, and 2) meet real-time deadlines, address resource limita-

tions, and trade-off solution quality for time spent searching. The RESUN plan-

ner and Design-to-Criteria scheduler combine to provide these capabilities. If the

environment were static, a simple script would be sufficient to control the agent’s

search process.

Web Retrieval Interface The retriever tool is the lowest level interface between

the problem solving components and the Web. The retriever fills retrieval re-

quests by either gathering the requested URL or by interacting with with both

general (e.g., InfoSeek), and site specific, search engines.

Document Classifiers To more effectively utilize the processing power available

to it and decrease the probability of analyzing unrelated information, BIG prunes

the set of documents to be processed through a series of filtering steps that im-

pose progressively increasing processing demands and quality standards. During

each stage, a test is performed, which will prevent the document from reaching

the next stage if it fails. At the lowest level is a simple keyword search in the re-

trieved document’s content. If the document fails to contain any of the supplied

keywords it will fail the test. This is followed by a more sophisticated check by a

Naive Bayes classifier, which is covered in detail in Section 5.1. The Naive Bayes

document classifier performs statistical text classification and is provided with a

set of positive and negative training documents as input. Before performing clas-

sification, the classifier indexes the data by reading the training documents and

archiving a “model” containing their statistics. A document which passes these

checks is then placed on BIG’s blackboard. Documents selected from the black-

board will then be processed by one or more of the text extraction knowledge

sources. The exact set of extractors applied to the document is governed by the

document’s source, or if the source is unknown to BIG, all extractors are used.

This final filtering stage is responsible for the fine grained culling of informa-

tion. Pertinent details from each document are used to augment the known set of

products, while the remaining content is discarded.

Information Extractors The ability to process retrieved documents and extract

structured data is essential both to refine search activities and to provide evidence

to support BIG’s decision making. For example, in the software product domain,

extracting a list of features and associating them with a product and a manufac-
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turer is critical for determining whether the product in question will work in the

user’s computing environment, e.g., RAM limitations, CPU speed, OS platform,

etc. BIG uses several information extraction techniques to process unstructured,

semi-structured, and structured information
→

. Documents in general are used

by BIG in two different capacities: product descriptions and reviews. Different

technologies optimized for use on either of these document classes are used to

process the two types of documents. We determine the type of some documents

by analyzing the site of origin. For those documents with unknown type, both

review and description technologies are applied on them.

The information extractors are implemented as knowledge sources in BIG’s

RESUN planner and are invoked after documents are retrieved and posted to the

blackboard. The information extractors are:

textext-ks This knowledge source processes unstructured text documents us-

ing the BADGER [56] information extraction system to extract particular de-

sired data. The extraction component uses a combination of learned, domain-

specific extraction rules, domain knowledge, and knowledge of sentence con-

struction to identify and extract the desired information. The BADGER text

extractor utilizes knowledge gained from a training corpus as well as a lex-

icon/dictionary of domain words and their classifications in a semantic hier-

archy. This component is a heavy-weight NLP-style extractor that processes

documents thoroughly and identifies uncertainties associated with extracted

data.

Our main contribution in this area is how the extracted information is made

useful to the rest of the system by means of back-end processing. The back-

end takes the extractions made by the system and provides the degree of be-

lief for each extraction. The degree of belief indicates the level of confidence

that the extraction is accurate and is a function of the number of positive and

negative training examples covered by all the rules that support a particular

extraction. Using the degree of beliefs as thresholds, we determine which of

the extractions are valid and also compute the certainty measure of the entire

template. Also, the processed information supports opportunistic control in

the sense that newly discovered information could lead to the examination of

a completely different part of the solution space than before.

grep-ks This featherweight KS scans a given text document looking for a key-

word that will fill the slot specified by the planner. For example, if the planner

needs to fill a product name slot and the document contains “WordPerfect”

this KS will identify WordPerfect as the product, via a dictionary, and fill the

product description slot.

cgrepext-ks Given a list of keywords, a document and a product description

object, this middleweight KS locates the context of the keyword (similar to

paragraph analysis), does a word for word comparison with built in semantic

definitions thesaurus and fills in the object accordingly. The cgrep knowledge

→
The widespread adoption of XML and other structuring specifications for web docu-

ments will help to simplify the problem of processing web-based information.
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source uses a lexicon/dictionary similar to that of BADGER.

tablext-ks This specialized KS extracts tables from html documents, processes

the entries, and fills product description slots with the relevant items. This

KS is built to extract tables and identify table slots for particular sites. For

example, it knows how to process the product description tables found at the

Benchin review site.

quick-ks This fast and highly specialized KS is constructed to identify and ex-

tract specific portions of regularly formatted html files. The quick-ks utility

essentially acts as a wrapper to certain web sites. It has knowledge about the

information structure each site employs, and can efficiently extract pertinent

information from these sources. The primary drawback to such a technique is

the inherent difficulty in constructing such wrappers. In our system, a human

expert must inspect the sites in question, deduce the structure of the pages,

and then encode rules to extract the desired information. Clearly this is a labor

intensive process, and one which must be repeated for each web site to be tar-

geted and each time a targeted web site alters its format. We chose to employ

this technique because a relatively small number of sites could be targeted

to produce a significant amount of high quality information. Recent research

in [48] has shown methods which can be employed to simplify wrapper con-

struction and revision, which could significantly reduce the amount of effort

this technology requires, thus making it more viable in a large scale system.

Decision Maker After product information objects are constructed, BIG moves

into the decision making phase. In the future, BIG may determine during de-

cision making that it needs more information, perhaps to resolve a source-of-

uncertainty associated with an attribute that is the determining factor in a par-

ticular decision, however, currently BIG uses the information at hand to make a

decision. We discuss the decision process in greater detail in Section 5.5, how-

ever, the decision is based on a utility calculation that takes into account the

user’s preferences and weights assigned to particular attributes of the products

and the confidence level associated with the attributes of the products in question.

Note that we do not rigorously evaluate the final decisions that BIG produces in

this paper, as we feel the issue is highly subjective. Any selected product falling

within or closest to the user’s desired parameters is considered a valid choice.

All of these components are implemented and integrated in BIG. The construction,

adaptation, and integration of these components was a non-trivial process. BIG is a

large, complex, problem-solving agent that incorporates many areas of AI research

under a single umbrella.
➣

The culmination of these efforts in BIG has produced

➣
BIG is implemented in C++, Perl, Common-Lisp, and Java. It is run on an Alphastation

6000 with 512 megabytes of RAM and requires non-trivial computing resources. However,

in terms of performance, little time has been spent optimizing the system (excepting the

DTC scheduler) and optimization could reduce the overhead involved with running BIG

and improve BIG’s ability to make better use of allocated run-time, i.e., it would be able to

search more or extract more given the same resource allocation.
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an interesting research tool, but the integration has also influenced and refined the

research directions pertaining to the individual components as well.

4 Execution Trace

We now describe a short sample run of the BIG system based on the high level

example described in the introduction (see Figures 1 and 2), to better illustrate the

mechanisms used both within and between BIG’s components. The client is a stu-

dent who uses the system to find a word processing package which will most closely

satisfy a set of requirements and constraints. For clarity of presentation we describe

the example trace in following sequential stages: querying, planning, scheduling,

retrieval, extraction and decision-making. It is important to note that the details

given below are a representative example of BIG’s problem solving techniques,

and that the specific sequence of actions is highly dependent on the particular con-

straints and environment characteristics BIG encounters.

4.1 Query Formulation

Query processing is initiated when the client specifies and submits the search cri-

teria, which includes the duration and cost of the search as well as desired product

attributes such as price, quality features and system requirements. In this exam-

ple the client is looking for a word processing package for a Macintosh costing

no more than $200, and would like the search process to take ten minutes and the

search cost to be less than five dollars. The client also describes the importance

of product price and quality by assigning weights to these product categories, in

this case the client specified that relative importance of price to quality was 60%

40% respectively. Product quality is viewed as a multi-dimensional attribute with

features like usefulness, future usefulness
↔

, stability, value, ease of use, power and

enjoyability constituting the different dimensions. Such characteristics are observ-

able through specialized analysis techniques used during the extraction phase. As

seen in Figure 1, these qualities are all equally weighted at 50 units. These are as-

signed relative weights of importance. The client specifies the relative importance

of product coverage and precision as 20% and 80% respectively.

↔
This relates to the openness of the software product to be compatible with newer versions

of supporting software and operating system
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Fig. 5. BIG’s TÆMS Task Structure for the Short Run

4.2 Plan Construction

Once the query is specified, the task assessor starts the process of analyzing the

client specifications. Using its knowledge of RESUN’s problem solving compo-

nents and its own satisficing top-down approach to achieve the top level goal, it

generates a TÆMS task structure that it finds most capable of achieving the goal

given the criteria (a task structure here is akin to an integrated network of alternative

process plans for achieving a particular goal). Although not used in this example,

knowledge learned in previous problem solving instances may be utilized during

this step by querying the database of previously discovered objects and incorporat-

ing this information into the task structure [42].

Figure 5 shows the TÆMS task structure produced by the task assessor in response

to the client’s query and the current information in the object and server information

databases. The top level task is to satisfy the user’s query, and it has three subtasks:

Get-Information, Benchin-Review, and Make-Decision. The three subtasks repre-

sent different aspects of the information gathering and recommendation process,

namely, finding information and building product models, finding reviews for the

products, and evaluating the models to make a decision. The three subtasks are re-

lated to Satisfy-User-Query via a seq sum() quality-accumulation-function (qaf),

which defines how quality obtained at the subtasks is combined at the parent task.

Some qafs, like seq sum() specify the sequence in which to perform subtasks in

addition to the different combinations that may be employed (the seq stands for

“sequence”). Seq sum() specifies that all of the subtasks must be performed, in or-

der, and that the quality of the parent task is a sum of the qualities of its children.

The formal details of TÆMS are presented in [17,16], the evolving specification is
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at [57], and other TÆMS examples appear in [41,61,62].

The Get-Information task has two children, also governed by a seq sum(). The

dotted edge leading from Get-Basic-Information to Get-Extra-Information is an

enables non-local-effect (task interaction
↕

) denoting that Get-Basic-Information

must produce quality before Get-Extra-Information can be performed. In this case,

it models the notion that product models must be constructed before any time can

be spent doing optional or extra activities like improving the precision of the result

or increasing the information coverage (discussed in Section 5.2). Choice in this

task structure occurs any time tasks are grouped under a sum() qaf (there are many

other qafs that entail choice, but they are not used in this example). For example,

Look-for-Materials has six subtasks under a sum(), which means that any com-

bination of these subtasks may be performed and in any order (barring deadlines

on individual tasks or task interactions), i.e., the power-set minus the empty-set

may be performed. Likewise with the children of Get-More-Objects and Detail-

Product-Information. Alternative choices about where to search, how many places

to search, which methods to employ while searching, which information extraction

technologies to use, the number of reviews to gather for products, and so forth are

all modeled in TÆMS. This is also what gives BIG the ability to target its perfor-

mance for particular situations. For example, in a situation where a result is desired

by a tight deadline, the Design-to-Criteria scheduler will analyze the task structure

and find a solution path that “best” trades-off quality for duration and cost. There

is another element of choice in BIG, it is in the level of abstraction that is used in

the creation of the TÆMS task structure – a task assessor component determines

which are the options that are important to enumerate and the granularity of what

is included in a leaf-node (primitive action).

4.3 Schedule Generation

Once generated, the task structure is then passed to the scheduler which makes use

of the client’s time and cost constraints to produce a viable run-time schedule of ex-

ecution. Comparative importance rankings of the search quality, cost and duration

supplied by the client are also used during schedule creation. The sequence of prim-

itive actions chosen by the scheduler for this task structure is also shown in Figure 5.

The numbers near particular methods indicate their assigned execution order. The

scheduled time and actual execution time of each method are shown in Table 1. The

↕
The full range of task interactions expressible in TÆMS were not exploited by the task

assessor component in modeling the planner’s activities. One set of interactions involving

facilitation/hindering we hope to use in future versions of BIG. These relationships allow

us to model the fact that the degree of quality produced by a primitive task will affect in a

positive/negative way the behavior of other primitive tasks. Another aspect of TÆMS that

could be potentially useful in modeling IG activities is the ability to represent different out-

comes associated with a task, each of which can have different types of task relationships.
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differences in these columns are attributable to two difference sources of impreci-

sion. The first is simply the local variance associated with web-related activities.
✟➛➙

The second source of imprecision is the balanced interface between the Design-to-

Criteria scheduler and the opportunistic RESUN planner. To give room for RESUN

to respond to data that is extracted during the search process, some of the primitive

actions scheduled by DTC are not actually primitive actions. Some of the actions

are instead abstractions or black boxes denoting bundles of activities. This enables

RESUN to determine particular bindings as appropriate given the evolution of data

during the problem solving episode, i.e., to be data driven within the confines of

the activities scheduled by DTC. One view is that DTC defines a high-level policy

for RESUN that defines the major steps, and resource allocations to these, of the

information gathering process. This interface is what enables BIG to respond to

SOUs (sources of uncertainty) associated with extracted information and to make

decisions during the search about which information to gather or which extraction

processes to run – all while still staying within the time and resource guidelines set

by the scheduler. Thus, at one level the schedule can be thought of as a specification

of a policy that govern’s RESUN’s activities.

4.4 Information Retrieval and Extraction

The schedule is then passed to the RESUN planner/executor to begin the process

of information gathering. Retrieval in this example begins by submitting a query

to a known information source, MacZone (www.zones.com), a computer retailer.

While this information is being retrieved, a second query is made to another retailer

site, Cyberian Outpost (www.outpost.com), and a third query is made to MacMall

(www.macmall.com) site. Generally, queries to such sites result in a list of URLs,

where each URL is accompanied by a small amount of text describing the full doc-

ument. This information is combined with the query text and any other knowledge

the agent has about the document such as recency, length, number of incoming links

etc. to form a document description object that is then put on the RESUN black-

board for consideration by other knowledge sources. The query to MacZone results

in 56 document descriptions being placed on the blackboard, the query to Cybe-

rian Outpost results in 78 document descriptions being placed on the blackboard,

while the MacMall query results in an additional 86 document descriptions being

added. Out of these candidate document descriptions, 13 documents are chosen for

MediumQuality(MQMD) 9 processing. This choice is made heuristically by exam-

ining the keywords contained in the URL label and via a preference for certain web

sites (those that have yielded useful results in the past). To identify documents most

likely to yield product descriptions, other heuristics, such as document recency and

length could also be used.

✟➛➙
While the web exhibits strong statistical trends during the course of a day, e.g., increasing

delay time around mid-day, there may be local variance that is difficult to predict.
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Method Name Schedule Time Execution Time

Scheduling 8

Send Query maczone 1 1

Send Query cybout 2 1

Send Query macmall 1 0

Slack MyTime 27 27

Get Back maczone 19 19

Get Back cybout 20 22

Get Back macmall 19 8

Medium Quality Duration 9 72 67

High Quality Duration 5 51 49

Get More Detail 2 34 10

Get More Detail 2 35 58

Get More Detail 5 76 76

User-Review-Method 127 144

Benchin-Review-Method 137 137

Make-Decision 1 2

Total Time(request time 600) 622 629

Table 1

Time Used for Scheduling versus Actual Execution Time in Seconds

The thirteen documents are then retrieved and run through a document classifier

to determine if they are indeed word processor products; four documents are re-

jected by the classifier. Two of the rejected documents are translation packages,

one is a description of a scanning OCR software, and the other product is a speech

recognition package. These documents contain enough non-word processor related

verbiage to enable the classifier to correctly reject it as a word processing prod-

uct. The nine remaining (un-rejected) documents are posted on the blackboard

for further consideration and processing. For example, one of these documents

is: http://search.outpost.com/search/proddesc.cfm?item=16776; a

MediumQualityMediumDuration(MQMD) text extraction process is performed on

the document. The process involves using quickext-ks and cgrep-ks in sequence to

create an information object that models the product. A further example of the type

of information which is stored on the blackboard can be seen in Figure 4. After

quickext-ks runs, the following object is posted:

Product Name : Corel WordPerfect 3.5
Price : $159.95
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DiskSpace : 6MB
Processing Accuracy(Rating):

PRODUCTID=0.8 PRICE=1.0 DISKSPACE=0.8

The cgrep-ks finds extra information about the product’s processor, platform, and

other miscellaneous requirements. It also finds corroborating product name and

price information; this increases the processing accuracy
➜➝➜

of these slots. After

applying cgrep-ks:

Product Name : Corel WordPerfect 3.5
Price : $159.95
DiskSpace : 6MB
Processor : -
Platform : macintosh power_macintosh system_7_or_higher
misc requirement:(cd ram)
Processing Accuracy(Rating):

PRODUCTID=1.4 PRICE=1.6 PROCESSOR=0.0
DISKSPACE=0.8 PLATFORM=2.0 MISCREQ=1.2

Eight other products are found and posted on the blackboard during the execu-

tion of the MQMD 9
➜➛➞

method. Similarly, the method HighQualityHighDura-

tion(HQHD) 5 retrieves six documents, rejects one, processes five documents and

posts five more products on the blackboard. At this point the system has a total of

14 competing product objects on the blackboard which require more discriminating

information to make accurate comparisons. The system has, in effect, discovered

14 word processing products.

Those objects which are upgrades are immediately filtered out since the client did

not specify an interest in product upgrades. Also, those products which are certainly

not for the Macintosh platform are discarded. Subsequent efforts are focused on the

remaining six products.

The three methods Get More Detail 2, Get More Detail 2 and Get More Detail 5

make queries to “yahoo” and “infoseek” about the remaining products and find

some review documents. A review process knowledge source is applied on every

review document to extract information. The extracted information is added to the

object, but not combined with existing data for the given object (discrepancy reso-

lution of extracted data is currently handled at decision time). For each review pro-

cessed, each of the extractors generates a pair, denoted ➟ Product Quality, Search

➜➝➜
The processing accuracy values are a function of the quality of the documents and ex-

tractors used to derive the information. When obtained from a single source, the values are

normalized. Concurring information from different information will result in the individual

ratings being added to form the joint rating.➜➛➞
There is information available about the quality and processing duration of documents to

decide which documents should be selected for processing. In the current version of BIG,

we did not implement this feature
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Quality ➠ in the information objects pictured below. Product Quality (PQuality) de-

notes the quality of the product as extracted from the review (in light of the client’s

goal criteria), and Search Quality (SQuality) denotes the quality of the source pro-

ducing the review. For example, if a review raves about a set of features of a given

product, and the set of features is exactly what the client is interested in, the ex-

tractor will produce a very high value for the Product Quality member of the pair.

Currently the Source Quality is determined based on the reference number of the

document (see Section 5.5), the more widely a document is referenced, the more

highly it is rated.

For example, four documents (above) are found.

➡ http://www.mpp.com/mediasoft/keystone/cwp7off.htm
➡ http://www.osborne.com/whatsnew/corelwp.htm
➡ http://www.cdn-news.com/database/main/1997/2/24/0224010N.html
➡ http://www.corel.com/products/wordperfect/

These documents are processed as review documents for product “Corel WordPer-

fect 3.5” and the resultant product object is:

Product Name : Corel WordPerfect 3.5
Price : $159.95
DiskSpace : 6MB
Processor : -
Platform : macintosh power_macintosh system_7_or_higher
misc requirement:(cd ram)
Processing Accuracy(Rating):

PRODUCTID=3.8 PRICE=1.6 PROCESSOR=0.0
DISKSPACE=0.8 PLATFORM=2.0 MISCREQ=1.8

Review Consistence:(((PQUALITY 2) (SQUALITY 3))
((PQUALITY 1.2857143) (SQUALITY 2))
((PQUALITY 1.2857143) (SQUALITY 2))
((PQUALITY 2) (SQUALITY 2)))

Actually, not all of these four documents are product reviews; one of them is a list

of all Corel WordPerfect products. This is caused by the weakness in general of

search engines and natural language processing technologies. In this case, the only

consequence of the incorrect categorization of the document is that we obtain no

information after we processed it with the review extraction knowledge sources.

Thus it is necessary to get information from some specific product review sites.

The User-Review-Method method queries the Benchin site, producing four re-

views which are processed. The document http://www.benchin.com/ $in-
dex.wcgi/ prodrev/1112163, which includes 60 users’ reviews, is selected

and processed for the product “Microsoft Word 6.01,” Word 6.01 being one of

the six competing products still under consideration. The new review information

((PQUALITY 2.857143) (SQUALITY 3)) is added to the “Microsoft Word 6.01”
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Fig. 6. BIG’s Final Decision for Sample Run

object. Similarly, Benchin-Review-Method sends queries to the Benchin star

review site (which uses a star rating system that is simple to process), producing

review information for four different products.

4.5 Decision-Making

After this phase, the final decision making process begins by first pruning the set of

product objects which have insufficient information to make accurate comparisons.

The data for the remaining objects is then assimilated. Discrepancies are resolved

by generating a weighted average of the attribute in question where the weighting

is determined by the quality of the source. The detailed decision-making process

is described in Section 5.2. The final decision is shown in Figure 6. The decision

confidence is not very high because there is a competing candidate “Nisus Writer

5.1 CD ROM with Manual” whose overall quality is only slightly less than that

of “Corel WordPerfect.” This close competition degrades the decision confidence

because only slight variations in search or extraction activities could have resulted

in a different decision.

As will be seen in the next two sections, this information gathering process can

change significantly based on the specific product specifications, the amount of
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time that the user is willing to have the system search, and the coverage, precision

and quality criteria that are specified. Thought not emphasized in the description,

the amount of money the user is willing to spend accessing information sources

that charge on a per-access basis can also be factored into the generation of an

information gathering plan. Experiments and examples appear in [44].

5 Research Issues in BIG’s Design and Performance

In this section we present and discuss empirical results that demonstrate the flexi-

bility and extensibility of the BIG approach to information gathering for decision

support. Sections 5.1 and 5.7 address the issue of domain specific knowledge and

generality in BIG. Section 5.1 discusses the importance of document classifica-

tion in improving system performance by filtering out inappropriate documents.

Section 5.7 shows that with little additional training, new software genres can be

added to BIG’s library of expertise. Section 5.2 demonstrates BIG’s flexibility with

respect to precision and coverage. The section shows that appropriate generation of

a TÆMS task structure, by the task assessor, allows the Design-to-Criteria sched-

uler to evaluate precision and coverage trade-offs and to meet the client objectives

with respect to these. Sections 5.3 and 5.4 discuss how information fusion and op-

portunism manifest in BIG’s information gathering activities. Section 5.5 details

the process that BIG uses to evaluate client requirements and make its final product

selection. Section 5.6 demonstrates empirically that the system accurately adapts

its processing to address client search requirements and successfully.

It is important to note that the following sections do not attempt to evaluate system

performance through comparison with an oracle, in which the best possible answer

has been found by the oracle and the system is evaluated based on the proximity

of its final answer to the solution returned by the oracle. Given that optimal an-

swers are difficult to obtain in this environment, and that the overall objective is to

supplement a decision process, the performance metric by which BIG is evaluated

is generally whether or not the results are reasonable for a given search/query. In

almost all of the situations that we have examined, BIG produces answers that are

considered reasonable by a human decision maker for the given search and product

criteria.

5.1 The Importance of Document Classification

Until recently, BIG has been plagued by an interesting extraction problem when

dealing with products that are complimentary to the class of products in which a

client is interested. For example, when searching for word processors, BIG is likely

to come across supplementary dictionaries, word processor tutorials, and even doc-
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ument exchange programs like Adobe Acrobat. These products are misleading be-

cause their product descriptions and reviews often contain terminology that is very

similar to the terminology used to describe members of the target class. When BIG

processes one of these misleading documents, it gets distracted and future process-

ing is wasted in an attempt to find more information about a product that is not even

a member of the target class. For example, if BIG encounters a reference to Adobe

Acrobat when searching for word processors, and then elects to retrieve the prod-

uct description for Acrobat, the extraction techniques are likely to yield data that

seems to describe a word processor. Subsequently, BIG may elect to gather more

information on Acrobat, further degrading the overall efficiency of the system. Ex-

periments indicate that this type of distraction can be reduced through the use of

a document classifier before text extraction is performed on candidate documents.

Documents that do not seem to be members of the target class are rejected and text

extraction is not performed on them – thus no new distracting information objects

are added to BIG’s blackboard.

Figure 7 provides a sample of our initial results. BIG was run in three different

modes: 1) BIG alone, 2) BIG with the use of a simple grep-like pattern-matching

filter to classify documents, 3) BIG with the use of Naive Bayes document classi-

fier [13] and the simple grep filter. The grep-like filter examines the document for

instances of terms that describe the software genre in question, e.g., “word proces-

sor.” These terms are hand produced for each query genre – in essence, hardwired

into the system. In contrast, the document classifier is trained using positive and

negative examples – it learns term-based similarity and difference measures. In all

three modes, BIG has decided that it has time to process 13 documents in total for

the given search parameters. When filtering and classification of documents results

in certain documents being rejected (rows two and three in Figure 7), a larger cor-

pus of documents is examined (44 and 74 respectively) to obtain the target number

of documents.
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Fig. 7. Advantages of Document Classification
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In the first run, shown in the figure, neither filter nor classifier are used. All doc-

uments retrieved are processed by the information extractors. None of the top five

objects in this test case are members of the target product class – they are all re-

lated to word processors but none of them is actually a word processing product.

Clearly, BIG does very poorly when relying on outside sources like vendor’s search

engines to classify products. In the second run, the simple grep-like filter is used

to check documents before processing; 31 documents are rejected by the filter and

the overall results are a little better. There are word processing products among

the candidates, but the selected product is not a word processor. In the last run,

both classifier and filter are used to check documents; 53 documents are rejected.

All of the top-ranked candidates are word processing products and the top product,

“ClarisWorks Office 5.0” is an integrated office suit that includes a word processing

package.

Clearly, document pre-classification is necessary to filter retrieved documents be-

fore they are used to produce product objects. Vendor search engines are typically

keyword based and are therefore prone to return numerous products that are not

members of the target class but are instead related or supplementary products. Im-

proving the classification of documents and widening the training corpus for the

classifier are areas of future development.

The classifier can be applied to other domains, however, it requires a new training

corpus. This is true with other text processing knowledge sources and document

classifiers as well - components based on statistical properties of text (akin to IR

tf/idf statistics) require training corpora in order to apply them to a different do-

main. While such training requires hands-on person hours, it is reasonable to as-

sume that a library of such classifications for new domains could be compiled over

time, allowing the capabilities to grow as needed.

To explore this issue, we added new genres to BIG’s library of expertise using a

simple procedure. A query for the new genre, e.g., image editing software, is given

to BIG. BIG then gathers information on image editing software by submitting var-

ious specified keyword queries to general search engines and by looking at software

makers and review sites. Of course, when BIG retrieves the documents, they are fil-

tered out by BIG’s existing set of document classifiers. However, this process yield

a large pool of documents that can then be classified by hand and used to train the

document classifiers on the new genre. Using this process, it is possible to integrate

a new software genre in a little less than an hour’s time. The text extraction tools

are generic enough to handle the new genre and no new training documents or ad-

ditions to the lexicon were required. Currently, no special tools are being used to

automate this process of integration. The performance of the system on the new

genre is described in the experimental results in Section 5.7. As part of our future

work, we foresee developing mechanisms to allow users to provide feedback about

the correctness of the decision process and which products selected by the system

are in the ball-park for a new genre. This information can be used incrementally as
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we get new/more users who access this genre.

5.2 Precision versus Coverage

Precision versus coverage is an issue often discussed in literature relating to infor-

mation gathering or information retrieval. In the BIG context, once a satisfactory

amount of information has been processed to support a high quality decision pro-

cess, the issue becomes how best to spend the remaining time, cost, or other most

constrained resource. One alternative is to spend the time gathering more informa-

tion about other products, i.e., discovering new products and building models of

them. Another alternative is to spend the time discovering new information about

the existing products in order to increase the precision of the product models. Both

alternatives can lead to higher quality decision processes since both expand the

range of information on which the decision is based.

BIG supports both of these behaviors, and a range of behaviors in between the

binary extremes of 100% emphasis on precision and 100% emphasis on coverage.

BIG clients specify a precision/coverage preference via a percentage value that

defines the amount of “unused” (if there is any) time that should be spent improving

product precision. The remainder is spent trying to discover and construct new

products. For example, if a client specifies ① ② , this expresses the idea that 30% of

any additional time should be spent improving precision and 70% should be spent

discovering new products.

BIG achieves this trade-off behavior in two ways: by planning and scheduling for it

a priori, and by responding opportunistically to the problem solving context within

the constraints of the schedule. Scheduling for the precision / coverage trade-off

is accomplished by relating the precision and coverage specification to quality
➜✿③

for the Design-to-Criteria scheduler and giving the scheduler a set of options, from

which to choose a course of action. In Figure 5, Get-Extra-Information has two

subtasks, Get-More-Objects and Detail-Product-Information denoting the two dif-

ferent ends of the spectrum. Get-More-Objects represents the coverage end and

Detail-Product-Information represents the precision end. The sum() quality accu-

mulation function under the parent task, Get-Extra, models that the scheduler may

choose from either side depending on the quality, cost, duration, and certainty, char-

acteristics of the primitive actions under each. Client precision/coverage preference

is related to quality for the primitive actions under these tasks, e.g., the actions per-

taining to precision receive higher quality when increased weight is given to pre-

➜✿③
The particular values associated with the qualities of primitive actions is not critical

provided that the relative relationships among qualities of different actions are consistent

with the domain. The purpose of the quality attributes and qafs are to give the scheduler a

sound basis for making trade-offs among quality, cost and time characteristics of different

schedules.
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cision. This approach enables the scheduler to reason about these extra activities,

and their value, and relate them to the other problem solving options from a unified

perspective. Thus, the overall value of pre-allocating “extra” time to coverage or

precision is also considered in light of the other candidate activities.

BIG can also work opportunistically to improve coverage or precision, as is de-

scribed in 5.4. A third option, not currently implemented, is for BIG to revise

its problem solving options and reschedule as new information is gained and the

context (state of the blackboard, environment, time remaining, etc.) changes. This

would enable BIG to react opportunistically but to do so wholly in the context of

reasoning about the quality, cost, duration, certainty trade-offs of its options from a

unified perspective.

# DRatio Scheduled Execution T.P. #P. A.C. P.A. D.C.

1 0.1 629 587 33 7 1.86 1.38 0.85

0.5 622 720 14 6 3.83 1.47 0.89

0.9 651 685 8 3 7.0 2.12 0.89

2 0.1 629 656 33 8 1.75 1.32 0.85

0.5 622 686 14 4 3.0 1.5 1

0.9 652 522 7 1 7.0 2.12 1

3 0.1 629 702 29 7 1.71 1.47 0.85

0.5 622 606 15 6 2.33 1.52 1

0.9 651 572 7 2 4.5 1.7 0.99

Key: # is the run number, DRatio = preference for precision, Scheduled = total execution

time as predicted by model and anticipated by scheduler, Execution = actual execution time,

T.P. = total product objects constructed, #P = total products passed to decision process, A.C.

= average coverage per object, P.A. = extraction processing accuracy per object, D.C. =

overall decision process confidence.
Table 2

Trading-Off Precision and Coverage

Table 2 shows BIG’s ability to trade-off precision and coverage. In providing this

data, we are not attempting to generalize in this section that any particular tradeoff

between the two is better than the other, only that such a tradeoff exists. We feel this

characteristic is interesting both because of the way BIG implements and exhibits

the behavior, and because of the ramifications it has on how users can control a

search process. The table contains data for three sets of runs, for the same query
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and with the same criteria settings (only the precision setting is varied). In each

run, three trials are performed, each with a different precision preference setting,

namely 10%, 50%, and 90% respectively. Since network performance varies during

execution, and there is some element of stochastic behavior in BIG’s selection of

equally ranked documents, no two trials are identical even if they have the same

preference settings. Note the general trends in the different runs. As more weight is

given to increasing precision, the number of products (T.P.) decreases, as does the

number of products used in the decision process (#P). The difference between these

two values is that some product objects lack sufficient information to be included in

the decision process and some of the product objects turn out to relate to products

that do not meet the client’s specification (e.g., wrong hardware platform, wrong

product genre, price too high, etc.), an extreme example of this is in run number two

in the third trial, where only one product is produced. As the number of products

decrease as more weight is given to precision, the average information coverage per

object (A.C.) increases, as does the information extraction / processing accuracy

(P.A.). The decision confidence also generally increases, particularly in runs two

and three, though this item takes into account the total coverage represented by

the products as well as the precision of the product models so its increase is not

proportional to the other increases.

Schedules for the 10% and 90% precision runs (respectively) are shown in Fig-

ures 8 and 9. The schedules show the sequence of primitive actions and their start

times (as expected values rather than distributions). The schedules diverge on or

around time 36 where schedule 8 begins a series of Medium Quality Duration and

Low Quality Duration activities that retrieve and process additional product related

documents. The postfixed integers on the method names (e.g. method10 Medium-

Quality Duration 6) denote the number of documents (e.g. 6) that will be retrieved

by the method. This series of steps results in the production of nearly twenty ad-

ditional product description objects. In contrast, around that same time, schedule 9

begins a series of Get More Detail actions that seek to find information about ex-

isting product objects.

From an end user perspective, the precision/coverage specification enables clients

to express preferences for one solution class over another. For a client who needs

a speedy result, and has an accordingly short deadline, the preference specification

may result in a slight difference at best. However, for a client with more generous

time resources, the difference can be pronounced.

5.3 Information Fusion

We use the term information fusion to denote the process of integrating informa-

tion from different sources into a single product object; the information may be

complimentary, but also contradictory or incomplete. There are several aspects to
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Start Time

 (expected value)  Method Name

0 method6_Send_Query_maczone

1 method4_Send_Query_cybout-product

3 method2_Send_Query_warehouse

4 method0_Send_Query_macmall

6 Idle  (awaiting results)

31 method7_Get_Back_maczone

32 Idle  (awaiting results)

33 method5_Get_Back_cybout-product

35 method3_Get_Back_warehouse

36 method1_Get_Back_macmall

37 method10_Medium_Quality_Duration_6

93 method9_Medium_Quality_Duration_8

165 method21_Medium_Quality_Duration_6

221 method20_Medium_Quality_Duration_8

296 method18_Low_Quality_Duration_7

346 method15_Get_More_Detail_2

386 method14_Get_More_Detail_2

429 method22_Benchin-Review-Method

631 method23_Make-Decision

Fig. 8. Schedule for 10% / 90% Precision to Coverage

Start Time

 (expected value)  Method Name

0 method6_Send_Query_maczone

1 method4_Send_Query_cybout-product

3 method2_Send_Query_warehouse

4 method0_Send_Query_macmall

6 Idle  (awaiting results)

31 method7_Get_Back_maczone

32 Idle  (awaiting results)

33 method5_Get_Back_cybout-product

35 method3_Get_Back_warehouse

36 method1_Get_Back_macmall

37 method9_Medium_Quality_Duration_8

111 method21_Medium_Quality_Duration_6

165 method15_Get_More_Detail_2

206 method14_Get_More_Detail_2

247 method13_Get_More_Detail_5

347 method11_User-Review-Method

508 method22_Benchin-Review-Method

646 method23_Make-Decision

Fig. 9. Schedule for 90% / 10% Precision to Coverage

the fusion issue. The most straightforward type of fusion is information addition –

where a document provides the value to a slot that is not yet filled. A more interest-

ing type of fusion is dealing with contradictory single value information, e.g., two

documents reporting different prices for a product, or two documents identifying

a different production company for the product. When BIG encounters this fusion

issue, the item with the highest associated degree of belief is used. ④⑥⑤ Another issue

is how to integrate different opinions about the product. The latter is done in BIG

by associating two metrics with each review document, one representing informa-

④⑥⑤ In the future, we hope to explore the use of RESUN’s opportunistic control to handle this

situation by trying to retrieve additional information to resolve the conflict.
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tion or site quality, and one representing the quality of the product as expressed in

the review. This dual then conceptually represents a value / density pair – the in-

formation quality metric determines the weight given to the product quality metric

when comparing different metrics for different reviews. To illustrate BIG’s fusion

process, consider the following partial trace.

In this example, BIG is searching for word processor products for the Macintosh.

In response to a general query about word processing products, the MacMall retail

site returns a list of URLs. URL A, from Figure 10, is selected by BIG for retrieval

and processed. BIG extracts “Dramatica Pro 2.0” from the document as the title of

the software package; it also extracts that “Screenplay” (Inc.) is the maker and that

the package sells for a price of $289.99. ④✿⑦ The result of this extraction is the partial

product object shown in Figure 11(a).

URL_A http://www.cc-inc.com/sales/detail.asp?dpno=79857&catalog_id=2
URL_B http://www.freedombuilders.com//dramatica.htm
URL_C http://st2.yahoo.com/screenplay/dpro30mac.html
URL_D http://www.heartcorps.com/dramatica/questions_and_answers/dramatica10.htm
URL_E http://www.zdnet.com/macuser/mu_0796/reviews/review12.html
URL_F http://www.macaddict.com/issues/0797/rev.dramaticapro.html

Fig. 10. URLs for Documents Retrieved During Processing

The values in the Processing Accuracy slots are certainty factors denoting the

quality and certainty of the extraction process that filled the respective slots. Since

the document provides very little additional information about Dramatica, BIG as-

sociates an uncertain-support SOU with the object. Because the product object is

a promising area of exploration, relative to everything else on the blackboard, BIG

decides to attempt to resolve the SOU. Toward that end, it queries Infoseek about

Dramatica, resulting in a long list of URLs that are combined with their descriptive

text to create candidate document description objects which are added to the black-

board. BIG selects and retrieves a subset of these, starting with URL B, which is a

detailed description of the product. Processing the description results in the addition

of platform specifications to the product object, namely that it runs on Windows 95

and Apple Macintosh systems. The description also contains sufficient verbiage

that it is analyzed using a keyword-based review processing heuristic that looks for

positive and negative phrases and rates products accordingly, weighing the product

features by the user preference for such features. Though the verbiage praises the

product, it is given a rating of -.57 because the review does not praise the product

for the features in which the client is interested. In other words, even though the re-

view is positive, it does not make specific reference to the product features in which

the client is interested – such as a specific platform or program characteristic – and

thus it is given a negative value to denote that the product is below average quality-

wise. However, since the document in question is not widely referenced by other

documents, it is given a low information quality (source quality) rating and the neg-

④✿⑦ Dramatica is actually a product contained in our corpus of word processor class doc-

uments used to train the document classifier. Thus, the pursuit of Dramatica as a word

processing package is valid from BIG’s perspective, though the classification of Dramatica

as a word processor is perhaps debatable.
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ative review (product quality) rating will thus have little weight when compared to

other sources. The product object after this step is shown in Figure 11(b).

In response to the continued existence of the uncertain-support SOU, BIG decides

to gather more information. It selects and retrieves URL C, URL D, URL E, and

URL F, in that sequence. Space precludes presenting an exhaustive sequence of

product object transformations as information is integrated into the object. Fig-

ure 11(c) is the result after processing the review at URL D. Note the elevation of

the product’s overall quality rating and the increase in the various rating criteria

like ease-of-use and stability. For free format reviews such as this one (in contrast

to sites that employ consistent numerical rating systems), these metrics are deter-

mined by a set of heuristics that examine the text for certain positive or negative

expressions.

The remaining documents are retrieved, processed, and integrated in a similar fash-

ion. The product object after processing all of the selected documents is shown in

Figure 11(d). For example, the final product object is subsequently compared to

other product objects during the decision process (see Section 5.5). While this ex-

ample results in the construction of a fairly complete product object, the objects

used in the final decision process are not all at the same level of completeness.

Some objects may contain less information (but not much) and some may contain

more product details or more review summarization statistics. The decision pro-

cess takes into account the quantity and quality of the information pertaining to the

objects.

5.4 Opportunism

As discussed, opportunism in the BIG system currently occurs within the bound-

aries of the initial schedule. The primitive actions seen by the scheduler are often

abstractions of sets of operations that BIG plans to perform, thus enabling BIG

to respond opportunistically during the execution of these actions to newly gath-

ered data or changes in the environment. To illustrate, consider a simple example

where BIG is gathering documents to recommend a word processor. A portion of

the schedule (without the numerical detail), produced to address the specified re-

source constraints, follows:

---------------------------------------------------------------------------------------------------
... | Get_Back_macmall | MQMD_method|Get_More_Detail_1 | Benchin-Review-Method | Make-Decision | ...
---------------------------------------------------------------------------------------------------

As a consequence of executing the schedule, documents are retrieved from the Mac-

Mall site and processed using medium quality, medium duration text extraction

techniques (meaning a set of simple and more sophisticated extractors), denoted

by the MQMD method in the schedule. The product name, “Nisus Writer 5.1 CD

ROM with Manual” is extracted from one of the documents and is posted as an ob-
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(d) Final Product Object

Fig. 11. Evolution of the Dramatica Product Object
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ject on the blackboard. Since the product name is the only information that could be

extracted from the document at hand, a no-support SOU is attached to the object,

signifying the need to obtain more detailed information on the product in order for

it to be used in the final decision process.

As BIG actively pursues and plans to resolve SOUs, method Get More Detail 1 is

selected for execution to resolve the SOU. The method looks for objects which con-

tain the no-support SOU and tries to find more information on related products by

retrieving and extracting documents. In this particular example, Get More Detail 1

queries InfoSeek with the keywords “Nisus Writer,” resulting in the production

of a set of candidate URLs and partial document descriptions. BIG decides to re-

trieve and process the review located at URL [65]. Text processing of this doc-

ument leads to the discovery of two new potential competing products, namely

“Mac Publishing” and “WordPerfect,” thus two more objects with the product name

slots filled are posted to the blackboard accompanied by no-support SOUs as the

product objects are essentially empty at this time.

BIG now has the following options: 1) It can continue with its original schedule,

which entails executing the Benchin Review Method to gather reviews for the Nisus

Writer product, or, 2) it can make an opportunistic change in its plans and find more

information on objects which contain unresolved no-support SOUs. In this case,

this would mean executing the Get More Detail 1 method for the Mac Publishing

and WordPerfect objects. The choice is determined by the precision versus coverage

specification (Section 5.2) as well as how much time is available to perform this

extra processing before the deadline.

In this particular scenario, the latter choice is made and BIG decides to find more

information on the new products rather than follow the original schedule. Method

Get More Detail 1 is executed and the Cyberian Outpost retail site is queried for

information on the two products. The query for “Mac Publishing” returns no sup-

porting information and the certainty that it is a valid word processing product is

decreased. The query for “WordPerfect,” on the other hand is supported by the doc-

ument http://srch.outpost.com/search/ proddesc.cfm?item=30271
and thus the belief that the product is a word processing product is unchanged.

Processing of the document produces new information about the product, shown in

Figure 12.

PRODUCTID Corel WordPerfect 3.5 - ACADEMIC

PRICE 29.95

MISCREQ UNINITIALIZED

SUPPORT 1

SOURCE http://srch.outpost.com/search/proddesc.cfm?item=30271

Fig. 12. Information Produced
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The information is incorporated into the product object and BIG continues process-

ing its initially scheduled activities. However, BIG may later elect to work on the

WordPerfect product object again as it is now a valid candidate product.

5.5 BIG’s Decision Process

The decision maker knowledge source decides which product should be recom-

mended to the user after the search process is completed. Generally, the decision

maker looks at each product and calculates a total score representing the overall

level of consistency with the client’s query. As there are several features for one

product, such as price, quality, and hardware (platform), the score represents each

feature based on how important it is to the client (see Figure 1). The rating for a fea-

ture is calculated from review sets in one of two ways: 1) for reviews of a certain

class, in which reviewers give stars or otherwise numerically (or ordinally) rank

products according to certain classes, the ratings serve as a set of utility weights for

these data points; 2) for reviews that do not include numerical or ordinal values, the

documents are processed with a heuristic that attempts to assign such ratings based

on keywords or anti-keywords that appear in the text. For instance, if “fast learning

curve” is used to describe the product, it is a positive indicator for the ease of use

feature of the product, while “buggy product” would be a negative indicator for the

stability feature. The formula used to calculate the overall score of a product is as

follows:

overall score = price score * price weight + quality score * quality weight +

hardware score * hardware weight

Since the information comes from different sources, there may be inconsistencies,

and different sources may have different relative quality or confidence measures.

The value of information in our system is determined by the value of the source;

information from a high quality source is considered to be closer to the truth.

To combine inconsistent information from different sites, we classify information

sources as one of three categories: high, medium or low quality. The classification

of a known information source is based on human knowledge and prior experience

about this source. Our rating system for unknown sources currently employs a URL

reference search to rank sites, similar to the Usenet based approach outlined in [58].

Several web search engines offer a service which allows the user to search for web

sites which link to a certain page. This essentially allows us to quantify how often a

web site is referenced by others. Our heuristic ranks sites based on the assumption

that sites which are more useful and credible will be referenced more often than less

credible ones. This trait offers two important qualities: it is independent, since the

rating is not dictated by any one person or company, and it is also quite generic. Al-

though we do not do so, it would also be possible to augment this rating with either

user feedback (e.g. “I typically don’t agree with this reviewer’s point of view”) or
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data from a centralized web rating service. This rating is also used in the initial se-

lection of which documents to process. For each kind of information source, there

is a quality measure distribution table that describes the relationship between the

information from this source and the possible truth values. These quality measure

distribution tables were constructed in an ad hoc fashion, based on hand reviewing

of documents from different categories and experience running the system. These

tables help provide more accurate interpretations of data from those information

sources, by taking the observed rating and transposing it into a distribution of pos-

sible ratings, weighted by the source’s quality. The net effect of this mapping is to

add some measure of skepticism to the system, based on the quality of the site. If,

for instance, a highly rated site gives a certain product a rating of 5, BIG is more

apt to believe that the review is accurate, as compared to a lower rated site which

offers the same product rating.

For example, the product “Corel WordPerfect,” based on a review from site A, is

highly rated (it is given a product quality of 4). The review from site B gives it a

slightly lower rating of 3. Site A itself is known to be a medium quality site with a

source quality of 2, while B has a higher quality rating of 3. The quality measure

tables for sites A and B are shown in Figure 13, and 14, respectively.

Observed Interpreted Quality Distribution

Review Quality 5 4 3 2 1

5 0.1 0.2 0.5 0.1 0.1

4 0.0 0.3 0.2 0.3 0.2

3 0.0 0.1 0.3 0.3 0.3

2 0.0 0.0 0.5 0.5 0.3

1 0.0 0.0 0.3 0.6 0.6

Fig. 13. Review Quality Interpretation Table for Site A (Source Quality 2)

Observed Interpreted Quality Distribution

Review Quality 5 4 3 2 1

5 0.7 0.2 0.1 0.0 0.0

4 0.2 0.6 0.2 0.0 0.0

3 0.0 0.2 0.7 0.1 0.0

2 0.0 0.0 0.2 0.7 0.1

1 0.0 0.0 0.0 0.3 0.7

Fig. 14. Review Quality Interpretation Table for Site B (Source Quality 3)

Based on the review quality from site A and site B and their quality measures, the

decision maker gets quality score distribution as: [(4, 0.25) (3, 0.45) (2, 0.2) (1,
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0.1)]. This means there is 25% probability that quality of “Corel WordPerfect” is

4, 35% probability it is 3, 20% probability it is 2, and 10% probability it is 1. The

expected quality score of “Corel WordPerfect” is therefore 2.85. Thus, for each

product, the decision maker has a quality score distribution and an expected score.

The product with highest expected score is recommended to the client and the score

distributions are used to calculate the confidence of this decision.

In addition to the decision and product information, the agent also gives the evalu-

ation of this decision to the client. Since there are many factors contributing to the

evaluation of the decision, it is difficult to represent the decision evaluation as a sin-

gle number. We choose decision coverage and precision as two main characteristics

of the decision.

Decision Coverage is a 3-dimensional vector:

(1) Total Product Number Indicates how many products the agent has found;

the more products the agent finds, the higher the quality of the decision.

(2) Candidate Product Number Describes the number of competing products

used as candidates in final decision; the more products that are considered for

the decision, the higher the quality of the decision.

(3) Information Coverage Reflective of the number of documents the agent has

processed.

Decision Precision is a 4-dimensional vector:

(1) Average Coverage Indicates the average number of documents supporting

each candidate product.

(2) Information Quality Describes the distribution of high-quality sources, medium-

quality sources, and low-quality sources respectively.

(3) Process Accuracy Measures how accurately the agent processes documents.

Since the information extraction process is not perfect for any document, the

extraction tool provides the degree of belief for every item it returns. For ex-

ample, textext-ks may find the operating system for “Corel WordPerfect” is

“mac,” with a degree of belief of 0.8. The process accuracy is the average of

the degree of belief of all items.

(4) Decision Confidence Measures how confident the agent feels that the prod-

uct it recommended to the client is the best product it found. This is com-

puted from the quality distributions of the discovered products. For example,

if product A has a distribution of [(5, 0.3) (4, 0.6) (3, 0.1)], product B has score

distribution [(5, 0.1) (4, 0.3) (3, 0.3) (2, 0.2)], product A is recommended be-

cause it has a higher expected score. The possibility B is better than A is: 0.1

* (0.6 + 0.1) + 0.3 * (0.1) = 0.1, so the confidence of this decision is 1 - 0.1 =

0.9;

Using this decision evaluation data allows the client to analyze the final decision

with a more critical eye. An additional tool that we have not yet implemented is an
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appropriate interface for a client to access the raw data that was used by the system

in making its decision.

5.6 Performance Under Varying Time Constraints

Table 3 illustrates how the system operations under different time constraints. The

experiments cover searches looking for word processing products. The search and

product criteria is the same for all runs, only the time alloted for the search varies.

The intent of this section is to show that the system can effectively exploit the time

allocated to it by the user to complete its search, and that in most cases its intended

schedule closely approximates the actual execution time.

The first four columns of data provide information about the duration of each

search. User Time denotes the users target search time; the value in parenthesis

represents the upper bound on how far over the target search time the scheduler

was permitted to go in order to achieve a good quality/cost/duration tradeoff. (Util-

ity in these cases is linearly decreasing between the expressed deadline and 10%

above the expressed deadline.
➺✧➻

) Schedule denotes the expected total duration of

the schedule produced by the Design-to-Criteria scheduler and Execution denotes

the actual duration of the discovery and decision process. The difference in these

values stems from the high variance of web-related activities and reflects issues like

changes in network bandwidth during the search, slow downs at remote sites, and

so forth. The statistical characterizations of these activities are also often imperfect,

though they are improved over time. Given the variances involved, we are satisfied

with the relationship between expectations and reality.

The next four columns denote number of considered products (#p), total number

of products found (T.P.), aggregate information coverage (I.C.), and average infor-

mation coverage per product object (A.C.). These values reflect the number and

qualities of the information sources used to generate the final decision. Given addi-

tional time, BIG will adjust its searching behavior in an attempt to find both more

sources of information, and more supporting information for previously discovered

products. The results of this behavior can be seen in the correlation between longer

running time and larger information coverage values; these values represent the to-

tal number of documents found and the average number of supporting documents

a product has, respectively. As one would expect, the larger number of information

sources also serves to increase both the number of known products and the size of

the subset selected for consideration, which in turn affects the confidence BIG has

in its final decision.

➺✧➻
This approach to deadlines was taken to address client preferences. Despite requests

to use a hard deadline model, clients were often dissatisfied if much better results were

possible for slightly more time, and the scheduler selected an option that stayed within the

expressed deadline.

237



User Time # Scheduled Execution #C.P. #T.P. I.C. A.C. P.A. D.C.

300(330) 1 311 367 4 10 12 1.5 1.6 1

2 308 359 3 10 16 1.3 1.4 1

3 305 279 3 10 11 1.3 1.5 1

4 311 275 3 11 13 1.67 1.5 1

5 321 286 4 10 12 1.5 1.6 1

6 321 272 3 10 12 1.3 1.6 0.84

7 262 327 3 11 12 1.67 1.5 1

8 262 337 3 10 11 1.3 1.5 1

9 262 301 2 11 10 1.0 1.4 1

10 259 292 2 11 11 1.5 1.5 1

average 302 310 3 10.4 12 1.4 1.5 0.98

s.d. 33 35 0.67 0.5 1.6 0.2 0.07 0.05

600(660) 1 658 760 6 17 45 4.0 1.7 0.99

2 658 608 4 17 44 6.75 1.8 1.0

3 645 732 5 20 46 5.4 2 1.0

4 649 809 10 28 49 3.1 1.8 0.96

5 649 730 7 17 42 4.3 1.8 0.84

6 653 774 4 23 55 6.5 2.3 0.99

7 653 671 4 18 35 5.3 2.1 0.99

8 653 759 6 18 41 4.8 2.2 0.84

9 653 760 5 28 50 5.4 2.2 0.94

10 653 852 5 18 42 4.6 2.0 0.85

average 652 746 5.6 20 45 5.0 2.0 0.95

s.d. 4 68 1.8 4.4 5.6 1.1 0.2 0.06

900(990) 1 951 975 5 37 61 5.8 2.2 0.99

2 968 956 8 30 55 4.1 2.1 1

3 914 919 8 23 64 4.0 1.9 1

4 960 796 6 34 64 5.3 1.9 0.96

5 960 1026 9 24 32 4.1 1.9 0.99

6 987 968 8 27 60 4.4 2.1 0.94

7 987 1102 8 27 63 5.5 1.7 0.94

8 987 896 5 32 69 5.4 2.1 0.84

9 987 918 7 32 66 5.1 2.0 0.84

10 978 1289 14 39 79 3.9 2.0 1

average 968 985 7.8 31 61 4.8 2.0 0.95

s.d. 23 134 2.6 5.3 12 0.7 0.14 0.06

Key: User Time = users preferred search time (linearly decreasing utility post-deadline in

this case), Scheduled = total execution time as predicted by model and anticipated by sched-

uler, Execution = actual execution time, I.C. = information coverage, T.P. = total product

objects constructed, #C.P. = total products passed to decision process, A.C. = average cov-

erage per object, P.A. = extraction processing accuracy per object, D.C. = overall decision

process confidence, s.d. = standard deviation.
Table 3

Different Time Allotments Produce Different Results

The last two columns describe how confident the system is in the information ex-

traction and decision making processes. Process accuracy (P.A.), supplied in part

by the information processing tools, is the degree of belief that the actual extracted

information is correctly categorized and placed in the information objects. Decision

confidence, generated by the decision maker, reflects the likelihood that the selected

product is the optimal choice given the set of products considered. This value is

based on the quality distributions of each product, and represents the chance that

238



the expected quality is correct. It should be noted that decision confidence therefore

is not dependent on execution time or processes effort.

Our query for the test runs is that of a client looking for a word processing package

for the Macintosh costing no more than $200, and would like the search process to

take 300/600/900 seconds and the search cost to be less than five dollars. The client

specifies the relative importance of price to quality to be 60/40 and the relative

importance of coverage to confidence to be 50/50.

Looking at the results, one can see that the process accuracies for the 300 second

run are consistently lower than those for the 600 and 900 second runs, which are

roughly the same. Process accuracy is affected by the amount of available evidence,

in that matching information from different sources increases the perceived accu-

racy of the data. Since the latter two runs have similar average coverage values,

one would expect similar levels of information matching, and thus similar levels of

process accuracy. Using the same logic, one can see why the process accuracy for

the 300 second runs would be consistently lower, resulting from its lower levels of

average coverage.

The decision confidence value is affected by both the number of products consid-

ered and their respective attributes and qualities. BIG first selects a product, based

on its attributes and the user’s preferences. It then calculates the decision confidence

by determining the probability that the selected product is the optimal choice, given

the available subset of products. In the 300 second runs, the total number of con-

sidered products is fairly low, which increases the chance that the pool of products

is heterogeneous. In such a population, it is more likely that a single candidate will

stand out from the others, which goes to explain the large percentage of perfect

scores in the shortest run. When BIG is given more time to find more products, the

chance that individual candidates will sharply contrast is reduced. Greater average

coverage affects this contract by increasing the likelihood that product candidates

will be fully specified. This will typically make the candidate set have a higher

quality rating which makes the population more homogeneous. It is this blurring

across attribute dimensions which reduces BIG’s confidence in the final decision.

Two interesting cases in this last column are worth explaining in more detail. In

the sixth 300 second run, one can see that the decision quality was calculated to be

0.84, much lower than other runs in the same set. This was due to the fact that two

of the three products considered were actually the same product, but one was an

academic version. These two products had relatively similar quality ratings, which

were significantly higher than the remaining product, which caused BIG to have a

lower confidence in its decision. The second anomaly occurs in the tenth run in the

900 second scenario. In this case, 14 products were considered for selection. Of the

group, 11 had a price higher than $400, two were above $200 and the remaining

product was roughly $70 with good coverage of the user’s desired characteristics.

This large price discrepancy led the selected product to have a much higher quality

239



rating than the competition, which led to the high decision confidence.

5.7 Experiments in Different Domains

Besides the word processing domain, we have also experimented with BIG in three

other domains: image editors, html editors, and database systems. For each domain,

we spent approximately one hour collecting and classifying documents to form a

corpus for the Bayes classifier. As we discussed in Section 5.1, this process can be

automated by equipping BIG with the ability to learn from user feedback.

Figure 15 shows the results of experiments in each of these domains. The query

criteria for each domain specifies that a relevant software package for the Windows

platform is needed, with a search deadline of 10 minutes (600 seconds); the query

was repeated 10 times for each domain. All items in Figure 15 also appear in Table 3

and have been explained in Section 5.6. The DTC scheduler generates the same

schedule for all queries because the search and product criteria are the same and

the object database is cleared after each run (BIG does not have knowledge about

these products a priori and knowledge that is learned during one trial is removed

before the next trial).

The search for html editor products takes longer to execute than the other two

queries because there are more available products (#C.P. and #T.P.) in this domain.

Thus some methods take longer time than expected, because their execution times

are related to the number of product descriptions that are either retrieved or actively

being considered as candidates (such as the “Search For Reviews” method).

domain Scheduled Execution #C.P. #T.P. I.C. A.C. P.A. D.C. final decision

image editor average 541 520 4 7 28.2 5.3 0.8 1 product name: Adobe Image Ready

s.d. 0 8 0 0 1.9 0.5 0 0 platform: windows_nt, mac, win95

price: 188.98  occurrence: 10/10

html editor average 541 595 8 12 49.1 5.1 0.9 0.84 product name: Adobe Pagemill 3.0

s.d 0 59 0.6 0 3.8 0.7 0.05 0.04 platform: windows_nt, mac, win95

price: 79.98  occurrence: 8/10

database average 541 548 4.6 10.2 43.6 8 1 0.97 product name: FileMaker Pro 4.0

s.d 0 19 0.8 1.17 5.2 1.8 0.06 0.07 platform: win95, mac, windows_3.1

price: 159.98  occurrence: 7/10

Fig. 15. Experiments in Three Different Domains

Key: Scheduled = total execution time as predicted by the model and anticipated by the

scheduler, Execution = actual execution time, #C.P. = total candidate products passed to the

decision process, # T.P. = total product objects constructed, I.C. = information coverage,

A.C. = average coverage per object, P.A. = extraction processing accuracy per object, D.C.

= overall decision process confidence; final decision = the product most frequently recom-

mended by the system in 10 runs; occurrence = the frequency the product recommended by

the system; s.d. = standard deviation.

The final decision presents the product that is most frequently recommended by the
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system in the 10 runs. The occurrence indicates how many times it is recommended

in those 10 runs. Different products are recommended in different runs because the

system does not have sufficient time to exhaustively process all available docu-

ments, so it randomly selects equally rated documents for processing. The selected

document set therefore varies from one run to the next, so the system may have

different information, which in turn may support an alternate final decision.

For the image editor domain, the Adobe product Image Ready was recommended

each time because there are fewer candidate products in this domain and because

Image Ready is the best among the candidate products; other products’ prices are

about $300, which is much higher than the price of Image Ready. For the html ed-

itor domain, out of 10 runs, the system recommended Adobe Pagemill 3.0 eight

times, and in the other two runs it recommended Symantec’s Visual Page 2.0 and

WebSpice respectively. All three products have similar functionality and price. In

the database domain, the system recommended FileMaker Pro seven times, MS Ac-

cess once and MSFT Access for Win 95 Step by Step twice. The first two products

are reasonable selections, but the last one is actually a book. Our classifier fails to

reject this alternative since there were many database-related keywords in the de-

scription and it had very low price compared with other real software products.
➺✑➼

The techniques and technologies employed by BIG are also applicable to decision-

making tasks in other domains as well, such as the car purchasing domain men-

tioned earlier. The core components of BIG, including the RESUN planner, design-

to-criteria scheduler, task assessor, and databases are entirely domain independent,

and may be used without modification to address different questions. The black-

board architecture is also domain-independent, but a designer would need to enu-

merate different characteristics for objects placed on the blackboard. In the car

domain, for instance, the “hard drive” and “platform” traits are not pertinent; ele-

ments such as “engine” or “model” would be more appropriate. The most demand-

ing aspects requiring changes in a new domain relate to text processing. Both the

NLP-style text extraction (textext-ks) and the document classifier rely on a one-

time training session on a domain corpus to achieve their results. The wrapper text

extraction utility (quickext-ks) is also domain dependent, and would require new

rules to correctly process the different web sites used in the domain. The other text

extractors (grep-ks, cgrep-ks, tablext-ks) are domain-independent.

➺✑➼
There is an interesting question whether more extensive training of the classifier would

have solved this problem. We could have also added special heuristics to reflect the fact

that products priced so low for the genre were likely either to not be complete software

packages or not software. Shareware, freeware and other low-cost, but potentially viable,

solutions further complicate issues.
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6 Strengths, Limitations, and Future Directions

The combination of the different AI components in BIG and the view of informa-

tion gathering as an interpretation task has given BIG some very strong abilities.

In contrast to most other work done in this area, BIG performs information fusion

not just document retrieval. That is, BIG retrieves documents, extracts attributes

from the documents, converting unstructured text to structured data, and integrates

the extracted information from different sources to build a more complete model of

the product in question. The use of the RESUN interpretation-style planner enables

BIG to reason about the sources-of-uncertainty associated with particular aspects

of product objects and to plan to resolve these uncertainties by gathering and ex-

tracting more information that serves as either corroborating or negating evidence.

Though this feature was not brought out in our simple trace, it is a definite strength

when operating in a realm of uncertain information combined with uncertain ex-

traction techniques.

BIG is also quite scalable, because of the way it can filter and focus a large amount

of information into a concise, useful representation. BIG can obtain and process in-

formation from a large variety of sources on the web, and given sufficient time, can

process as much information as it is able to find during its search. The hierarchical

structure of the blackboard allows BIG to effectively use the data because it is con-

densed and abstracted as it rises through the levels. The key phrase here, however,

is given sufficient time. BIG is still a single entity system, so while the higher levels

of the blackboard are manageable, the lower levels can accumulate a large number

of objects on them, which can be slow to process. A proposed solution to this prob-

lem is to make BIG a multi-agent system. In such a system, multiple BIG agents

could independently search for information, conceptually branching the lower lev-

els of the blackboard. Not only will this solution increase information throughput

through parallelism, but communication between the agents can also help focus the

system as a whole.

Another feature of BIG not fully detailed in this paper is the use of the Design-to-

Criteria scheduler to reason about the quality, cost, time, and certainty trade-offs of

different candidate actions. The use of the scheduler enables BIG to address dead-

lines and search resource constraints, a feature that is particularly important given

the scope of the search space, the uncertainty involved, and the very real require-

ment for information systems to address time and resource constraints. Relatedly,

while the issue of planning for information cost constraints is not stressed in this

paper, we feel that in the future the cost of accessing particular information sources

will need to be taken into account by information gathering agents. Examples of

the use of cost in BIG’s IG process are presented in [44].

Also not a focus of this paper is BIG’s ability to learn from prior problem solv-

ing instances [42]. Information objects (along with their associated sources-of-
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uncertainty) can be stored and used to supplement subsequent search activities. In

this fashion, BIG gains from prior problem solving instances, but, it also refines and

modifies the product models over time by resolving previously unresolved SOUs

and gathering new information about the products.

In terms of limitations and extensibility, many of the components used in the sys-

tem, such as the web retrieval interface and some of the information extractors like

grep-ks and tablext-ks, are generic and domain independent. However, certain as-

pects of the system require domain specific knowledge; adapting BIG to operate in

another domain, perhaps the auto-purchase domain, would require the addition of

specific knowledge about the particular domain. For example, as discussed in Sec-

tion 5.7, information extractors like the information extraction system, cgrepext-ks,

and quickext-ks, require supervised training to learn extraction rules and make use

of semantic dictionaries to guarantee a certain level of performance. Additionally,

both the server and object databases, being persistent stores of the system’s past

experiences, are inherently domain dependent, rendering most of this knowledge

useless and possibly distractive when used in other scenarios.

Another possible limitation with the current incarnation of BIG is the use of text

extraction technology to convert unstructured text to structured data. The text ex-

traction techniques are sometimes fragile, particularly when asked to extract data

from a document not belonging to the class of document on which the system was

trained. The use of a document classifier greatly improves the situation, but, infor-

mation extraction remains a non-trivial issue. The use of XML and other data struc-

turing mechanisms on the web will help alleviate this issue. Interestingly, because

RESUN represents and works to resolve sources-of-uncertainty, the limitations and

sometimes erroneous output of the text extraction tools is not nearly as problematic

as it might seem at first glance. Given sufficient time for search, the planner will

usually recover from misdirections stemming from poor information extraction.

Our future interests lie in improving the integration of the top-down view of the

Design-to-Criteria Scheduler and the opportunistic bottom-up view of the RESUN

planner. Currently, the scheduler’s primary role in the system is to produce the ini-

tial schedule. However, as the control structure evolves, we foresee a feedback loop

in which the RESUN planner and the task assessor pose what-if type questions to

the scheduler to support high-level decisions about which actions to perform next.

A stronger two-way interface will also support more opportunistic problem solving

strategies by enabling the problem solver to respond to changes and evaluate the

value of changing its planned course of action. We see this as particularly valuable

in light of the uncertainty in the information gathering domain and the high-order

combinatorics of the trade-off decision process. In this secondary role, the sched-

uler becomes the trade-off expert employed by the task assessor/problem solver to

guide agent activities during execution. Another important direction is to exploit

user feedback about the appropriateness of the system’s decision and the docu-

ments/sites that support that decision. We feel this will allow us to both strengthen
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the processing of existing software genres and also allow us to more seamlessly

integrate other software genres that have not been trained for. Finally, we could like

to move BIG into a multi-agent system involving mobile agents. Our group [34] has

a long history of developing distributed problem solving and multi-agent systems

[19,20,38,55,9,46] and we are interested in exploring multi-agent coordination via

a group of agents descended from the current BIG agent.
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