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Abstract

Effective information gathering on the WWW is a com-
plex task requiring planning, scheduling, text processing, and
interpretation-style reasoning about extracted data to resolve
inconsistencies and to refine hypotheses about the data. This
paper describes the rationale, architecture, and implementa-
tion of a next generation information gathering system — a
system that integrates several areas of Al research under a sin-
gle research umbrella. The goal of this system is to exploit
the vast number of information sources available today on the
NII including a growing number of digital libraries, indepen-
dent news agencies, government agencies, as well as human
experts providing a variety of services. The large number of
information sources and their different levels of accessibility,
reliability and associated costs present a complex information
gathering coordination problem. Our solution is an informa-
tion gathering agent, BIG, that plans to gather information to
support a decision process, reasons about the resource trade-
offs of different possible gathering approaches, extracts infor-
mation from both unstructured and structured documents, and
uses the extracted information to refine its search and process-
ing activities.

Introduction

The vast amount of information available today on the World
Wide Web (WWW) has great potential to improve the qual-
ity of decisions and the productivity of consumers. How-
ever, the WWW’s large number of information sources and
their different levels of accessibility, reliability and associ-
ated costs present human decision makers with a complex
information gathering planning problem that is too difficult
to solve without high-level filtering of information. In many
cases, manual browsing through even a limited portion of the
relevant information obtainable through advancing informa-
tion retrieval (IR) and information extraction (IE) technolo-
gies (Callan, Croft, & Harding 1992; Larkey & Croft 1996;
Cowie & Lehnert 1996; Lehnert & Sundheim 1991) is no
longer effective. The time/quality/cost tradeoffs offered by
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the collection of information sources and the dynamic nature
of the environment lead us to conclude that the user cannot
(and should not) serve as the detailed controller of the infor-
mation gathering (IG) process. Our solution to this problem
is to integrate different Al technologies, namely scheduling,
planning, text processing, and interpretation problem solv-
ing, into a single information gathering agent, BIG (resource-
Bounded Information Gathering), that can take the role of the
human information gatherer.

Information Gathering as Interpretation

Our approach to the IG problem is based on two observations.
The first observation is that a significant portion of human
IG is itself an intermediate step in a much larger decision-
making process. For example, a person preparing to buy a car
may search the Web for data to assist in the decision process,
e.g., find out what car models are available, crash test results,
dealer invoice prices, reviews and reliability statistics. In this
information search process, the human gatherer first plans
to gather information and reasons, perhaps at a superficial
level, about the time/quality/cost trade-offs of different pos-
sible gathering actions before actually gathering information.
For example, the gatherer may know that Microsoft CarPoint
site has detailed and varied information on the models but
that it is slow, relative to the Kelley Blue Book site, which
has less varied information. Accordingly, a gatherer pressed
for time may choose to browse the Kelley site over CarPoint,
whereas a gatherer with unconstrained resources may choose
to browse-and-wait for information from the slower CarPoint
site. Human gatherers also typically use information learned
during the search to refine and recast the search process; per-
haps while looking for data on the new Honda Accord a hu-
man gatherer would come across a positive review of the Toy-
ota Camry and would then broaden the search to include the
Camry. Thus the human-centric process is both top-down
and bottom-up, structured, but also opportunistic. The final
result of this semi-structured search process is a decision or
a suggestion of which product to purchase, accompanied by
the extracted information and raw supporting documents.
The second observation that shapes our solution is that
WWW-based IG is an instance of the interpretation problem.
Interpretation is the process of constructing high-level mod-
els (e.g. product descriptions) from low-level data (e.g. raw
documents) using feature-extraction methods that can pro-
duce evidence that is incomplete (e.g. requested documents
are unavailable or product prices are not found) or inconsis-
tent (e.g. different documents provide different prices for the



same product). Coming from disparate sources of informa-
tion of varying quality, these pieces of uncertain evidence
must be carefully combined in a well-defined manner to pro-
vide support for the interpretation models under considera-
tion.

In recasting IG as an interpretation problem, we face a
search problem characterized by a generally combinatorially
explosive state space. In the IG task, as in other interpretation
problems, it is impossible to perform an exhaustive search to
gather information on a particular subject, or even in many
cases to determine the total number of instances (e.g. partic-
ular word processing programs) of the general subject (e.g.
word processing) that is being investigated. Consequently,
any solution to this IG problem needs to support reasoning
about tradeoffs among resource constraints (e.g. the decision
must be made in 1 hour), the quality of the selected item, and
the quality of the decision process (e.g. comprehensiveness
of search, effectiveness of IE methods usable within speci-
fied time limits). Because of the need to conserve time, it is
important for an interpretation-based IG system to be able to
save and exploit information about pertinent objects learned
from earlier forays into the WWW. Additionally, we argue
that an IG solution needs to support constructive problem
solving, in which potential answers (e.g. models of products)
to a user’s query are incrementally built up from features ex-
tracted from raw documents and compared for consistency
or suitability against other partially-completed answers — and
the number of potential answers is not known a priori.

In connection with this incremental model-building pro-
cess, an interpretation-based IG problem solution must also
support sophisticated scheduling to achieve interleaved data-
driven and expectation-driven processing. Processing for in-
terpretation must be driven by expectations of what is reason-
able, but, expectations in turn must be influenced by what is
found in the data. For example, during a search to find infor-
mation on word processors for Windows95, with the goal of
recommending some package to purchase, an agent finding
Excel in a review article that also contains Word 5.0 might
conclude based on IE-derived expectations that Excel is a
competitor word processor. However, scheduling of methods
to resolve the uncertainties stemming from Excel’s missing
features would lead to additional gathering for Excel, which
in turn would associate Excel with spreadsheet features and
would thus change the expectations about Excel (and drop it
from the search when enough of the uncertainty is resolved).
Where possible, the scheduling should permit parallel invo-
cation of IE methods or requests for WWW documents.

To illustrate our objective, consider a simple sketch of BIG
in action. A simplified control flow view of this sketch is
shown in Figure 1. A client is interested in finding a draw-
ing program for Windows95. The client submits goal criteria
that describe desired software characteristics and specifica-
tions for BIG’s search-and-decide process. The search pa-
rameters are quality importance = 80%, time importance =
20%, soft time deadline of 20 minutes, hard cost limitation
of 0. This translates into emphasizing quality over duration,
a preference for a response in 20 minutes if possible, and a
hard constraint that the search use only free information. The
product parameters are: product price: $200 or less, plat-
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Figure 1: BIG’s Problem Solving Control Flow

form: Windows95, usefulness importance rating 100 units,
future usefulness rating 25, product stability 100, value 100,
ease of use 100, power features 25, enjoyability 100. The
client is a middle-weight home-office user who is primarily
concerned with using the product today with a minimum of
hassles but who also doesn’t want to pay too much for power
user features. Upon receipt of the criteria, BIG first invokes
its planner to determine what information gathering activi-
ties are likely to lead to a solution path; activities include
retrieving documents from known drawing program makers
such as Corel and MacroMedia as well as from consumer
sites containing software reviews, such as the Benchin Web
site. Other activities pertain to document processing options
for retrieved text; for a given document, there are a range of
processing possibilities each with different costs and differ-
ent advantages. For example, the heavyweight information
extractor pulls data from freeformat text and fills templates
and associates certainty factors with the extracted items. In
contrast, the simple and inexpensive pattern matcher attempts
to locate items within the text via simple grep-like behav-
ior. These problem solving options are then considered and
weighed by the task scheduler that performs quality/cost/time
trade-off analysis and determines a course of action for BIG.
The resulting schedule is then executed; multiple retrieval
requests are issued and documents are retrieved and pro-
cessed. Data extracted from documents at the MacroMedia
site is integrated with data extracted from documents at the
Benchin site to form a product description object for Macro-
Media Freehand. However, when BIG looks for information
on Adobe Illustrator at the Benchin site it also comes across
products such as the Bible Illustrator for Windows, and cre-
ates product description objects for these products as well.
After sufficient information is gathered, and the search re-
sources nearly consumed, BIG then compares the different
product objects and selects a product for the client. In this
case, BIG’s data indicates that the “best” product is Macro-
Media Freehand though the academic version is the specific
product that is below our client’s price threshold. (The reg-
ular suggested retail price is $595.) BIG returns this recom-
mendation to the client along with the gathered information
and the corresponding extracted data.

Though the sketch above actually illustrates one of the
problem areas of BIG’s text processing, that is identifying
special versions of products, it illustrates one of the corner-
stones of our approach to the information explosion — we be-
lieve that retrieving relevant documents is not a viable end
solution to the information explosion. The next generation
of information systems must use the information to make de-
cisions and thus provide a higher-level client interface to the
enormous volume of on-line information. Our work is related
to other agent approaches (Wellmen, Durfee, & Birming-
ham 1996) that process and use gathered information, such
as the WARREN (Decker et al. 1997) portfolio manage-



ment system or the original BargainFinder (Krulwich 1996)
agent or Shopbot (Doorenbos, Etzioni, & Weld 1997), both
of which work to find the best available price for a music
CD. However, our research differs in its direct representation
of, and reasoning about, the time/quality/cost trade-offs of
alternative ways to gather information, its ambitious use of
gathered information to drive further gathering activities, its
bottom-up and top-down directed processing, and its explicit
representation of sources-of-uncertainty associated with both
inferred and extracted information. Our time/quality/cost
trade-off approach is similar to formal methods (Etzioni et al.
1996) for reasoning about gathering information, except that
our trade-off analysis focuses on problem solving actions (in-
cluding text processing) and other agent activities rather than
simply focusing on the trade-offs of different information re-
sources, i.e., our work addresses both agent control level and
information value.
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The BIG Agent Architecture

The overall BIG agent architecture is shown in Figure 2. The
agent is comprised of several sophisticated components that
are complex problem-solvers and research subjects in their
own rights. The integration of such complex components is
a benefit of our research agenda. By combining components
in a single agent, that have hereto been used individually, we
gain new insight and discover new research directions for the
components. The most important components, or component
groups, follow in rough order of their invocation in the BIG
agent.
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Task Assessor The task assessor is responsible for formu-
lating an initial information gathering plan and then for
revising the plan as new information is learned that has
significant ramifications for the plan currently being exe-
cuted. The task assessor is not the execution component
nor is it the planner that actually determines the details
of how to go about achieving information gathering goals;
the task assessor is a component dedicated to managing
the high-level view of the information gathering process
and balancing the end-to-end top-down approach of the
agent scheduler (below) and the opportunistic bottom-up
RESUN planner (also below). The task assessor receives
an initial information gathering goal specification from an
external decision maker, which can be a human or an-
other sophisticated automated component, and then formu-
lates a family of plans for gathering the necessary informa-
tion. The task assessor has a model of the goals that can
be achieved by the RESUN planner and the performance

characteristics and parameters of the actions that RESUN
will employ to achieve the goals. The task assessor com-
bines this knowledge with previously learned information
stored in the server and object databases (below) and gen-
erates a set of plans that delineates alternative ways to go
about gathering the information and characterizes the dif-
ferent possibilities statistically in three dimensions quality,
cost, and duration, via discrete probability distributions.
The task assessor encodes the plans in the TEMS (Decker
& Lesser 1993) generic, domain-independent task model-
ing framework. The TZAMS models then serve as input
to the agent scheduler and other agent control components
that will be added in the future (e.g., a multi-agent coordi-
nation module).

Object Database Used initially by the task assessor when
determining possible courses of action, the object database
is also used by the RESUN planner during information
gathering sessions. As the planner creates information ob-
jects they are stored in the object database for use during
future information gathering sessions. The stored objects
may be incomplete and may have uncertainties attached to
them, however, the uncertainties and incompletions can be
filled in the next time the object is used to address a query.
Through the object database and the server information
database (below), BIG learns during problem solving. In-
formation and resources learned and discovered are stored
for subsequent information gathering activities. The issue
of aging stored data and a detailed discussion on learning
are beyond the scope of this paper.

Server Information Database The server database is used
by the task assessor to help generate its initial list of in-
formation gathering options and again during the actual
search process by the RESUN planner when the informa-
tion gathering activities actually take place. The database
is used to seed the initial search and is queried as new prod-
ucts are discovered. The database contains records identi-
fying both primary and secondary information sources on
the Web. Accompanying the sources are attributes that de-
scribe the sources’ retrieval times and costs, their quality
measures (see below), keywords relevant to the sources,
and other related items. The database is constructed by an
offline Web spider and modified during the search process
to reflect newly discovered sites and data. This object has
information aging concerns similar to those of the object
database.

TAMS Modeling Framework The TAEMS (Decker 1996)
task modeling language is used to hierarchically model
the information gathering process and enumerate alterna-
tive ways to accomplish the high-level gathering goals.
The task structures probabilistically describe the quality,
cost, and duration characteristics of each primitive ac-
tion and specify both the existence and degree of any in-
teractions between tasks and primitive methods. For in-
stance, if the task of Find-Competitors-for-WordPerfect
overlaps with the task of Find-Competitors-for-MS-Word
(particular bindings of the general Find-Competitors-for-
Software-Product task) then the relationship is described
via a mutual facilitation and a degree of the facilitation
specified via quality, cost, and duration probability distri-



butions. TZAMS task structures are stored in a common
repository and serve as a domain independent medium
of exchange for the domain-independent agent control
components; in the single agent implementation of BIG,
TZAEMS is primarily a medium of exchange for the sched-
uler, below, the task assessor, and the RESUN planner.

Design-to-Criteria Scheduler Design-to-Criteria (Wagner,

Garvey, & Lesser 1997; 1998) is a domain independent
real-time, flexible computation (Horvitz, Cooper, & Heck-
erman 1989; Dean & Boddy 1988; Russell & Zilberstein
1991) approach to task scheduling. The Design-to-Criteria
task scheduler reasons about quality, cost, duration and un-
certainty trade-offs of different courses of action and con-
structs custom satisficing schedules for achieving the high-
level goal(s). The scheduler provides BIG with the ability
to reason about the trade-offs of different possible infor-
mation gathering and processing activities, in light of the
client’s goal specification (e.g., time limitations), and to
select a course of action that best fits the client’s needs
and the current problem solving context. The scheduler
receives the TAEMS models generated by the task assessor
as input and the generated schedule, containing parallelism
where appropriate, is returned to the RESUN planner for
execution.

RESUN Planner The RESUN (Carver & Lesser 1991;

1995) (pronounced “reason”) blackboard based plan-
ner/problem solver directs information gathering activi-
ties. The planner receives an initial action schedule from
the scheduler and then handles information gathering and
processing activities. The strength of the RESUN planner
is that it identifies, tracks, and plans to resolve sources-
of-uncertainty (SOUs) associated with blackboard objects,
which in this case correspond to gathered information and
hypotheses about the information. For example, after pro-
cessing a software review, the planner may pose the hy-
pothesis that Corel Wordperfect is a Windows95 wordpro-
cessor, but associate a SOU with that hypothesis that iden-
tifies the uncertainty associated with the extraction tech-
nique used. The planner may then decide to resolve that
SOU by using a different extraction technique or find-
ing corroborating evidence elsewhere. RESUN’s control
mechanism is fundamentally opportunistic — as new ev-
idence and information is learned, RESUN may elect to
work on whatever particular aspect of the information
gathering problem seems most fruitful at a given time.
This behavior is at odds with the end-to-end resource-
addressing trade-off centric view of the scheduler, a view
necessary for BIG to meet deadlines and address time and
resource objectives. Currently RESUN achieves a subset
of the possible goals specified by the task assessor, but se-
lected and sequenced by the scheduler. However, this can
leave little room for opportunism if the goals are very de-
tailed, i.e., depending on the level of abstraction RESUN
may not be given room to perform opportunistically at all.
This is a current focus of our integration effort. In the near
term we will complete a two-way interface between RE-
SUN and the task assessor (and the scheduler) that will en-
able RESUN to request that the task assessor consider new
information and replan the end-to-end view accordingly.

Relatedly, we will support different levels of abstraction in
the plans produced by the task assessor (and selected by
the scheduler) so we can vary the amount of room left for
RESUN’s run-time opportunism and study the benefits of
different degrees of opportunism within the larger view of
a scheduled sequence of actions.

Web Retrieval Interface The retriever tool is the lowest

level interface between the problem solving components
and the Web. The retriever fills retrieval requests by either
gathering the requested URL or by interacting with with
both general (e.g., InfoSeek), and site specific, search en-
gines. Through variable remapping, it provides a generic,
consistent interface to these interactive services, allowing
the problem solver to pose queries without knowledge of
the specific server’s syntax. In addition to fetching the re-
quested URL or interacting with the specific form, the re-
triever also provides server response measures and prepro-
cesses the html document, extracting other URLs possibly
to be explored later by the planner.

Information Extractors The ability to process retrieved

documents and extract structured data is essential both to
refine search activities and to provide evidence to sup-
port BIG’s decision making. For example, in the software
product domain, extracting a list of features and associat-
ing them with a product and a manufacturer is critical for
determining whether the product in question will work in
the user’s computing environment, e.g., RAM limitations,
CPU speed, OS platform, etc. BIG uses several informa-
tion extraction techniques to process unstructured, semi-
structured, and structured information. The information
extractors are implemented as knowledge sources in BIG’s
RESUN planner and are invoked after documents are re-
trieved and posted to the blackboard. The information ex-
tractors are:

textext-ks This knowledge source processes unstructured text
documents using the BADGER (Soderland ef al. 1995) in-
formation extraction system to extract particular desired data.
The extraction component uses a combination of learned
domain-specific extraction rules, domain knowledge, and
knowledge of sentence construction to identify and extract the
desired information. This component is a heavy-weight NLP
style extractor that processes documents thoroughly and iden-
tifies uncertainties associated with extracted data.

grep-ks This featherweight KS scans a given text document
looking for a keyword that will fill the slot specified by the
planner. For example, if the planner needs to fill a product
name slot and the document contains “WordPerfect” this KS
will identity WordPerfect as the product, via a dictionary, and
fill the product description slot.

cgrepext-ks Given a list of keywords, a document and a product
description object, this middleweight KS locates the context of
the keyword (similar to paragraph analysis), does a word for
word comparison with built in semantic definitions thesaurus
and fills in the object accordingly.

tablext-ks This specialized KS extracts tables from html docu-
ments, processes the entries, and fills product description slots
with the relevant items. This KS is trained to extract tables
and identify table slots for particular sites. For example, it
knows how to process the product description tables found at
the Benchin review site.

quick-ks This fast and highly specialized KS is trained to iden-
tify and extract specific portions of regularly formatted html



files. For example, many of the review sites use standard lay-
outs.

Decision Maker After product information objects are con-
structed BIG moves into the decision making phase. In the
future, BIG may determine during decision making that
it needs more information, perhaps to resolve a source-
of-uncertainty associated with an attribute that is the de-
termining factor in a particular decision, however, cur-
rently BIG uses the information at hand to make a de-
cision. Space precludes full elucidation of the decision
making process, however, the decision is based on a utility
calculation that takes into account the user’s preferences
and weights assigned to particular attributes of the prod-
ucts and the confidence level associated with the attributes
of the products in question.

Currently, all of these components are implemented, in-
tegrated, and undergoing testing. However, we have not
yet fully integrated all aspects of the the RESUN plan-
ner at this time. In terms of functionality, this means that
while the agent plans to gather information, analyzes qual-
ity/cost/duration trade-offs, gathers the information, uses the
IE technology to break down the unstructured text, and then
reasons about objects to support a decision process, it does
not respond opportunistically to certain classes of events. If,
during the search process, a new product is discovered, the
RESUN planner may elect to expend energy on refining that
product and building a more complete definition, however, it
will not generate a new top down plan and will not consider
allocating more resources to the general task of gathering in-
formation on products. Thus, while the bindings of products
to planned tasks are dynamic, the allocations to said tasks
are not. This integration issue is currently being solved. We
return to this issue later in the paper.

BIG in Action

To provide a more concrete example of how BIG operates, let
us walk through a sample run. The domain for this example
is word processing software, where a client uses the system
to find the most appropriate package, given a set of require-
ments and constraints. The query process begins with a user
specifying search criteria, which includes such elements as
the duration and cost of the search as well as desired prod-
uct attributes, such as genre, price, quality and system re-
quirements. In this example, the client desires to search for a
word processor for the Macintosh costing no more than 200
dollars, and would like the search process to take about ten
minutes and cost less than five dollars. The user also de-
scribes the importance of product price and quality by as-
signing weights to these product categories, in this case the
client specified a 50/50 split between price and quality. Space
precludes an in depth discussion of the product quality fields,
but they include items like usefulness, future usefulness, sta-
bility, value, ease of use, power, and enjoyability.

Once these parameters are specified the query begins. The
task assessor starts the process by first analyzing the user’s
parameters and then, using its knowledge about RESUN’s
problem solving options and its own top-down understanding
of reasonable ways to go about performing the task, it gener-
ates a TAEMS task structure believed to be capable of achiev-
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Figure 3: BIG’s TEMS Task Structure for the 10 Min. Case

ing the query. Although not used in this example, knowledge
learned in previous problem solving episodes may be utilized
during this step by querying a database of previously discov-
ered objects and incorporating this information into the task
structure. The task structure produced for our example query
can be seen in Figure 3. Note that sets of outcomes are associ-
ated with each method, where each outcome has a probability
of occurring and is described statistically via discrete prob-
ability distributions in terms of quality, cost, and duration.
This detail is omitted from the figure for clarity.

Once constructed, the task structure is passed to the sched-
uler which makes use of the user’s time and cost constraints
to produce a viable run-time schedule of execution. Com-
parative importance rankings of the search quality, cost and
duration, supplied by the client, are also used during sched-
ule creation. The sequence of primitive actions chosen by
the scheduler for this task structure is also shown in Figure 3.
The numbers near particular methods indicate their assigned
execution order. Again, space precludes a detailed schedule
with its associated probability distributions.

The schedule is then passed to the RESUN plan-
ner/executor to begin the process of information gathering.
Retrieval in this example begins by submitting a query to a
known information source called “cybout.” While this in-
formation is being retrieved, a second query is made and
completed to the local server database information source.



This second action results in 400 document descriptions be-
ing placed on the blackboard, from which three are selected
for further action. These three documents are then retrieved
and processed in turn with a high-quality, high-duration se-
quence of information extraction tools. Before actual pro-
cessing takes place, a quick search of each document’s con-
tent for the product genre provides a cheap method of en-
suring relevance — we envision this document preclassifica-
tion step becoming more involved in the future. Three ob-
jects, one from each document, are found during the high-
quality examination and placed on the blackboard. By this
time, the initial query to cybout has completed and is re-
trieved, which results in an additional 61 documents being
posted to the blackboard. Six more documents are then se-
lected and retrieved for medium-quality, medium-duration
extraction/processing. Four of these, though, fail the product
genre search test and are discarded before processing takes
place. Examination of the remaining two reveals two more
products, which are added to the blackboard. A similar low-
quality, low-duration process then adds two more objects.

At this point the system has a total of seven competing
product objects on the blackboard which require more dis-
criminating information to make accurate comparisons. To
do this, three known review sites are queried for each object,
each of which may produce data which is added to the object,
but not combined with existing data for the given object (dis-
crepancy resolution of extracted data is currently handled at
decision time). After this, the final decision making process
begins by pruning the object set of products which have in-
sufficient information to make an accurate comparison. The
data for the remaining objects is then assimilated, with dis-
crepancies resolved by generating an average, each point be-
ing weighted by the quality of the source. A final product
quality is then computed for each object, taking into account
the gathered information, the quality of this information and
the user’s requirements. From this set the product with the
highest expected quality is selected as the final recommenda-
tion. A confidence measure of this decision is also calculated
based on the quality of each product and the certainty of the
information. This information can be seen for several trials
in Figure 4

Looking at Figure 4 in more detail one can obtain a rea-
sonable view of how the system operates under different time
constraints. In the first column of data we can see information
relating to the duration of each search. Given is the user’s re-
quested duration, the duration expected by the schedule pro-
duced from the task structure and the actual execution time.
Discrepancies may arise between the requested and sched-
uled times because of both how the task assessor creates the
task structure and how the scheduler interprets it. For in-
stance, valid 10 minute runs were available in the 600 sec-
ond query, but a 743 second path was chosen because of its
greater likelihood of producing high quality results. This sort
of time/quality tradeoff is controlled in part by the parame-
ters set in the user interface. The differences seen between
the scheduled and actual time is caused simply by the fact
that it is difficult to accurately predict the response time of
remote services in the face of capricious network traffic.

The decision quality column reflects the number and qual-

ities of the information sources used to generate the final de-
cision. This attribute is based on the number of products con-
sidered, the number of documents used to obtain information
and the quality rankings of these pages. The quality of the re-
trieved documents is based on knowledge about the quality of
the source, which is generated by prior human examination.
Unknown sites are ranked as medium quality. The product
number and information coverage values increase given more
scheduled time, as one would expect. The information qual-
ity values, however, may seem un-intuitive, since medium
and low quality sources were used despite the fact that the
quality of the information contained is known a priori. Such
sites may be selected for retrieval for two reasons: they may
respond quickly, and our set of tools may be able to analyze
them particularly well. So a number of such sources may be
used relatively cheaply, and still be useful when examined in
conjunction with a high-quality source.

The decision confidence values describe how confident the
system is in the information extraction and decision making
processes. Information accuracy, supplied by the informa-
tion processing tool, is the degree of belief that the actual
extracted information is correctly categorized and placed in
the information objects. Information confidence, generated
by the decision maker, reflects the likelihood that the selected
product s the optimal choice given the set of products consid-
ered. This value is based on the quality distributions of each
product, and represents the chance that the expected qual-
ity is correct. It should be noted that both these values are
not dependent on the scheduled time. The accuracy does not
change because our current information extraction tools do
not produce different results with more execution time. Deci-
sion confidence, on the other hand, is based on the quality of
the individual products, which are independent of execution
time themselves, thus making the confidence independent.

The final decision of which product to recommend repre-
sents the sum of all these earlier efforts. The successes and
failures of earlier processes are thus manifested here, which
may lead to unpredictable results. For instance, in the five
minute run, the system suggests that Adobe Acrobat will ful-
fill the client’s word processing needs. This sort of error can
be caused by the misinterpretation of an information source.
Specifically, the phrase “word processing” was found associ-
ated with this package in a product description, which caused
it to be accidentally included in the list of possible products.
The subsequent 10 and 20 minute runs produced more useful
results, both recommending the same word processor. Af-
ter 40 minutes, though, the system has again selected a non-
word processing package. This was also caused by a mis-
understood product description, and was compounded by the
fact that it was low-cost and well reviewed. It should also
be noted, though, that the second and third place packages
in this run were both highly rated word processors, namely
ClarisWorks Office and Corel WordPerfect.

The final 5 minute query was performed after the 40
minute run, and made use of the previously generated ob-
jects when creating the initial task structure. These objects
were also used to initially seed the object level of the RE-
SUN blackboard. In this final search, more information was
found on these objects, which decreased the expected qual-



Duration (seconds) Decision Quality Decision Confidence
Requested _Scheduled Actual | Num. products _Info. coverage _Info. qualit Accurac; Info. confidence|Product retrieved
5 High Acrobat 3.0 Upg. from Acrobat Pro MAC CD
300 572 550 3 11 0 Medium 1.461 0.830 platform: MAC
6 Low price: $59.95 quality: 2.1
12 High Nisus Writer 5.1 Upgrade from 2.0, 3.0 or 4.0 CD ROM
600 743 860 7 21 0 Medium 1.068 0.860 platform: Macintosh
9 Low price: $34.95 quality: 2.7
9 High Nisus Writer 5.1 Upgrade from 2.0, 3.0 or 4.0 CD ROM
1200 1163 942 11 25 8 Medium 1.073 0.860 platform: Macintosh
8 Low price: $34.95 quality: 2.7
28 High The Big Thesaurus V2.1
2400 2819 2543 23 76 16 Medium 1.070 0.850 platform: Macintosh
32 Low price: $27.95 quality: 2.9
Using previously learned information
5 High Nisus Writer 5.1 Upgrade from 5.0 CD ROM
300 572 386 21 10 0 Medium 1.058 0.710 platform: Macintosh
5Low price: $29.95 quality: 2.7

Figure 4: Five Different Results: Four with Different Time Allotments and the Fifth Generated by Using Previously Learned Knowledge

ity of the 40 minute search’s erroneously selected product,
The Big Thesaurus, to 2.3 from 2.9. This small amount of
extra information was sufficient for the system to discount
this product as a viable candidate, which resulted in a much
better recommendation in a shorter period of time, i.e., the
recommendation of Nisus Writer. One may also see a dra-
matic difference when comparing these results with the initial
5 minute query, which had similar information coverage but
many fewer products to select from, which produced a lower
quality decision and selected a non-word processor product.

Integration Lessons and Future Work

The integration of the different Al problem solvers in BIG,
namely the RESUN planner, the Design-to-Criteria sched-
uler, the BADGER information extraction system, with each
other and the web retriever agents, the different data storage
mechanisms and process modeling systems, is a major ac-
complishment in its own right. The integration of these sys-
tems and tools has enabled us to study the systems in a differ-
ent light than they have been studied in a stand-alone research
environment. For example, the software product domain, one
of BIG’s IG areas, is a new domain for the BADGER ex-
tractor that required new training and new methods for han-
dling documents, e.g., reviews and product comparisons, that
are structured differently from the genres of documents dealt
with in the past (e.g., terrorist articles and medical reports).
We also have an interesting extraction problem when deal-
ing with complimentary, but not competitor products. For
example, when searching for word processors BIG is likely
to come across supplementary dictionaries, word processor
tutorials, and even document exchange programs like Adobe
Acrobat. These can be misleading to the extraction tools and
to BIG in general because they are referenced much like a
competitor product and the documents about these products
often contain terminology that further supports the notion
that they are competitors rather than complimentary prod-
ucts. We are experimenting with enhancements to our in-
formation extraction systems to cope with this and planning
to use a tf/idf style document classifier (Callan 1996) to pre-
qualify documents before running the extraction system on
them.

We have also learned new things about the Design-to-
Criteria scheduler and discovered some modeling problems
with applying the TAMS task modeling framework to this
application. For example, in the information gathering task
structures there is a notion of search activities producing

some number of documents to process, and document pro-
cessing time is tied to this number of documents; addition-
ally, the final decision making process is tied to the num-
ber of documents that are processed because with each pro-
cessed document, there is some probability that it will lead
to new information objects that must be considered at deci-
sion time. This dependency is data-driven and T/ EMS only
models certain types of domain problem solving states. We
have been able to model this task adequately using existing
modeling constructs, but, inaccuracies in the models some-
times lead to less-than-perfect expectations. The solution is
the addition of a database resource in TAEMS that can record
and model the state information pertaining to the number of
documents retrieved, the number of documents processed,
and the number of information objects to be considered at
decision time. A secondary enhancement is the creation of
new TAMS non-local-effects to model soft task interactions,
e.g., hinders and facilitates, that have an additive, rather than
power-multiplier, effect.

Another major integration issue is the balance between a
top-down end-to-end view of problem solving and a reactive,
opportunistic view. These two views are embodied by the
scheduler and the RESUN planner respectively. The sched-
uler designs schedules to meet real-time and real-resource
performance criteria by scheduling activities from start to fin-
ish. RESUN, on the other hand, is an opportunistic problem
solver that responds to newly learned information and per-
forms processing on whatever hypothesis seems most signif-
icant at a given time step. Currently, BIG uses little of RE-
SUN’s opportunistic control to react to changes in the prob-
lem solving state. We are working on integrating the two way
feedback loop between the planner, task assessor, and sched-
uler, that will enable the system to react, where appropriate,
to changes in the problem solving state. The major issue is
identifying when it is beneficial to incur the cost of reschedul-
ing BIG’s planned actions and potentially disrupting finish
time guarantees that have been communicated to the client.
This tension between opportunistic, bottom-up, data-driven
control and top-down process-centric control is one of the
major open questions in BIG but also potentially our largest
gain in terms of the ability to effectively retrieve, process, and
make decisions with Web-based information. Relatedly, we
also intend to study a slightly different view of BIG’s control
as an anytime process.

As we have discussed, the integration of these components
in BIG, and the view of the IG problem as an interpretation



task, has given BIG some very strong abilities. First there is
the issue of information fusion. BIG does not just retrieve
documents. Instead BIG retrieves information, extracts data
from the information, and then combines the extracted data
with data extracted from other documents to build a more
complete model of the product at hand. RESUN’s eviden-
tial framework enables BIG to reason about the sources of
uncertainty associated with particular aspects of product ob-
ject and to even work to find corroborating or negating evi-
dence to resolve the SOUs. BIG also learns from previous
problem solving episodes and reasons about resource trade-
offs. As shown, given different allotments of cost and time,
and even different desired quality levels, BIG can analyze its
options and plan to achieve the decision goal while meeting
the client’s search criteria. Though cost is not an issue spot-
lighted in the examples in this paper, cost on the web is a
reality. For example, in the automotive product domain dif-
ferent sites charge different amounts for information such as
invoice prices, and some sites are free, but offer less timely
and less precise information.

In terms of limitations and extensibility, many of the com-
ponents used in the system, such as the web retrieval inter-
face and some of the information extractors like grep-ks and
tablext-ks, are generic and domain independent. However,
certain aspects of the system require domain specific knowl-
edge and adapting BIG to operate in another domain, per-
haps the auto-purchase domain, would require the addition
of specific knowledge about the particular domain. For ex-
ample, information extractors such as BADGER, cgrepext-ks
and quickext-ks require supervised training to learn extrac-
tion rules and make use of semantic dictionaries to guarantee
a certain level of performance. (Though we tested the sys-
tem on the related domain of computer hardware and found
it to work well considering no hardware related documents
were in the training corpus.) Additionally, both the server
and object databases, being persistent stores of the system’s
past experiences, are inherently domain dependent, render-
ing most of this knowledge useless and possibly distractive
when used in other scenarios.
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