
WAVE: An Incremental Algorithm for Information Extraction

Jonathan H. Aseltine
Department of Computer Science

University of Massachusetts, Amherst, MA 01003-4610
aseltine@cs.umass.edu

Abstract

This paper describes WAVE, a fully automatic, in-
cremental induction algorithm for learning infor-
mation extraction rules. Unlike traditional batch
learners, WAVE learns from a stream of training
instances, not a set. WAVE overcomes the inher-
ent problems of incremental operation by main-
taining a generalization hierarchy of rules. Use
of a hierarchy allows similar rules to be found
e�ciently, provides a natural bound on general-
ization, enables recall/precision trade-o�s without
retraining, and speeds extraction since all rules
need not be applied to an instance. Finally, be-
cause the reliability of rule predictions are con-
tinually updated throughout storage, the hierar-
chy can be used for extraction at any time. Ex-
periments show that WAVE performs as well as
CRYSTAL, a related batch algorithm, in two very
di�erent extraction domains. WAVE is signi�-
cantly faster in a simulated incremental applica-
tion setting.

Introduction

As the Internet continues to grow at an astonishing
rate, the amount of online text available and the need
for automatic methods to extract information from it
have also grown. An information extraction (IE) sys-
tem extracts speci�c, well-de�ned types of information
(concepts) from text from a restricted domain. Hand-
crafting of IE systems is often time-consuming and ex-
pensive, hence trainable IE systems have come to the
forefront as a way to meet that need.
AutoSlog (Rilo� 1993) was an early attempt at au-

tomating the construction of an IE rule lexicon. Au-
toSlog proposes extraction rules for each annotated con-
cept in a training corpus. A human decides which pro-
posed rules should be kept.
CRYSTAL (Soderland 1995) removed the human

from the loop. Extraction rules are induced from an-
notated training, and evaluated without human inter-
vention. CRYSTAL processes training instances in
batches: documents are collected, annotated, then fed
en masse to the induction algorithm. If a new set
of training instances becomes available, it is added to
the previous batch and the new batch is reprocessed

from scratch. Reprocessing large training sets can take
hours. In static application environments, the addi-
tional time needed to reprocess batches is merely an
inconvenience. In interactive, dynamic application en-
vironments, a few hours to retrain can be quite prob-
lematic: while the system is being retrained, deadlines
are missed and user interaction stops.

WAVE is an incremental induction algorithm for
learning information extraction rules. Like CRYSTAL,
WAVE learns and evaluates its rules automatically. Un-
like CRYSTAL, WAVE incrementally constructs and
evaluates extraction rules from a stream of training in-
stances, not a set. The rules can be used to extract
information from other instances at any time. These
properties make WAVE a better choice for interactive,
dynamic application settings.

Representing Training Instances and

Extraction Rules

Before rule learning can begin, the text must be parsed
into a series of training instances. The syntactic an-
alyzer MARMOT (Fisher et al. 1996) identi�es syn-
tactic bu�ers (subject, verb, object, and so on) and a
few other simple features, such as the verb root and
voice (active or passive). Semantic analysis is trivial,
limited to a simple table lookup to assign a class to
each term. For example, consider the clause \MEM-
BERS OF THE FARABUNDO MARTI NATIONAL
LIBERATION FRONT ATTACKED AN ELECTRIC
POWER SUBSTATION" from the Fourth Message
Understanding Conference (MUC-4) domain of Latin
American terrorism. Parsing this clause results in the
following frame:

Subject: MEMBERS OF THE
FARABUNDO MARTI
NATIONAL LIBERATION
FRONT fHuman,
Terrorist-Organizationg

Verb: ATTACKED (attack, active)
fAttackg

Object: AN ELECTRIC POWER
SUBSTATION fBuilding
Energyg

To train the system with this clause, annotations are
added to each bu�er signifying the concepts it contains.
For example, the \Object:" bu�er above contains the
extraction concept physical-target. Training instances
thus constructed are used as initial rules (sometimes
called \instance rules") to seed inductive generalization:
the features for each bu�er are constraints to be satis-
�ed; any annotations on a bu�er are predictions that
will be made if all the constraints in the frame are sat-
is�ed.

The WAVE Algorithm

WAVE automatically learns extraction rules through
generalization of training instances. Batch algorithms
like CRYSTAL have the considerable advantage of hav-
ing the entire training set at hand when making control
decisions. Because WAVE is incremental, the algorithm
must make decisions about the current instance in the
input stream without knowing anything about instances
further upstream. Moreover, the algorithm must be
able to �nd good generalizations e�ciently and update
its error estimates for existing rules as new evidence is
received.
WAVE addresses these issues by maintaining a gen-

eralization hierarchy of extraction rules. Organization
of the hierarchy is based on the covers relation: rule
A covers rule B if and only if all constraints in A are
also in B and any predictions made by A are made by
B as well. Each training instance is stored under the
most speci�c rules in the hierarchy that cover it. Dur-
ing storage, the reliability of each rule is updated based
on the instance's annotations. Once stored, the train-
ing instance is generalized with its siblings to form new
rules. This strategy has several bene�ts:

� Rules most similar to the current instance rule in the
stream can be found quickly. By �nding similar rules,
the bottom-up generalization strategy is less likely to
miss good rules due to generalization steps that are
too large.

� The hierarchy naturally bounds the generalization
process. A new instance rule is uni�ed only with
rules close to it in the hierarchy.

� The hierarchy allows WAVE to manage large num-
bers of generalizations e�ciently. Since so many dif-
ferent generalizations with di�ering levels of relia-
bility can exist, WAVE can trade-o� precision for
breadth of coverage without retraining.

� The hierarchy bene�ts extraction. When an instance
is presented for extraction, there is no need to test all
rules to see if they extract from it: if a rule near the
root does not extract from the instance, none of its
descendants will either. Hence large sections of the
hierarchy can be pruned away.

� Because the reliability of rule predictions are contin-
ually updated throughout storage, the hierarchy can
be used for extraction at any time.

store(A, B)

1. If A does not cover B, return failure.

2. Update reliability of each prediction in A based on
annotations in B.

3. Recursively store B under the children of A.

4. If B is not successfully stored under a child of A:

(a) Unify B with each child of A.

(b) Add the valid uni�cations to the children of A.

(c) Add B to the children of A.

(d) Reorganize the children of A to preserve hierarchy
invariants.

5. Return success.

Figure 1: A recursive algorithm to store a new in-
stance B under an existing node A. The initial call is
store(Root, B).

extract(R, I)

1. If R does not cover I, return failure.

2. For each prediction p in R:

(a) Calculate Ep, the error estimate for p.

(b) If Ep � error tolerance, predict p for I.

3. For each child C of R, call extract(C; I).

4. Return success.

Figure 2: A recursive algorithm to apply the hierarchy's
extraction rules to a new instance, I . The initial call is
extract(Root; I).

The algorithm for storing instance rules in the hier-
archy is given in Figure 1. Instance rules are stored
in three phases: siting, growing, and mending. Siting
(steps 1 through 3) �nds the correct locations in the
hierarchy for a new instance and updates rule relia-
bility along the way. Valid sites are found under the
most speci�c generalizations that cover the instance.
Once sited, growing (steps 4a through 4c) uni�es the
instance with all of its siblings, creating new general-
izations. Uni�cation combines two rules by relaxing
compatible constraints just enough so that the resulting
rule covers the original two. Incompatible constraints
are dropped. Any new generalized rules are added at
the site as siblings. Mending (step 4d) �xes any viola-
tions by rearranging the new group of siblings.
The algorithm for extracting from instances is given

in Figure 2. Error estimates for predictions are calcu-
lated using data gathered during storage.
WAVE's induction algorithm is similar to the CRYS-

TAL algorithm developed by Soderland. Both algo-
rithms rely on uni�cation to build more general extrac-
tion rules. CRYSTAL generalizes an instance rule by
repeatedly unifying it with the most similar rule found
in the pool of training instances. Generalization stops
when either no more similar rules are found or the gen-

eralized rule exceeds a set error tolerance when tested
on the training set. WAVE does not rely on error toler-
ance to control generalization. Instead, WAVE bounds
generalization to uni�cation with siblings in the hier-
archy. CRYSTAL's reliance on an error tolerance pa-
rameter forces retraining if a di�erent recall/precision
trade-o� is desired. Moreover, CRYSTAL is a batch al-
gorithm: it requires the entire set of training instances
to accurately measure the error rates of its generalized
rules.

Experimental Results
Experiments were done to determine WAVE's perfor-
mance relative to CRYSTAL. Comparisons are based
on the metrics recall (R) and precision (P). Let poss
be the number of concept instances available for ex-
traction (possibles), let corr be the number of correct
extractions, and let errs be the number of incorrect ex-
tractions. Then R = corr

poss
and P = corr

corr+errs
. A third

metric, the F-measure (Chinchor 1992), provides a way
to measure overall performance on a concept. This met-
ric is a weighted average of recall and precision:

F =
(�2 + 1:0)� P �R

�2 � P +R

where � is the relative importance of recall to precision
(for all experiments here, � = 1:0, giving equal weight
to recall and precision).
Experiments were conducted in two extraction do-

mains. The �rst is the familiar MUC-4 Latin American
terrorism (LAT) domain. The second is hospital dis-
charge summaries (HDS). Summaries are dictated by
a physician at the end of a patient's hospital stay, and
include the cause of the hospitalization, lab data, diag-
noses, symptoms reported by the patient, past medical
history, and the course of treatment. Target concepts
for extraction include symptoms (both present and ab-
sent) and diagnoses that were ruled-out by the physi-
cian. Results for all concepts were averaged over 10
runs. Training sets from increasing percentages of the
corpus were used to determine learning curves.
Figures 3 (LAT) and 4 (HDS) compare F-measure

performance at an error tolerance of 0.1 (at most 10%
of extractions made by a rule on the training are er-
rors). On LAT, performance is nearly identical except
at 10% training, where CRYSTAL is slightly better. At
very low training levels, CRYSTAL tends to outperform
WAVE on recall: use of error tolerance to bound gener-
alization allows it to create rules that are more general.
On HDS, again performance is nearly identical. Perfor-
mance at higher error tolerances is similar.
The �nal experiment measured the execution speed

of both CRYSTAL and WAVE in a simulated incre-
mental, dynamic application setting. Both algorithms
were given 4,000 instances from the LAT domain in
increments of 100 instances. To run CRYSTAL incre-
mentally, each batch had to be reprocessed along with
each new increment. The total time to process all 40 in-
crements in this fashion was approximately 40 minutes;

0 20 40 60 80 100

% training

0.2

0.4

0.6

0.8

1

F
−

m
ea

su
re

Crystal

Wave

Figure 3: LAT F-measure performance.

20 40 60 80 100

% training

0.2

0.4

0.6

0.8

1

F
−

m
ea

su
re

Crystal

Wave

Figure 4: HDS F-measure performance.

0 1000 2000 3000 4000

of training instances

0

500

1000

1500

2000

2500
cu

m
u

la
ti

v
e

ti
m

e
in

 s
ec

o
n

d
s

Crystal

Wave

Figure 5: A comparison of cumulative execution time
on a single partition.

WAVE took just over 2 minutes. Figure 5 shows the
cumulative execution time at each increment. WAVE
processed the instances in a fraction of the time taken
by CRYSTAL, yet performed as well on F-measure.

Conclusions and Future Work

WAVE is a fully automatic, incremental induction algo-
rithm for learning information extraction rules. Unlike
traditional batch learners, WAVE learns from a stream
of training instances, not a set. WAVE overcomes the
inherent problems of incremental operation by main-
taining a generalization hierarchy of rules. Use of a
hierarchy allows similar rules to be found e�ciently,
provides a natural bound on generalization, enables re-
call/precision trade-o�s without retraining, and speeds
extraction since all rules need not be applied to an in-
stance. Finally, because the reliability of rule predic-
tions are continually updated throughout storage, the
hierarchy can be used for extraction at any time.
WAVE performs as well as CRYSTAL, a related

batch algorithm, in two very di�erent domains. In a
simulated incremental application setting, WAVE is sig-
ni�cantly faster than CRYSTAL because new instances
are simply added to the hierarchy; CRYSTAL needs to
retrain from scratch using the old batch and the new
instances.
Future work will focus on strategies for bounding the

number of rules in a hierarchy. For some training par-
titions, the generalization hierarchy had 90,000 nodes.
The question needing research is when and where to
prune. One model under consideration puts an abso-
lute bound on the number of rules that can be stored
in the hierarchy. If the bound is exceeded, rules are

sorted based on heuristic ratings of their utility and a
su�cient number are pruned. One interesting facet of
this approach is that rule reliability does not enter into
the rating process: rules with low extraction reliability
may still be useful for organization because they par-
tition the rule space well. Rating schemes that keep
the hierarchy balanced and eliminate chains of rules in
which parents di�er little from their descendants will
be explored.

Acknowledgments

This material is based on work supported by the Na-
tional Science Foundation, Library of Congress, and
Department of Commerce under cooperative agreement
number EEC-9209623. Any opinions, �ndings and con-
clusions or recommendations expressed in this material
are those of the author and do not necessarily re
ect
those of the National Science Foundation, Library of
Congress, or Department of Commerce.

References

Chinchor, Nancy. 1992. MUC-4 Evaluation Metrics. In
Proceedings of the Fourth Message Understanding Con-
ference, 22{29. Morgan Kaufmann.
Fisher, D.; Soderland, S.; McCarthy, J.; Feng, F.; and

Lehnert, W. 1996. Description of the Umass System as
Used for MUC-6. In Proceedings of the Sixth Message
Understand Conference, 127-140.
Rilo�, E. 1993. Automatically Constructing a Dictio-

nary for Information Extraction Tasks. In Proceedings
of the Eleventh National Conference on Arti�cial Intel-
ligence, 811{816.
Soderland, S.; Fisher, D.; Aseltine, J.; and Lehnert,

W. 1995. CRYSTAL: Inducing a Conceptual Dictio-
nary. In Proceedings of the Fourteenth International
Joint Conference on Arti�cial Intelligence, 1314{1319.

