Symbolic/Subsymbolic Sentence Analysis: Exploiting the Best of
Two Worlds!

Wendy G. Lehnert
Department of Computer Science
University of Massachusetts
Amherst, MA 01003
413-545-3639

Running Head: Symbolic/Subsymbolic Sentence Analysis

0.1 Introduction

Despite some recent speculations about the changing methodological styles in
artificial intelligence, it is still possible to learn something by writing exploratory
computer programs. This is especially true when a new processing technique
or synthesis of different techniques is being attempted for the first time. In
this spirit, we have designed and implemented a conceptual sentence analyzer,
CIRCUS, which integrates three distinct information processing architectures.

CIRCUS uses (1) a stack-oriented control for syntactic predictions, (2) a
marker-passing design for predictive preference semantics, and (3) numerical
relaxation with lateral inhibition for data-driven preference semantics. Semantic
preferences are therefore realized by two distinct mechanisms: we use marker-
passing for the preferences associated with predictive semantics, and we use
numerical relaxation for the preferences associated with data-driven semantics.
This makes CIRCUS a blend of symbolic processing techniques (for 1 and 2)
and subsymbolic processing techniques (for 3).

The distinction between predictive semantics and data-driven semantics is
not a new one. For the sentence analyzers designed by the “Yale School”, this
distinction is usually described as the difference between predictive or top-douwn
slot-filling versus bottom-up slot insertion (Riesbeck & Schank, 1976; Birnbaum
& Selfridge, 1981; Dyer, 1983; Cullingford, 1986; Lytinen, 1984). Semantically-
oriented sentence analyzers that have evolved from other traditions also ac-
knowledge that the problem of filling existing slots within a conceptual frame is
distinct from the problem of creating and inserting new slots into a frame that

1 Acknowledgements: This research was supported by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval Research under
contract #N00014-87-K-0238, the Office of Naval Research, under a University Research Ini-
tiative Grant, Contract #N00014-86-K-0764 and NSF Presidential Young Investigators Award
NSFIST-8351863.

Symbolic/Subsymbolic Sentence Analysis 2

does not predict such slots. For example, recent work in preference semantics
differentiates noun and verb case information from preposition case information
(Wilks, Huang & Fass, 1985).

To our knowledge, CIRCUS is the first system to characterize predictive
semantics as a purely symbolic process while data-driven semantics is char-
acterized primarily as a subsymbolic process. In this paper we will discuss
some example sentences that illustrate the predictive/data-driven distinction
and show how CIRCUS handles them. We further contend that any sentence
analyzer which does not make a predictive/data-driven distinction must be ei-
ther finessing a large class of problems, or trying to stretch a single processing
mechanism farther than it can reasonably be expected to go.

When viewed in terms of linguistic models that are not process-oriented, we
will see that our predictive/data-driven distinction does not carve up the world
along the same lines as a linguist might. For example, linguists often view
the problem of prepositional phrase attachment (pp-attachment) as a problem
that can be resolved in a purely syntactic manner (Frazier & Fodor, 1979).
When semantic considerations are introduced, they are usually based on lexical
preferences from verbs (Ford, Bresnan & Kaplan, 1981). In CIRCUS we will
see that some pp-attachments are resolved by predictive semantics while others
require data-driven semantics. In other words, some pp-attachment problems
can be solved by standard symbolic methods, while others are best addressed
using subsymbolic techniques.

While we cannot hope to give a full technical description of CIRCUS in this
paper, we will focus on those aspects of CIRCUS which are most interesting
from the perspective of “high-level connectionism,” and hope that our broad
description is sufficient to convey a general sense of the overall system design.

0.2 Syntactic Processing

Over the years there has been much confusion about the status of syntactic
knowledge within conceptual sentence analyzers. Although conceptual sentence
analyzers do not produce syntactic parse trees, it is an overstatement to say
that these systems never use syntax. What they don’t use is a syntactic gram-
mar, but it is nevertheless useful to recognize simple syntactic constituents like
nouns and verbs, etc. The important claim is that syntactic knowledge must
be instrumental to semantic interpretation - not just a means for identifying
syntactic structure alone.

CIRCUS is consistent with this tradition although it is somewhat more prin-
cipled about its organization of syntactic constraints. All syntactic predictions

Symbolic/Subsymbolic Sentence Analysis 3

associated with dictionary items are isolated in the stack-oriented architecture of
CIRCUS, and therefore kept separate from the processes that consider semantic
constraints. This makes it easier to untangle the interactions between syntax
and semantics, and it gives us an obvious advantage in constructing dictionary
definitions.

Although we will not go into the details here, the syntactic processing in
CIRCUS is well documented and available in a popular Al textbook (Schank &
Riesbeck, 1981) where it is described as McELI, a micro version of a conceptual
sentence analyzer designed by Chris Riesbeck (Riesbeck, 1975). Ironically, we
use McELI inside CIRCUS to do nothing but recognize syntactic sentence con-
stituents, and store appropriate sentence fragments inside global buffers that
keep track of constituents like the subject of the sentence, direct and indirect
objects, prepositional phrases, and so forth. The buffers are restricted to sim-
ple syntactic structures with a strongly “local” sense of the sentence: larger
constituents like clauses are not recognized using explicit syntactic buffers.

No attempt is made to resolve all syntactic ambiguities as soon as they
are encountered. Syntactic ambiguities will be handled incrementally when the
marker passing algorithm interacts with McELI and contributes the constraints
it derives from predictive preference semantics. If we see “John gave Mary ...”
we will retain Mary as a possible binding for both the direct object and the
indirect object until more information is made available to us. This wait-and-
see strategy is necessary since many sentences can resolve themselves in more
than one way (“John gave Mary a kiss” vs. “John gave Mary to the sheik”). The
marker passing algorithm described in the next section will generate a semantic
preference which gives us a bias for Mary as an indirect object, but the syntactic
processing of McELI will not relinquish its multiple interpretations unless the
ambiguity can be resolved on the basis of syntactic constraints alone (as would
be the case for “John gave Mary to the sheik”).

To illustrate the syntactic predictions used by McELI, consider the verb “to
give.” In its active form, we can expect this verb to predict (1) a direct object,
(2) a direct object followed by a prepositional phrase using the preposition
“t0,” (3) a prepositional phrase with “to” followed by a direct object, or (4) an
indirect object followed by a direct object. The following sentences illustrate
each possibility:

(1) John gave a book.

(2) John gave a book to Mary.
(3) John gave to Mary a book.
(4) John gave Mary a book.

Symbolic/Subsymbolic Sentence Analysis 4

These predictions are not unique to the verb “to give,” nor do they apply to

all verbs in general. Using the request packet mechanism of McELI, it is easy
to encode these expectations. When an ambiguity can be resolved on the basis
of syntax alone, McELI can handle the resolution without additional help. For
example, in processing (2), McELI will initially fill both the direct object buffer
and the indirect object buffer with the noun phrase “a book.” Three predictions
are active at that point. One prediction expects to see a prepositional phrase
next (as in 2), and another expects to see a second noun phrase (as in 4). If the
first situation is encountered, we empty the indirect object buffer as soon as the
prepositional phrase is recognized. If the second situation arises, we overwrite
the direct object buffer when the second noun phrase is found. If the sentence
terminates (as in 1), we empty the indirect object buffer as before. In any case,
the momentary ambiguity is resolved by combining limited nondeterminancy
with a wait-and-see strategy.

Because the syntactic constituents recognized by McELI are immediately
given to the marker passing algorithm to augment purely semantic constraints
and preferences, we cannot describe the role they play without talking about
marker passing in CIRCUS. To conclude this section, we will merely point out
that while McELI is a severely limited “toy” when viewed as a complete concep-
tual sentence analyzer, we have found McELI to be quite capable when regarded
as a subsystem that is expected to do nothing more than recognize simple syn-
tactic constituents in a deterministic manner. The stack-oriented architecture
of McELI is not overwhelmed by this task, and it is easy to encode appropriate
dictionary definitions for McELI that describe the simple syntactic predictions
needed by CIRCUS.

0.3 Predictive Preference Semantics

The predictive semantics module (PSM) in CIRCUS is responsible for filling
slots in pre-defined semantic case frames. CIRCUS makes no commitment to
a particular style of semantic representation, although we favor the “deep” se-
mantic case frames of the sort found in conceptual dependency (Schank, 1975)
as opposed to lexical case frames (Simmons, 1984). The more complex case
frames are usually associated with verbs, but simple case frames can also be
associated with nouns. Semantic dictionary entries for lexical items must list
multiple frames to differentiate multiple word senses, although specific word
senses can be effectively ignored by excluding them from the dictionary. When
two or more word senses are present to compete with one another, preference
semantics must try to resolve this competition and determine which word sense
is most likely in the context of the given sentence.

Symbolic/Subsymbolic Sentence Analysis 5

PSM interacts with McELI each time a new syntactic constituent is recog-
nized by McELI. Control is passed from McELI to PSM and then back again to
McELI. While PSM is active, two primary tasks are accomplished: (1) network
construction, and (2) marker passing. If a case frame satisfies certain instantia-
tion criteria, PSM will also “freeze” that case frame with its assigned slot fillers
for future access as a part of the conceptual meaning representation CIRCUS
derives for the sentence. We will now talk about each of these tasks in more
detail.

0.3.1 Network Construction

Each network constructed by PSM consists of three types of nodes: (1) syntac-
tic nodes, (2) concept nodes, and (3) semantic feature nodes. Different types
of information are passed between different node combinations, and different
links are used to channel different kinds of information. The basic goal of the
network is to activate concept nodes which will contribute to the conceptual
interpretation of the sentence. The network is constructed with the following
restrictions:

1. syntactic nodes can only be connected to semantic feature nodes
(1a) these may be connected by a soft constraint link, or
(1b) these may be connected by a hard constraint link

2. concept nodes can only be connected to semantic feature nodes
(2a) these may be connected by a slot-filling link, or
(2b) these may be connected by an enablement link

3. multiple syntactic nodes can be connected to a given semantic feature
node

4. multiple semantic feature nodes can be connected to a given syntactic
node

5. multiple semantic feature nodes can be connected to a given concept node

6. multiple concept nodes can be connected to a given semantic feature node

Definitions describing specific concept nodes and semantic feature nodes
must be provided to PSM before sentence analysis begins. All semantic dic-
tionary entries are defined in terms of these two node types. Concept nodes are
added to the network when a lexical item in the sentence contains a dictionary
definition for a concept node, although the presence of such a dictionary entry
is not a sufficient condition by itself for network expansion. Semantic feature

Symbolic/Subsymbolic Sentence Analysis 6

nodes are added to the network whenever a newly activated concept node refer-
ences them in its definition. Syntactic nodes are added to the network whenever
McELI assigns a sentence fragment to a constituent buffer.

To get a more concrete sense of what is going on during network construction,
let’s take a look at a specific example. We will take as our example the network
constructed by PSM in order to process “John gave Mary to the sheik.” After we
have described the network construction for this sentence, we will then discuss
the marker passing algorithm that uses this network.

The complete network generated by “John gave Mary to the sheik” appears
in figure 1. To see how this is incrementally constructed, we’ll describe each
partial construction as control moves back and forth between McELI and PSM.

1 enablement link

2 soft constraint link
3 hard constraint link
4 slot filling link

FN1: HUMAN?

FN2: INANIMATE?
FN3: HUMAN?

2 FN4: *V* = "to give"?

Figure 1: The PSM Network for "to give".

At this point McELI hypothesizes a subject for its sentence and places
“John” in the *S* buffer. When control passes to PSM, we construct a sin-
gle syntactic node marked *S* in figure 1. The value associated with this node
is the sentence fragment “John.” PSM also consults its semantic dictionary to
see if there are any concept node entries under John, but finds nothing.

Symbolic/Subsymbolic Sentence Analysis 7

[2] John gave ...

MCcELI places “gave” in the *V* buffer, and a syntactic node *V* is created
for the network. This time, when PSM consults its semantic dictionary, it finds
a single concept node under the verb “gave.”? This concept node describes an
ATRANS event® which appears as ATRANS1 in figure 1. The concept node
definition ATRANSI is designed to drive the bulk of our network construction
from here on through the end of the sentence. For now, a semantic feature
node FN1 is added to the network with a soft constraint link between *S* and
FN1, and slot-filling links between FN1 and ATRANS1. We also add a second
semantic feature node FN4, with a soft constraint link between *V* and FN4,
and an enablement link between ATRANS1 and FN4. We will discuss the utility
of these semantic feature nodes when we describe the marker passing algorithm.

[3] John gave Mary ...

McELI now passes two buffers to PSM, both of which contain the sentence
fragment “Mary.” The *DO* buffer hypothesizes that Mary may be a direct
object, and the *IO* buffer hypothesizes that Mary may be an indirect object.
PSM creates two corresponding syntactic nodes, marked *DO* and *IO* in
figure 1. PSM then consults the definition for ATRANSI1 and adds the semantic
nodes FN2 and FN3 to the network, using a soft constraint link to join *DO*
to FN2, a slot-filling link to join FN2 to ATRANSI, a soft constraint link to
join *IO* to FN3, and a slot-filling link to join FN3 to ATRANSI1. Finally,
PSM consults its semantic dictionary to see if there is a concept node definition
associated with Mary, but it finds none.

[4] John gave Mary to the sheik.

McELI now passes a *PP* buffer to PSM which contains the sentence frag-
ment “to the sheik.” PSM builds a syntactic node marked *PP* in figure 1. PSM
also consults the definition for ATRANS1 and determines that *PP* should be
joined to FN3 using both a soft constraint link and a hard constraint link. PSM
also consults its semantic dictionary to see if there is a concept node definition
associated with “sheik” but it finds nothing.

Each time control passes to PSM, we complete whatever network construc-
tion is needed, and then execute the marker passing algorithm. We will now
describe marker passing in PSM.

2This concept node definition should really appear under an entry for the infinitive “to
give” but we don’t have any morphology routines hooked up to CIRCUS at the present
time.

3ATRANS is a primitive act in conceptual dependency (Schank, 1975).

Symbolic/Subsymbolic Sentence Analysis 8

0.3.2 Marker Passing

In order for the marker passing algorithm to run, we must have at least one
concept node present in the network. For our example sentence, this first occurs
after we’ve processed “John gave ...” As described above, the network at that
time consisted of *S*, *V* FN1, FN4, and ATRANS]1. In general, information
flows from the syntactic nodes to the semantic feature nodes, and from the
semantic feature nodes to the concept nodes. We can think of this spreading
activation as a parallel process since there are no order effects or time-sensitive
dependencies during marker passing.

When a semantic feature node completes a path from a syntactic node to a
concept node, the semantic feature node acts as a semantic constraint checker
to see if the concept frame associated with the concept node should fill a slot, or
maybe remove itself from the network altogether. Slot filling links are used to
channel potential slot fillers, and enablement links are used to sustain concept
nodes in the network.

In our example, FN1 is designed to check the head of the subject noun phrase
found in *S*, and determine whether or not this noun refers to a human. This
determination is made in accordance with whatever memory model is available
to CIRCUS, a problem we will discuss later in section 5. For now, we will simply
assume that a feature node can pass a value of 1 or 0, depending on whether its
test returns true or false. We will refer to these numbers as semantic preference
values. In this case, John tests out as a human, and FN1 will pass both the
slot filler, John, to ATRANSI along with its semantic preference value of 1. We
should note that each slot-filling link into ATRANSI1 also specifies the targeted
slot for our slot-filler. In this case, we have a pair of slots specifying the actor
and the source for the ATRANS frame (the small letters circled at the end of
each slot-filling link indicate which slot is being targeted by that link).

The other semantic feature node, FN4, is joined to ATRANS1 by an enable-
ment link which operates to confirm the viability of the concept node as the
sentence progresses. In our case, FN4 simply checks that the contents of *V* is
a form of the verb “to give,” a condition that will test true as long as “gave” is
the only verb we encounter in the sentence. In general, enablement conditions
are used to dismiss concept frames at any time after they are triggered by dic-
tionary look-up, usually after additional constraints within the sentence appear
and prohibit the possibility of a given word sense.

At this point in the sentence (John gave ...) the marker passing algorithm
passes a confirmation on the enablement condition to ATRANSI1, and semantic
preference values yielding a sum of 2 to the ATRANS concept frame on the
basis of John as both an actor and source for the ATRANS. We therefore keep
ATRANS]I in the network, and assign it an activation level of 2/4 (we divide

Symbolic/Subsymbolic Sentence Analysis 9

by 4 because there are 4 variable slots in the ATRANS frame: actor, object,
source, and recipient).

The following concept has activation level .5

event = ATRANS
actor = JOHN
source = JOHN

By the time we reach “John gave Mary ...” we have added two more syntactic
nodes, *DO* and *IO*, and two more semantic feature nodes, FN2 and FN3.
FN2 checks to see if the direct object is an inanimate object, and FN3 checks
to see if the indirect object is a human. Since Mary is bound to both *DO* and
IO, FN2 fails and FN3 succeeds. FN2 then passes Mary to ATRANS1 as a
candidate for the object slot with a preference value of 0, and FN3 passes Mary
to ATRANSI as a candidate for the recipient slot with a preference value of 1.
Because these preference values are interpreted as soft constraints (the semantic
feature nodes received their potential slot fillers via soft constraint links), the
ATRANS frame receives both slot fillers, and adds Mary to the ATRANS frame
as both an object and a recipient. However, PSM marks the object slot with
a flag to indicate that this slot filler violates a semantic preference, and the
activation level rises only to .75, indicating that all is not well as far as the
frame instantiation is concerned.

The following concept has activation level .75

event = ATRANS

actor = JOHN

object = MARY < << semantic violation
source = JOHN

recipient = MARY

When the sentence is completed (John gave Mary to the sheik) we have the
complete network at our disposal, and the marker passing algorithm completes
its frame instantiation using ATRANS1. The only addition to the network is
a syntactic node, *PP*, and this node is joined to FN3 via a soft constraint
link and a hard constraint link. Given a prepositional phrase to consider, FN3
can now pass new information on to ATRANSI1. First recall that McELI will

Symbolic/Subsymbolic Sentence Analysis 10

now empty the *IO* buffer that feeds the syntactic node so that *IO* no longer
points to Mary. The only channel feeding information to FN3 are now the
links joining FN3 to *PP*. The hard constraint link requires that *PP* hold
a prepositional phrase using the preposition “to.” If this condition is not met,
FN3 will not pass any potential slot fillers on to ATRANSI on the basis of *PP*.
Since we pass this test, we then consider the soft constraint link, which asks only
that the object of the prepositional phrase be human. As a soft constraint, this
test could fail without blocking the slot filler (just as we saw for FN2 above),
but this time, the sheik qualifies and is passed to ATRANSI as a slot filler for
the recipient slot with a preference value of 1.

The following concept has activation level .75

event = ATRANS

actor = JOHN

object = MARY < << semantic violation
source = JOHN

recipient = SHEIK

At this point, we are done with our sentence and we can take our semantic
meaning representation from ATRANSI, the only concept node in the network.
We have an ATRANS event with actor = John, object = Mary, source = John,
and recipient — the sheik. Note that the activation level is still only .75, since
the slot filler for the ATRANS object still fails to meet the semantic preference
associated with that slot (Mary is not an inanimate object). When PSM returns
this instantiation of the ATRANS frame as the conceptual representation for
our sentence, it flags this slot filler as one which violated a semantic preference.

0.3.3 Resolving Competing Word Senses using Predictive
Semantics

Before we move on to data-driven semantics, we should point out that some
word sense ambiguities can be resolved on the basis of predictive semantics
alone. For example, suppose we wanted to understand the sentence “John gave
Mary a kiss” as well as “John gave Mary to the sheik.” Now we no longer want
to interpret the event as an ATRANS event. (No transfer of possession occurs
here as it did with the sheik). For lack of a better decomposition, we’ll simply
characterize it as a kissing event.

Symbolic/Subsymbolic Sentence Analysis 11

However, both sentences start out with the same verb, and we can’t reject
ATRANSI as a valid concept node on the basis of any hard enablements. In
fact, ATRANSI1 will receive the same amount of activation that it had for “John
gave Mary to the sheik” since only the object of the ATRANS frame violates its
semantic preference for an inanimate object. Indeed, if our dictionary recognized
the possibility of a chocolate kiss, we could give ATRANS1 an activation level of
1 and be perfectly confident about this interpretation. Barring, for the moment,
the idea of a candy kiss*, we can only reject an ATRANSI interpretation with
activation level = .75 if some competing concept node can come up with a higher
activation level.

Figure 2 shows how a competing concept node can be brought in to establish
an interpretation of the sentence based on a kissing event. In this case, the KISS1
concept node resides in the semantic dictionary under the noun definition for
“kiss.” This is the appropriate place to index a possible kissing event, since we
don’t want to predict a possible kiss every time we see the verb “to give.”

John gave a kiss in a box to Mary in the car.

Figure 2: Data-Driven PP-Attachment.

Note that KISS1 introduces only one new semantic feature node, FN5. The
rest of its links hook up to nodes already present in the the network because of
ATRANSI1. KISS1 has two enablement links from FN4 and FN5, and two slot-
filling links from FN1 and FN3. It shares the same hard and soft constraints used
by ATRANSI to fill its actor and recipient slots, so it can tap into those parts
of the network without additional effort. For enablements, it simply requires

We will come back to this problem of lexical ambiguity in section 4.1.

Symbolic/Subsymbolic Sentence Analysis 12

the verb “to give” (FN4) and a direct object which is an event (FN5). Since
the first enablement is shared with ATRANSI1, we can once again tap into the
existing network structures without further construction. Only FN5 and the
two links connecting it need to be added when KISS1 is added to the network.

Now the marker passing algorithm passes slot fillers to both ATRANS1 and
KISS1, in which case ATRANSI arrives at an activation level of 3/4 (we have
a preference violation on the object slot), and KISS1 determines that John can
be an actor and Mary can be a recipient without any preference violations,
yielding a concept node activation level of 1. A simple comparison of these
activation levels will then tell us which of the surviving concept nodes holds the
best interpretation of the sentence.

0.3.4 Resolving Competing Predictions Across Nested Case
Frames

In the last section we saw how multiple concept nodes could compete with
one another to settle a word sense ambiguity. In such competitive situations
we want to see one concept node win so only one can participate in the final
interpretation of the sentence. But it is also possible for multiple concept nodes
to create nested case frame instantiations in a final meaning representation.
Then we want to see multiple concept nodes cooperate with one another and
stay out of each other’s way as much as possible. To see how these cooperative
situations arise, consider the following sentences:

[S1] John gave Mary the key to the city.
[S2] John gave the key to the city to Mary.

Here we have the ATRANSI1 concept node attempting to instantiate an
ATRANS frame, while a second concept node associated with the concept of a
key is also trying to fill a simple frame describing a key and the object the key
opens. To make matters even worse, we’ll assume that the KEY concept node
has a semantic preference on its single slot (the opens-slot) that the slot filler
be something which has a lock, a condition not met by cities. For both S1 and
S2, we want to see the KEY case frame instantiated despite the fact that its
slot filler does not satisfy the semantic preference associated with that frame.
Both S1 and S2 should produce the following meaning representation:

Symbolic/Subsymbolic Sentence Analysis

event = ATRANS

actor = JOHN
object =

13

header = KEY
opens = CITY <<< semantic violation

source = JOHN

recipient = MARY

We will use the ATRANS1 concept node described before, and we can easily
define KEY to fill its opens-slot on the basis of a prepositional phrase with the
preposition “to” (a hard constraint), and a head noun which can have a lock (a
soft constraint). In S1, the ATRANS frame will be fully instantiated as soon as
we get to “the key.” We need only complete the KEY frame instantiation when

the final prepositional phrase arrives.

To recognize the nested case frame relation, we need to add one new link
type to the network grammar described in section 3.1. We will now allow a
case-frame value link to connect syntactic nodes to concept nodes whenever a
noun sense triggers a concept node definition. Figure 3 shows the PSM network

needed to handle S1 and S2.

2 2
FN1 FN3
4 4
s) (A 4 2] |3
TRANSIXR “PP*
@ 1 FN1:
FN4 I N
4 FN3:
2 FN4:
FNé6:

CFN2S o=

Figure 3: A PSM Network for Nested

1 enablement link

2 soft constraint link
3 hard constraint link
4 slot filling link

5 case frame value link

HUMAN?

: INANIMATE?

HUMAN?
V = "to give"?
HAS-LOCK?

Case Frames.

Symbolic/Subsymbolic Sentence Analysis 14

A trickier situation arises with S2. Now we have to watch out for the fact
the the *PP* buffer is going to get overwritten by McELI when the second
prepositional phrase is encountered. This is fine for the ATRANS frame, which
should be picking up Mary as its recipient anyway. But it is not so good for
the KEY frame, which will lose its pathway to the city and fail to pick up the
correct slot filler.

PSM handles this by putting a time limitation on each concept frame to make
sure that slot filling constituents which are too far removed from a potential
concept node are not considered by that concept node. Distance is measured by
a clock that ticks off the syntactic constituents recognized by McELI. For simple
concept nodes triggered by nouns, this heuristic is very effective. For example,
the KEY frame should never look past the syntactic constituent immediately
following the noun “key.”

When the time limitation for a concept node is up, a mechanism freezes the
current frame instantiation, and procedures that access the concept node from
that time on will only see the frozen case frame instantiation no matter what
else is happening in the PSM network. In this way, it is possible to overwrite
the information within a syntactic node and still retain old information within
a case frame instantiation as needed.

Now let’s look at another trouble maker:
[S3] John gave the key to the city.

In this sentence, we have both the ATRANS case frame and the KEY case
frame actively competing for the second prepositional phrase, but neither of
them finds their semantic preference satisfied. Who wins? Normally, we look at
the semantic preferences to resolve this sort of competition. If John gave the key
to the car, we’d want to see the KEY frame win. If John gave the key to Mary,
we’d want to see the ATRANS frame win. Because CIRCUS keeps track of
slot fillers that violate preferences, it is possible to resolve situations where two
frames grab the same constituent, but only one is semantically satisfied. In cases
like S3, we allow CIRCUS to remain uncertain about the outcome. Without a
strong semantic preference to guide us, S3 remains semantically ambiguous and
no further attempt is made by CIRCUS to resolve the problem.

Note that a “key to the city” is just as anomalous as “a key to the chair”
if we stick to the KEY frame definition given above. If we had another word
sense for key which encoded the ceremonial notion of a symbolic key, we could
set up a competition between the multiple concept nodes associated with keys,
and resolve the problem that way. This explains why people reading this sen-
tence do have a preference which would swing their interpretation toward some
ceremonial understanding of the event in question. CIRCUS can arrive at the
same conclusion, but only if we give it adequate knowledge about multiple word

Symbolic/Subsymbolic Sentence Analysis 15

SEnses.

Notice that each of these examples described a problem with prepositional
phrase attachment. When two concept frames compete for the same preposi-
tional phrase, we are looking at competing attachment points for the preposi-
tional phrase. The ambiguity in S3 arises from the fact that “to the city” might
be attached to either the verb “gave” or the noun “key.” In these instances,
CIRCUS must rely on predictive semantics alone to make judgment about the
best attachment. Given an adequate dictionary of multiple word sense defini-
tions and appropriate semantic preferences within those case frame definitions,
we can expect predictive semantics to suffice for these attachment problems.
However, other attachment problems associated with prepositional phrases can-
not be resolved on the basis of predictive semantics alone. We will consider
these problems in the next section.

0.4 Data-Driven Preference Semantics

Each of the following sentences contains a prepositional phrase that cannot be
interpreted on the basis of predictive semantics alone. Any verb or noun can act
as the attachment point for a prepositional phrase describing a locational setting
(in the car or in a box). If we treated these modifiers in terms of predicted slots,
we would have to duplicate a very large number of predictions for every case
frame in our dictionary.

[S4] John gave the key to Mary in the car.

[S5] John gave Mary the key to the car in the car.
[S6] John gave the key to the city to Mary in the car.
[S7] John gave the key to the car to Mary in the city.
[S8] John gave the key in @ boz.

[S9] John gave the key to the city in a boz to Mary.
[S10] John gave the key to the city to Mary in a boz.
[S11] John gave the key to the car to Mary in a boz.

Because these prepositional phrases operate with such sweeping generality,
it makes sense to interpret them in a more bottom-up fashion, dealing with each
instance only as it appears without top-down expectations. The final preposi-
tional phrase in each of S4-S7 attaches to the verb, crossing 2 or 3 intermediate
constituents to make the attachment. In S8-S11 we see a prepositional phrase
attaching to a noun, with 0, 1, or 2 intermediate constituents intervening. No-

Symbolic/Subsymbolic Sentence Analysis 16

tice that “in a box” could conceivably attach to “gave” if you are willing to
imagine a box large enough to contain John and Mary. But if your prototypical
box is somewhat smaller, you will prefer a descriptor that limits its scope to the
location of the key.

Although these examples all illustrate attachment points that coincide with
conceptual frames (ATRANS1 and KEY), any noun can qualify as a possible
attachment point regardless of whether or not it carries a case frame definition
(John gave Mary a necklace in a box). In general, any noun or verb preceding
a prepositional phrase can operate as a potential attachment point for that
prepositional phrase, as long as we don’t cross certain clause boundaries (like
the main verb). To determine the best attachment point, some mechanism must
be invoked that can weigh all the different possibilities and come up with the best
interpretation. The constraints that inform this decision are primarily semantic
constraints, although we will discuss a syntactic constraint for prepositional
phrase attachment in section 4.3.

0.4.1 The Lateral Inhibition Network

To resolve the problem of bottom-up prepositional phrase attachment, we will
first assume that any prepositional phrase claimed by a case frame slot pre-
diction does not require further analysis, even if the slot filler violates a soft
constraint as described in the previous section. The network relaxation mech-
anism we are about to describe only applies to prepositional phrases that are
left uninterpreted by predictive semantics.

When such a prepositional phrase is encountered, we construct a network
whose nodes are joined by both activation links and inhibitory links. To illus-
trate the network construction, consider the following sentence:

[S12] John gave a kiss in a box to Mary in the car.

Here we have two prepositional phrases that are unresolved by predictive
semantics: “in a box,” and “in the car.” To make matters even more interesting,
we will supply our dictionary with two word senses for the lexical item “kiss.”
KISSg will be an event involving an actor and a recipient. KISSg will be a
piece of chocolate candy wrapped in tinfoil.

Each node in the relaxation network corresponds to (1) an attachment point,
(2) a head noun in a prepositional phrase, or (3) a preposition. In fact, we have
distinct nodes for each separate word sense associated with (1), (2), or (3),
but our discussion of S12 will only incorporate multiple word senses for the
kiss (two instances of attachment points). Moreover, copies of prepositional
word sense nodes will be made for each possible attachment point associated

Symbolic/Subsymbolic Sentence Analysis 17

with a given prepositional phrase. We will therefore refer to nodes of type (3)
as relational nodes, since they each describe a relational interpretation between
the head noun and a potential attachment point. It follows that if multiple word
senses are associated with a given attachment point, separate relational nodes
are created for each targeted word sense as well (KISSg and KISS¢ illustrate
this situation).

John gave a kiss in a box to Mary in the car.

D

Figure 4: Data-Driven PP-Attachment.

Figure 4 shows the relaxation network associated with S12. We can see from
this diagram that “in a box” has three possible attachments associated with it:
one pointing to ATRANSI, one pointing to KISSg, and one pointing to KISS¢.
“In the car” has five possible attachment points: the box, ATRANSI, KISSg,
KISS¢, and Mary. Notice that this semantic interpretation of the attachment
problem does not correspond perfectly to the syntactic notion of prepositional
phrase attachment. While KISSg and KISS¢ are both triggered by the noun
phrase “a kiss,” KISSg serves to disambiguate the sense in which “gave” should
be understood. Giving a kiss is not like giving a book. So an attachment to
KISSg is really a syntactic attachment to the verb “gave” rather than the noun
“kiss.” However, we are not interested in building a syntactic parse tree: our
only goal is to find the right case frame for a bottom-up slot insertion. Since
our network is created with semantic entities rather than syntactic ones, the no-
tion of a purely syntactic prepositional phrase attachment need not concern us.
Syntactic attachments are rather beside the point, and they can be effectively

Symbolic/Subsymbolic Sentence Analysis 18

bypassed without any trouble. We are treating prepositional phrase attachment
as a strictly semantic problem with purely semantic solutions.

In figure 4 we have shown an inhibitory link between KISSg and KISS¢,
indicating that these two nodes are mutually exclusive and in competition with
one another. All other links shown in figure 4 are activation links. In fact, there
are more inhibitory links in this network than we have attempted to show in our
figure. Each relational node associated with a given prepositional phrase must
inhibit every other relational node created by the same prepositional phrase
since all of these relational nodes signify competing interpretations for the given
phrase. We therefore have 3 inhibitory links (not shown) connecting the 3 re-
lational nodes associated with “in a box,” and 10 inhibitory links (not shown)
connecting the 5 relational nodes associated with “in the car.” Once this relax-
ation network has been constructed, we can execute our relaxation algorithm.

Each node in the relaxation network is initialized with a value between 0 and
10. Only the relational nodes can be initialized with non-zero values. The initial
value given to a relational node is determined by the available memory model
and will be discussed in section 5. For now, we will assume that the following
conditional is used to compute initialization values to describe the relation “X
in Y”:

IF X is an event and Y is bigger than a person,

THEN return 8,

ELSE IF X is not an event and X is not bigger than Y,
THEN return 4,
ELSE return 0.

Figure 4 shows how the relational nodes are initialized using the above rule.
Having initialized the network nodes, we can now apply a simple relaxation
algorithm (Feldman & Ballard, 1982) until the network stabilizes and each node
settles down to a steady (or near-steady) value. The exact algorithm we use in
CIRCUS is the same one we have used elsewhere (Lehnert, 1987a) so we will
not bother to go into further detail about that here.

Once the network has stabilized, we can interpret the resulting node values
to resolve three separate problems. One relational node should beat out the
competition to attach each of the two prepositional phrases, and either KISSg
or KISS¢ should win to resolve the lexical/conceptual ambiguity introduced by
“a kiss”.

Notice that the ambiguity of the kiss can only be resolved by understanding
the constraints associated with “in a box.” If this prepositional phrase can attach

Symbolic/Subsymbolic Sentence Analysis 19

to KISS¢, but not KISSg, then we will receive a preference for KISS¢c over
KISSg. If the box is big enough to allow either attachment, we will receive no
preference for one sense of kiss over the other. “John gave a kiss to Mary in the
car,” leaves us much more undecided about the kiss ambiguity than S12 does.

Although it may not be obvious from the initial node values in figure 4, the
relaxation algorithm will eventually stabilize with attachments that describe a
piece of candy in a box, and an ATRANS event taking place in the car. The
final output from CIRCUS will therefore be:

event = ATRANS
actor = JOHN
object = KISS¢
[relational-link = IN(BOX)]
source = JOHN
recipient = MARY
[relational-link = IN(CAR)]

In the next section we will explain how results from the relaxation algorithm
are used by PSM in order to produce this representation.

0.4.2 Interactions between Predictive and Data-Driven Se-
mantics

Although the data-driven processing described in the last section is useful in
resolving certain ambiguities associated with multiple word senses and preposi-
tional phrase attachment, we must still coordinate these results with the pref-
erences and results obtained by predictive semantics. A dynamic interaction
between predictive semantics and data-driven semantics occurs if the relaxation
algorithm is invoked after each syntactic constituent is recognized. As we saw
earlier, control first passes to predictive semantics which produces its case frame
instantiations and preferences without the benefit of any data-driven processing.
Then the relaxation network is constructed on the basis of whatever we have
seen so far, and the relaxation algorithm passes its results back to predictive
semantics in case any data-driven problem resolutions can influence a case frame
instantiation or competition between case frames.

There are three ways that data-driven semantics can influence and augment
predictive semantics. These are:

Symbolic/Subsymbolic Sentence Analysis 20

(1) Bottom-up slot insertion
(2) Word sense preferences for predicted slot fillers
(3)Enabling conditions for predictive case frames

Bottom-up slot insertion is the simplest example of the data-driven contri-
butions. When a prepositional phrase is not recognized by predictive semantics,
data-driven semantics must attempt to find the best relational interpretation
for the prepositional phrase. Once that relation has been identified, we simply
insert a new slot inside the appropriate case frame which describes the relation
in question. For example, if John gave Mary a book on Tuesday, we would insert
the slot (relational-link = TIME (TUESDAY)) inside the ATRANSI instantia-
tion.

Although word sense preferences are addressed by the soft constraints of
predictive semantics, we can also benefit from the preferences of data-driven
semantics when multiple word senses are involved. In S12 we saw how KISS¢
will beat out KISSg as a result of the relaxation algorithm after “in the box” is
encountered. Although ATRANSI had a soft preference for KISS¢ over KISSg,
we were not prepared to dismiss KISSg on the basis of predictive semantics alone
(remember that “John gave Mary a kiss in the car” remains ambiguous without
the constraints from “in a box” to resolve the word sense of kiss). But once
data-driven semantics has given us a strong preference for KISS¢ over KISSg,
we can now go back to predictive semantics with the message that KISSg should
not be considered as a possible slot filler for any case frames that might have
wanted it. In S12, this will suppress an interpretation where ATRANSI1 allows
KISSg to operate as a possible object slot filler despite the preference violation
that occurs when an event is pushed into the ATRANS object slot.

The final way in which data-driven results can influence predictive semantics
is through the enabling conditions associated with predictive case frames. This
is how the competition between KISSg and ATRANSI is actually resolved in
S12. When the KISSg word sense for “a kiss” is dismissed by the relaxation
algorithm, the enabling condition for the KISS1 case frame will fail to be met
since the direct object of “gave” can no longer describe an event. Once a
case frame enablement fails, the case frame is removed from consideration by
predictive semantics, leaving only surviving case frames as viable contenders for
the final interpretation.

Because enabling conditions for predictive case frames may be sensitive to
timing effects as we move through the sentence, this last form of interaction
between data-driven semantics and predictive semantics makes it desirable to
run the relaxation algorithm periodically as we move through the sentence. If
we wait until the end of the sentence to bring in data-driven effects, there is a
danger of missing some failed enabling condition which was detectable for only
a limited time as we moved through the sentence (most likely because McELI

Symbolic/Subsymbolic Sentence Analysis 21

overwrites its syntactic buffers). This suggests that the two processes must
operate in a roughly parallel fashion, with frequent communication between
them.

It is also important to note that in every interaction described here, informa-
tion always flows from the data-driven component to the predictive component.
We never see information from predictive semantics influencing the relaxation
algorithm. For this reason, we could say that predictive semantics operates
in a strictly top-down fashion, while data-driven semantics is truly bottom-
up. Bottom-up information can influence top-down processing, but top-down
processing cannot influence a process that is purely bottom-up. This suggests
an important claim about the relationship between symbolic and subsymbolic
processes which sounds quite plausible in general: Symbolic processes can be
influenced by subsymbolic processes, but the converse does not hold. If we as-
sume that symbolic processes are basically serial while subsymbolic processes
are essentially parallel, we have a corollary to this claim: serial processes can
be influenced by parallel processing, but the converse does not hold. It is inter-
esting to note that experimental reaction time results on lexical access appear
to be completely consistent with this general rule of serial/parallel interaction
(Swinney, 1984).

0.4.3 The No-Crossing-of-Branches Rule

At this point we have outlined the basic mechanism of data-driven processing,
but we have not argued for the necessity of network relaxation. If S12 were our
only example of data-driven processing, it would seem that simple heuristics
based on symbolic memory interactions should suffice. In this section we will
present a more compelling argument for the necessity of relaxation algorithms
in data-driven processing.

The most striking argument seems to arise from a syntactic constraint called
the no-crossing-of-branches rule. This rule accounts for the dissonance that most
people experience when reading the following sentence:

[S13] The man saw the woman with binoculars in a green dress.

Most people who read this sentence conclude that (1) the man was using
binoculars and the woman was wearing a green dress, but the sentence is poorly
worded, or (2) the woman was carrying binoculars and wearing a green dress.
The first interpretation is based on semantic preferences which strongly suggest
that the binoculars should be an instrument for seeing, and the woman must
be the one wearing the green dress. Any discomfort with the wording of the
sentence under this interpretation is due to the fact that this semantically valid
interpretation violates a syntactic rule about pp-attachment.

Symbolic/Subsymbolic Sentence Analysis 22

The no-crossing-of-branches rule goes into effect when there are multiple
prepositional phrases in a sentence. It says that no two attachments can cross
each other in going from prepositional phrase to attachment point. (1) vi-
olates the no-crossing-of-branches rule because the semantically-preferred pp-
attachments for this sentence do cross one another:

The man saw the woman with binoculars in a green dress.

The second reading (2) of S13 is syntactically more acceptable, but perhaps
a bit bothersome semantically since the instrumentality of binoculars to the act
of seeing is so strong that we are reluctant to dismiss this attachment option.
Unfortunately, the only way that the man can be using the binoculars without
violating the no-crossing-of-branches rule is if the man or the binoculars wear
the dress. Few readers are willing to entertain these possibilities as acceptable
interpretations for the sentence.

As we can see, the no-crossing-of-branches rule is a soft constraint. It can
be violated if semantic constraints are strong enough to force an interpretation
that renders the sentence poorly worded. But in the absence of any such com-
pelling constraints, the no-crossing-of-branches rule normally contributes to a
productive unraveling of multiple pp-attachments.

It has been argued that the no-crossing of branches constraint can only be
realized by a sentence analyzer which “performs complete syntactic processing of
its input” (Tait, 1983). The reasoning here starts with the observation that no-
crossing is a non-local constraint because a prepositional phrase can cross over
an arbitrarily large segment of the sentence to reach its intended attachment
point. It follows that any process which can detect a no-crossing violation
must access a global representation of the sentence structure (e.g. a syntactic
parse tree) in order to exploit the no-crossing constraint. Semantically-oriented
analyzers which “deal only with local word-order effects” [op. cit.] cannot hope
to apply no-crossing to pp-attachment routines because the no-crossing rule is
properly concerned with global word order effects.

Although the claim that localized word orders cannot handle essentially
global problems is quite correct, it is not true that global constraints like the no-
crossing rule require complete syntactic processing. In CIRCUS we have imple-
mented the no-crossing-of-branches rule without any need for a syntactic parse
tree or syntactic structures beyond those described in section 2 (which are highly
localized). All we need is the lateral inhibition network described in section 4.1,
and a time stamp on each syntactic constituent associated with prepositional
phrases and attachment points. If we maintain pointers from the nodes in the
lateral inhibition network to the time-stamped syntactic constituents underly-
ing them, we can use this simple time stamp to recognize no-crossing violations.

Symbolic/Subsymbolic Sentence Analysis 23

The time stamp will give us an adequate sense of the global relationships we
need to consider, and no one would characterize a set of time-stamped sentence
constituents as much of a syntactic parse tree.

To see how the no-crossing rule is implemented in CIRCUS, consider figure
5 where we have drawn a picture of the lateral inhibition network needed to
process S13. Here we see two competing word senses for the preposition “with”
and one word sense for the preposition “in.” (A serious dictionary would provide
us with many more word senses for these prepositions but our picture would
only be muddied up by more attachment nodes). Each of the two word senses
for “with” generates two attachment nodes and the single word sense for “in”
generates three attachment nodes. (Note that figure 5 does not show all of the
attachment nodes associated with “with.” Once again, we are only trying to
keep the picture simple.)

The man saw the woman with binoculars in a green dress.

Figure 5: The No-Crossing-of-Branches Rule.

Each attachment node is associated with a unique prepositional phrase and
a unique attachment point. By consulting the time stamps for each pair of
constituents affiliated with an attachment node, we can specify a time interval
which describes the scope of this particular attachment node. The longer the
time interval, the more distance we have between the prepositional phrase and
its potential attachment point.

Symbolic/Subsymbolic Sentence Analysis 24

Assume two attachment nodes are given the time intervals [a,b] and [c,d],
where a < b, ¢ < d, and a < c. Then these two attachment nodes will violate the
no-crossing rule if and only if ¢ < b < d. Under no other condition will we see a
violation of the no-crossing rule. It is easy to check the pairwise combinations of
attachment nodes in our network to determine if any pairs qualify as a violation
of the rule. If we find any such pairs, we can then incorporate this information
into our lateral inhibition network by adding an inhibitory link between the two
offending attachment nodes to indicate that these nodes are mutually exclusive
and incompatible with one another.

This inhibitory link will operate as a soft constraint in the sense that a stable
network could conceivably settle out with maximal activation on two attachment
nodes that cross. In such a case we would simply accept the sentence interpre-
tation that violated the no-crossing constraint, presumably because semantic
considerations overwhelmed the no-crossing rule. In any case, the no-crossing
rule is implemented using the same data-driven technique for soft-constraints
that we use to arbitrate competing word senses and attachment points. Syn-
tactic constraints and semantic preferences then operate within the relaxation
algorithm on equal footing, without any opportunity for one constraint type to
dominate over the other. The various constraints reinforce or compete with one
another in a truly heterogeneous manner until a globally optimal interpretation
of word senses and pp-attachments is obtained.

Most sentence analyzers which implement the no-crossing rule recognize it
as a hard constraint and cannot balance it against semantic considerations as
we can with CIRCUS. Since people are willing to violate the no-crossing rule
some of the time, but not all the time, it seems obvious that a flexible mecha-
nism is needed to utilize the no-crossing constraint. We believe that numerical
relaxation is extremely convenient for problems of this type. Moreover, any
purely symbolic technique for the no-crossing rule will be necessarily brittle
and arbitrary in trying to balance syntactic sensitivities against semantic pref-
erences. The subsymbolic method of network relaxation is far better suited to
the resolution of multiple soft constraints.

0.5 Underlying Memory Models

Our overview of CIRCUS has been dominated by descriptions of control struc-
tures. We have described interactions between syntactic analysis and the marker
passing algorithm, as well as interactions between the marker passing algorithm
and numerical relaxation. We have seen how to construct appropriate networks
for both marker passing and numerical relaxation, and we have looked at spe-
cific sentences to illustrate all of these ideas. Up until now, we have managed
to finesse as much as possible the question of underlying memory structures,

Symbolic/Subsymbolic Sentence Analysis 25

although we have explained where memory interactions are needed.

There are three basic types of memory that drive the sentence analysis of
CIRCUS. They are:

(1) A Lexical Dictionary (LD)
(2) Structured Relational Preferences (SRP)
(3) Unstructured Relational Preferences (URP)

The LD is used during syntactic analysis and network construction for the
marker passing algorithm, SRP are used during marker passing, and URP are
used for numerical relaxation. We will describe the role played by each form of
memory, and indicate where we stand with respect to our current implementa-
tion of CIRCUS.

Of the three memory modules, the LD is the most straightforward and least
interesting aspect of memory. Here is where we set up associations between
words and word senses, word senses and case frame definitions, word senses and
parts of speech. Syntactic predictions are associated with any word sense that
assumes a semantic case frame interpretation. In general, there must be at least
as many syntactic predictions for a given word sense as there are case frame
slots for that word sense.

The machinery for handling dictionary information is fully implemented in
CIRCUS and completely adequate for the sorts of sentences we’ve been dis-
cussing in this paper as well as others.> We do not mean to suggest that there
are no interesting problems in designing LD definitions. One must always make
hard decisions about primitive decomposition within a case frame representa-
tion, where to draw the line between two distinct word senses, and whether or
not a sentence representation should strive to be free of inferences. But all of
these problems are primarily problems in representation rather than memory
per se. So let us leave the LD and concentrate on the remaining two memory
structures needed to drive CIRCUS.

0.5.1 Structured Relational Preferences

Structured Relational Preferences (SRP) refer to constraints that aid in the iden-
tification of case frame slot fillers. These are generally soft constraints, since
they can be violated if syntactic considerations force a case frame instantia-
tion that contradicts normal semantic expectations. Most predictive case-frame

5For example, CIRCUS can simulate garden path effects for reduced relative clause sen-
tences by tracking competing case frame instantiations (via concept node activation levels)

within PSM.

Symbolic/Subsymbolic Sentence Analysis 26

parsers utilize some form of a slot constraint mechanism, and the standard so-
lution involves semantic feature checking. Indeed, simple semantic features are
what CIRCUS is currently using as well.

Each word sense in the LD is associated with a semantic feature vector,
and the feature nodes in PSM normally do nothing more than check for the
presence of a given semantic feature. We could improve on the current solution
a bit by introducing an inheritance tree to organize our semantic features, but
there are other problems with semantic features that transcend the question of
how cleverly we organize them.

For example, consider the problem of instantiating a case frame for eating.
“John ate a hamburger,” is fine as long as John is a human, but “John ate some
hay,” should signal a semantic violation. Then again, eating hay is fine if you’re
a horse, so we can’t hope to nail the preference on the basis of the object slot
filler alone. Here we need to consider both the agent and the object together in
order to determine whether or not the object qualifies as food for that particular
agent. A simple semantic feature called “food” is not sufficient since the agent
doing the eating must be taken into consideration as well.

At this point we have to decide whether or not we are primarily interested
in building a practical system for some limited domain, or a system that makes
theoretical claims about psychological validity. For the sake of building prac-
tical systems, simple semantic features are largely adequate. But if we want
to make claims about the correct model for SRP in general, we are more in-
clined to invoke a model of episodic memory structuring. There are a variety
of possibilities here, but they must all incorporate some capability for learning
from experience. Some recent attempts in this direction have made tentative
steps toward outlining an episodic model of SRP, including the DMAP system
(Riesbeck & Martin, 1986), and ELAN (Lehnert, 1987b). We can also imagine
a connectionist strategy using a learning technique like back propagation and
distributed representations, so we see an opportunity here for either symbolic
or subsymbolic SRP models.

By moving away from semantic discriminations into episodic ones, we can
set up preferences that may be extremely specific, but nevertheless valid. For
example, if we know a particular individual named John, and we also know
that John is a vegetarian, we should be concerned to hear that John is eating a
hamburger. This constitutes a violation of episodic expectations. If our expe-
rience never goes beyond knowledge about one person named John, SRP may
effectively take John to be a good representative of all humans. The issue of
dynamic generalizations and appropriate levels of abstraction become important
for any SRP model that operates on the basis of episodic memory. It necessarily
follows that any episodic model of SRP must incorporate a model of similarity-
based (inductive) learning as well. The earliest strategy for handling SRP as

Symbolic/Subsymbolic Sentence Analysis 27

a dynamic episodic memory structure was illustrated by the IPP system which
read stories about terrorism and created generalizations based on those stories
(Lebowitz, 1983a,b).

At the present time, connectionist models for inductive learning are cur-
rently limited to simple associations or a single relational predicate with two
arguments. If a connectionist network could scale up to an arbitrary set of rela-
tional predicates with arbitrarily many arguments, we would have the basis for
an episodic memory that yields case frame slot-filling preferences. SRP therefore
provides us with an opportunity to experiment with high-level connectionism,
but the demands of SRP seem to push techniques like back propagation beyond
their reasonable limits in terms of training requirements.

0.5.2 TUnstructured Relational Predicates

Unstructured Relational Predicates (URP) are needed by the relaxation algo-
rithm in CIRCUS to provide initial activation levels for relational nodes repre-
senting pp-attachments. Although a relational predicate is, in fact, a structured
entity, we are calling the memory behind these predicates unstructured because
the preferences needed to handle relational node initialization are better de-
scribed in terms of semantic knowledge instead of episodic knowledge. At some
early stage of development, a child might answer the question “Can a person
be in a car?” by thinking of specific people getting into a specific car, but this
type of knowledge must generalize very quickly to levels of abstraction that
drop their episodic origins. In general, we will assume that event-oriented mem-
ory remains essentially episodic, while relational memory quickly evolves into
semantic memory organization even if its earliest roots are episodic. These as-
sumptions deserve substantial discussion, but we will not digress here to pursue
it.

Since data-driven preference semantics requires knowledge about relational
constraints, URP is properly addressed by semantic memory models rather than
episodic ones. In section 4.1 we saw how CIRCUS could invoke a simplistic
conditional statement for the purpose of initializing our relaxation network. For
limited applications, this primitive notion of URP might prove to be adequate.
However, any extensive application that requires data-driven semantics would
probably encounter a difficult obstacle if we have to scale-up by tuning these
conditionals in order to handle a large class of attachment interactions.

To address this issue of scaling up, we have been investigating the utility
of back propagation as a technique for training a semantic memory model to
provide an URP capability. Using examples from a corpus of scientific papers,
we’ve trained networks by presenting triples representing noun-preposition-noun
combinations (e.g. “temperature in Fahrenheit”) along with one of two possible

Symbolic/Subsymbolic Sentence Analysis 28

outcome values: “plausible” or “implausible.” Each network consists of 32 input
units (16 binary features for each noun), 12 hidden units, and one output unit.
We train a separate network for each preposition, but the binary features used
for encoding input nouns remain fixed across all networks. Once training is
completed, we can produce correct plausibility judgments for 94% of the training
corpus, and 81% of a novel test set. A more detailed account of this experiment
can be found in (Wermter, 1989).

Although our hit rate on novel test items may not appear to be overwhelm-
ingly impressive, it is important to note that the novel test set contains nouns
which were not necessarily present in the training corpus. To add a new noun to
URP, we need only structure its representation in terms of the 16-feature vec-
tor. No additional knowledge is required since the backprop network has already
encoded the necessary knowledge for making relational plausibility judgments.
Substantial training is required to add a new preposition to URP, but in general,
we can expect to have more nouns than prepositions, so this requirement does
not seem unreasonable. If we can improve the hit rate on novel test items by
either restructuring our feature vector or opting for more training, it appears
that back propagation may be an effective strategy for scaling up substantial
URP memories.

0.6 Conclusions

In this paper we have concentrated on the basic architecture of CIRCUS in
an effort to show how (1) stack-oriented syntactic analysis, (2) marker passing
for predictive preference semantics, and (3) numerical relaxation for data-driven
preference semantics, can operate together in order to take full advantage of each
processing strategy. We have also seen how one strictly syntactic constraint is
easily handled by the numeric relaxation algorithm, suggesting that syntactic
and semantic concerns are not always best served by separate processing strate-
gies (despite our general tendency with CIRCUS to do just that). It might be
better to characterize the three modules of CIRCUS in terms of (1) local syn-
tactic constraints, (2) local semantic constraints, and (3) global constraints of
either a syntactic or semantic nature. This somewhat more accurate portrayal
of the CIRCUS processing modules suggests a useful pattern for understanding
the respective roles of symbolic and subsymbolic information processing.

In section 4.2 we talked about the top-down/bottom-up relationship between
predictive preference semantics and data-driven preference semantics. We fur-
ther pointed out that the top-down component of predictive preference seman-
tics was symbolic and serial, while the bottom-up component of data-driven
preference semantics was subsymbolic and parallel. Now we can also add a lo-
cal/global edge to this same boundary line, so the following dichotomies emerge:

Symbolic/Subsymbolic Sentence Analysis 29

predictive vs. data-driven
top-down vs. bottom-up
symbolic vs. subsymbolic
serial vs. parallel
local vs. global

These contrasting dichotomies are familiar to anyone who has been watch-
ing the AI/connectionist debates in recent years, but it is unusual to find a
single system where both aspects of each dichotomy are present and operating
in concert. In general, Al models tend to be situated in the left column, while
connectionist models are more comfortable with the right side. CIRCUS rep-
resents a powerful synthesis of symbolic and subsymbolic techniques, utilizing
properties from both columns as needed to handle a variety of problems.

Inevitably, people like to understand the claims associated with system im-
plementations. Is the model being proposed psychologically valid, physiologi-
cally motivated, or just a clever hack? More importantly, for any claim being
made, which parts of the system implementation are meant to be taken seriously,
and which should be dismissed as necessary kludges?

In trying to answer these questions about CIRCUS, we must first admit
that the exploratory aspect of CIRCUS is a synthesis of many ideas — some
new and some old. We were primarily interested in designing a conceptual
sentence analyzer that did a few things better than other conceptual sentence
analyzers. Ideas were pulled from a variety of places, including the connectionist
literature on sentence analysis (especially Waltz & Pollack, 1985), but there
was no one theoretical motivation behind the design of CIRCUS. It was, and
remains, largely an engineering effort. As such, we believe that CIRCUS has
been very successful insofar as it is currently being used to provide natural
language processing capabilities for other research projects (Wermter, 1989;
Lehnert, et. al., 1989).

On the other hand, CIRCUS is fully consistent with a number of theoretical
claims. Some of these claims are specific to theories about natural language
processing, while others are more general in nature. To researchers intent on
the pursuit of “high-level connectionism,” we are in a position to make one
very general claim about the application of subsymbolic techniques to processes
associated with “high-level” cognition. Namely, there is no reason to believe
that a single information processing mechanism can be held accountable for
processes as complex as sentence analysis.

Symbolic/Subsymbolic Sentence Analysis 30

Indeed, we have seen many attempts to reduce sentence analysis to a sin-
gle computational mechanism fail time and time again. The list is long and
thoroughly researched: augmented transition networks, semantic grammars,
chart parsers, production systems, expectation-based systems, and more re-
cently, marker passing, back propagation, and spreading activation algorithms.
In each case, we see a mechanism with obvious shortcomings and apparently
insurmountable problems. In each case, one or two aspects of the problem at
hand are addressed effectively and attractively, while everything else remains
beyond the scope of the current model. And still the hope lives on that some-
day we will manage to find the one correct mechanism. This desire to reduce a
complex phenomenon to a simple explanation is understandable from the per-
spectives of elegant science and aesthetic sensibility, but it should not preclude
from consideration the possibility that such explanations are simply not in the
cards.

Cognitive processes must not be confused with the phenomena of physics or
other natural sciences. Cognition is a biological entity which has evolved over a
long period of time as an adaptive mechanism. Any system that takes a million
years to develop is not likely to be elegant or optimal. On the contrary, we have
every reason to believe that there are multiple layers of information processing
mechanisms, each contributing to specific aspects of the problem at hand, much
as the gross anatomy of the brain layers newer structures over older ones.

At the workshop where CIRCUS was first presented, one participant de-
scribed CIRCUS as an example of a “grandiose architecture.” The import of
this characterization seemed clear: no one prefers to go after solutions of this
complexity - surely we can do better by persisting in the search for the (one)
right mechanism. And indeed, there are lessons to be learned by pushing a
single mechanism as far as it will go. But many of these lessons are clearly
at odds with the idea of a single processing mechanism. Some aspects of lan-
guage processing are characterized by memory limitations and serial processing
effects (limited syntactic embedding, garden-pathing on certain reduced-relative
clauses, the general inability to handle sentences of arbitrary syntactic complex-
ity), while other effects can only be explained in terms of parallel processing
(lexical priming phenomena are the most compelling examples here). If we take
all the available evidence into consideration, the hope for a single explanatory
mechanism seems truly quixotic.

Moreover, we have no reason to feel defeated by solutions that require
“grandiose architectures.” On the contrary, any computational model of nat-
ural language processing that remains extensible and consistent with human
information processing capabilities must be welcomed, even if some aesthetic
sensibilities need to be sacrificed along the way. So CIRCUS is presented here
without apology, but with some defensiveness. We are not too proud to propose
a grandiose architecture for natural language processing: natural language is a

Symbolic/Subsymbolic Sentence Analysis 31

complicated problem. When we have competing explanations of equal power
and breadth, we will happily invoke Occam’s razor and allow simplicity to dom-
inate. Until then, it is better to worry about extensibility first, and aesthetics
later. If “high-level connectionism” is going to flourish and succeed, this shift
in research priorities may be a crucial first step.

0.7 References

Birnbaum, L. & Selfridge, M. (1981). Conceptual Analysis of Natural Language.
In R.C. Schank & C. Riesbeck, (Eds.), Inside Computer Understanding, pp.
318-353. Hillsdale, N.J.: Lawrence Erlbaum Associates.

Cullingford, R. (1986). Natural Language Processing, Totowa, New Jersey:
Rowman & Littlefield.

Dyer, M. (1983). In-Depth Understanding: A Computer Model of Integrated
Processing for Narrative Comprehension. Cambridge, MA: MIT Press.

Feldman, J.A. and Ballard, D.H. (1982). Connectionist Models and Their
Properties. Cognitive Science (Vol. 6, no. 3. pp. 205-254).

Ford, M., Bresnan, J. & Kaplan, R. (1981). A Competence-Based The-
ory of Syntactic Closure. In J. Bresnan (Ed.), The Mental Representation of
Grammatical Relations. Cambridge, MA: MIT Press.

Frazier, L. & Fodor, J. (1979). The Sausage Machine: A New Two-State
Parsing Model. Cognition (Vol. 6, pp. 191-325).

Lebowitz, M. (1983a). Memory-Based Parsing. Journal of Artificial Intelli-
gence, (Vol. 21, No. 4, pp. 363-404.).

Lebowitz, M. (1983b). Generalization From Natural Language Text. Cog-
nitive Science, (Vol. 7, No. 1, pp. 1-40).

Lehnert, W., Cardie, C., Riloff, E., Swaminathan, K. &. Wermter, S. (1989).
Knowledge Acquisition from Research Documents. Submitted to the Eleventh
International Joint Conference on Artificial Intelligence.

Lehnert, W.G. (1987a). Case-Based Problem Solving with a Large Knowl-
edge Base of Learned Cases. Proceedings of the Sizth National Conference on
Artificial Intelligence Seattle, WA.

Lehnert, W.G. (1987b). Learning to Integrate Syntax and Semantics. In
Proceedings of the Fourth International Workshop on Machine Learning, Irvine,

CA.

Symbolic/Subsymbolic Sentence Analysis 32

Lytinen, S. (1984). Frame Selection in Parsing. In Proceedings of the Na-
tional Conference on Artificial Intelligence. Austin, Texas.

Riesbeck, C. (1975). Conceptual Analysis. In R.C. Schank, (Ed.) Concep-
tual Information Processing. Amsterdam: North Holland.

Riesbeck, C. & Martin, C. (1986). Direct Memory Access Parsing. In C.
Riesbeck and J. Kolodner (Eds.), Ezperience, Memory and Reasoning, Hillsdale,
NIJ: Lawrence Erlbaum.

Riesbeck, C., & Schank, R. (1976). Expectation-Based Analysis of Sentences
in Context. Research Report #78. New Haven, CT: Department of Computer
Science, Yale University.

Schank, R.D. (Ed.) (1975). Conceptual Information Processing. Amster-
dam: North Holland.

Schank, R.D. and Riesbeck, C. (1981). Inside Computer Understanding:
Five Programs Plus Miniatures. Hillsdale, NJ: Lawrence Erlbaum.

Swinney, D. (1884). Theoretical and Methodological Issues in Cognitive
Science: A Psycholinguistic Perspective. In Kintsch, Miller & Polson (Eds.),
Method and Tactics in Cognitive Science.

Tait, J.I. (1983). Semantics-directed Parsing. In K. Sparck Jones & Y.
Wilks (Eds.), Automatic Natural Language Parsing (pp. 169-177). New York,
NY: John Wiley & Sons.

Waltz, D., & Pollack, J. (1985). Massively Parallel Parsing: A Strongly
Interactive Model of Natural Language Interpretation. In Cognitive Science,
(Vol 9, No. 1).

Wermter, S. (1989). Integration of Semantic and Syntactic Constraints for
Structural Noun Phrase Disambuation. Submitted to the Eleventh International
Joint Conference on Artificial Intelligence.

Wilks, Y., Huang, X. & Fass, D. (1885). Syntax, Preference and Right At-
tachment. Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, (pp. 779-784).

