
Automatically Constructing a Dictionary for Information

Extraction Tasks
Ellen Riloff

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
riloff@cs.umass.edu

Proceedings of the Eleventh National Conference on Artificial Intelligence, 1993, AAAI Press / MIT Press, pages 811–816.

Abstract

Knowledge-based natural language processing systems have
achieved good success with certain tasks but they are of-
ten criticized because they depend on a domain-specific
dictionary that requires a great deal of manual knowledge
engineering. This knowledge engineering bottleneck makes
knowledge-based NLP systems impractical for real-world
applications because they cannot be easily scaled up or ported
to new domains. In response to this problem, we devel-
oped a system called AutoSlog that automatically builds a
domain-specific dictionary of concepts for extracting infor-
mation from text. Using AutoSlog, we constructed a dictio-
nary for the domain of terrorist event descriptions in only 5
person-hours. We then compared the AutoSlog dictionary
with a hand-crafted dictionary that was built by two highly
skilled graduate students and required approximately 1500
person-hours of effort. We evaluated the two dictionaries
using two blind test sets of 100 texts each. Overall, the
AutoSlog dictionary achieved 98% of the performance of
the hand-crafted dictionary. On the first test set, the Auto-
Slog dictionary obtained 96.3% of the performance of the
hand-crafted dictionary. On the second test set, the over-
all scores were virtually indistinguishable with the AutoSlog
dictionary achieving 99.7% of the performance of the hand-
crafted dictionary.

Introduction

Knowledge-based natural language processing (NLP) sys-
tems have demonstrated strong performance for informa-
tion extraction tasks in limited domains [Lehnert and Sund-
heim, 1991; MUC-4 Proceedings, 1992]. But enthusiasm
for their success is often tempered by real-world concerns
about portability and scalability. Knowledge-based NLP
systems depend on a domain-specific dictionary that must
be carefully constructed for each domain. Building this dic-
tionary is typically a time-consuming and tedious process
that requires many person-hours of effort by highly-skilled
people who have extensive experience with the system. Dic-
tionary construction is therefore a major knowledge engi-
neering bottleneck that needs to be addressed in order for

information extraction systems to be portable and practical
for real-world applications.

We have developed a program called AutoSlog that au-
tomatically constructs a domain-specific dictionary for in-
formation extraction. Given a training corpus, AutoSlog
proposes a set of dictionary entries that are capable of ex-
tracting the desired information from the training texts. If
the training corpus is representative of the targeted texts, the
dictionary created by AutoSlog will achieve strong perfor-
mance for information extraction from novel texts. Given
a training set from the MUC-4 corpus, AutoSlog created a
dictionary for the domain of terrorist events that achieved
98% of the performance of a hand-crafted dictionary on 2
blind test sets. We estimate that the hand-crafted diction-
ary required approximately 1500 person-hours to build. In
contrast, the AutoSlog dictionary was constructed in only
5 person-hours. Furthermore, constructing a dictionary
by hand requires a great deal of training and experience
whereas a dictionary can be constructed using AutoSlog
with only minimal training.

We will begin with an overview of the informationextrac-
tion task and the MUC-4 performance evaluation that moti-
vated this work. Next, we will describe AutoSlog, explain
how it proposes dictionary entries for a domain, and show
examples of dictionary definitions that were constructed by
AutoSlog. Finally, we will present empirical results that
demonstrate AutoSlog’s success at automatically creating a
dictionary for the domain of terrorist event descriptions.

Information Extraction from Text

Extracting information from text is a challenging task for
natural language processing researchers as well as a key
problem for many real-world applications. In the last few
years, the NLP community has made substantial progress
in developing systems that can achieve good performance
on information extraction tasks for limited domains. As op-
posed to in-depth natural language processing, information
extraction is a more focused and goal-oriented task. For
example, the MUC-4 task was to extract information about
terrorist events, such as the names of perpetrators, victims,
instruments, etc.

Our approach to informationextraction is based on a tech-
nique called selective concept extraction. Selective concept

extraction is a form of text skimming that selectively pro-
cesses relevant text while effectively ignoring surrounding
text that is thought to be irrelevant to the domain. The work
presented here is based on a conceptual sentence analyzer
called CIRCUS [Lehnert, 1990].

To extract information from text, CIRCUS relies on a
domain-specific dictionary of concept nodes. A concept
node is essentially a case frame that is triggered by a lexical
item and activated in a specific linguistic context. Each
concept node definition contains a set of enabling condi-
tions which are constraints that must be satisfied in order
for the concept node to be activated. For example, our
dictionary for the terrorism domain contains a concept node
called $kidnap-passive$ that extracts informationabout kid-
napping events. This concept node is triggered by the word
“kidnapped” and has enabling conditions that allow it to
be activated only in the context of a passive construction.
As a result, this concept node is activated by phrases such
as “was kidnapped”, “were kidnapped”, etc. Similarly, the
dictionary contains a second concept node called $kidnap-
active$ which is also triggered by the word “kidnapped”
but has enabling conditions that allow it to be activated only
in the context of an active construction, such as “terrorists
kidnapped the mayor”.

In addition, each concept node definition contains a set of
slots to extract information from the surrounding context.
In the terrorism domain, concept nodes have slots for perpe-
trators, victims, instruments, etc. Each slot has a syntactic
expectation and a set of hard and soft constraints for its
filler. The syntactic expectation specifies where the filler is
expected to be found in the linguistic context. For example,
$kidnap-passive$ contains a victim slot that expects its filler
to be found as the subject of the clause, as in “the mayor was
kidnapped”. The slot constraints are selectional restrictions
for the slot filler. The hard constraints must be satisfied in
order for the slot to be filled, however the soft constraints
suggest semantic preferences for the slot filler so the slot
may be filled even if a soft constraint is violated.

Given a sentence as input, CIRCUS generates a set of
instantiated concept nodes as its output. If multiple trigger-
ing words appear in a sentence then CIRCUS can generate
multiple concept nodes for that sentence. However, if no
triggering words are found in a sentence then CIRCUS will
generate no output for that sentence.

The concept node dictionary is at the heart of selective
concept extraction. Since concept nodes are CIRCUS’ only
output for a text, a good concept node dictionary is crucial
for effective information extraction. The UMass/MUC-
4 system [Lehnert et al., 1992a] used 2 dictionaries: a
part-of-speech lexicon containing 5436 lexical definitions,
including semantic features for domain-specific words and
a dictionary of 389 concept node definitions for the domain
of terrorist event descriptions. The concept node dictionary
was manually constructed by 2 graduate students who had
extensive experience with CIRCUS and we estimate that it
required approximately 1500 person-hours of effort to build.

The MUC-4 Task and Corpus

In 1992, the natural language processing group at the Uni-
versity of Massachusetts participated in the Fourth Message
Understanding Conference (MUC-4). MUC-4 was a com-
petitive performance evaluation sponsored by DARPA to
evaluate the state-of-the-art in text analysis systems. Sev-
enteen sites from both industry and academia participated in
MUC-4. The task was to extract information about terror-
ist events in Latin America from newswire articles. Given
a text, each system was required to fill out a template for
each terrorist event described in the text. If the text de-
scribed multiple terrorist events, then one template had to
be completed for each event. If the text did not mention any
terrorist events, then no templates needed to be filled out.

A template is essentially a large case frame with a set of
pre-defined slots for each piece of information that should be
extracted from the text. For example, the MUC-4 templates
contained slots for perpetrators, human targets, physical
targets, etc. A training corpus of 1500 texts and instantiated
templates (answer keys) for each text were made available to
the participants for development purposes. The texts were
selected by keyword search from a database of newswire
articles. Althougheach text contained a keyword associated
with terrorism, only about half of the texts contained a
specific reference to a relevant terrorist incident.

Behind the Design of AutoSlog

Two observations were central to the design of AutoSlog.
The first observation is that news reports follow certain
stylistic conventions. In particular, the most important facts
about a news event are typically reported during the ini-
tial event description. Details and secondary information
are described later. It follows that the first reference to a
major component of an event (e.g., a victim or perpetra-
tor) usually occurs in a sentence that describes the event.
For example, a story about a kidnapping of a diplomat will
probably mention that the diplomat was kidnapped before
it reports secondary information about the diplomat’s fam-
ily, etc. This observation is key to the design of AutoSlog.
AutoSlog operates under the assumption that the first refer-
ence to a targeted piece of information is most likely where
the relationship between that information and the event is
made explicit.

Once we have identified the first sentence that contains
a specific piece of information, we must determine which
words or phrases should activate a concept node to ex-
tract the information. The second key observation behind
AutoSlog is that the immediate linguistic context surround-
ing the targeted information usually contains the words or
phrases that describe its role in the event. For example,
consider the sentence “A U.S. diplomat was kidnapped by
FMLN guerrillas today”. This sentence contains two impor-
tant pieces of information about the kidnapping: the victim
(“U.S. diplomat”) and the perpetrator (“FMLN guerrillas”).
In both cases, the word “kidnapped” is the key word that
relates them to the kidnapping event. In its passive form,
we expect the subject of the verb “kidnapped” to be a victim
and we expect the prepositional phrase beginning with “by”

to contain a perpetrator. The word “kidnapped” specifies
the roles of the people in the kidnapping and is therefore the
most appropriate word to trigger a concept node.

AutoSlog relies on a small set of heuristics to determine
which words and phrases are likely to activate useful con-
cept nodes. In the next section, we will describe these
heuristics and explain how AutoSlog generates complete
concept node definitions.

Automated Dictionary Construction

Given a set of training texts and their associated answer
keys, AutoSlog proposes a set of concept node definitions
that are capable of extracting the information in the answer
keys from the texts. Since the concept node definitions
are general in nature, we expect that many of them will be
useful for extracting information from novel texts as well.
The algorithm for constructing concept node definitions is
as follows. Given a targeted piece of information as a
string from a template, AutoSlog finds the first sentence
in the text that contains the string. This step is based on
the observation noted earlier that the first reference to an
object is likely to be the place where it is related to the
event. The sentence is then handed over to CIRCUS which
generates a conceptual analysis of the sentence. Using this
analysis, AutoSlog identifies the first clause in the sentence
that contains the string. A set of heuristics are applied to
the clause to suggest a good conceptual anchor point for a
concept node definition. If none of the heuristics is satisfied
then AutoSlog searches for the next sentence in the text
that contains the targeted information and the process is
repeated.

The conceptual anchor point heuristics are the most im-
portant part of AutoSlog. A conceptual anchor point is a
word that should activate a concept; in CIRCUS, this is
a triggering word. Each heuristic looks for a specific lin-
guistic pattern in the clause surrounding the targeted string.
The linguistic pattern represents a phrase or set of phrases
that are likely to be good for activating a concept node. If
a heuristic successfully identifies its pattern in the clause
then it generates two things: (1) a conceptual anchor point
and (2) a set of enabling conditions to recognize the com-
plete pattern. For example, suppose AutoSlog is given
the clause “the diplomat was kidnapped” along with “the
diplomat” as the targeted string. The string appears as the
subject of the clause and is followed by a passive verb “kid-
napped” so a heuristic that recognizes the pattern <subject>
passive-verb is satisfied. The heuristic returns the word
“kidnapped” as the conceptual anchor point along with en-
abling conditions that require a passive construction.

To build the actual concept node definition, the concep-
tual anchor point is used as its triggering word and the
enabling conditions are included to ensure that the concept
node is activated only in response to the desired linguistic
pattern. For the example above, the final concept node will
be activated by phrases such as “was kidnapped”, “were
kidnapped”, “have been kidnapped”, etc.

The current version of AutoSlog contains 13 heuristics,
each designed to recognize a specific linguistic pattern.

These patterns are shown below, along with examples that
illustrate how they might be found in a text. The bracketed
item shows the syntactic constituent where the string was
found which is used for the slot expectation (<dobj> is the
direct object and <np> is the noun phrase followinga prepo-
sition). In the examples on the right, the bracketed item is a
slot name that might be associated with the filler (e.g., the
subject is a victim). The underlined word is the conceptual
anchor point that is used as the triggering word.

Linguistic Pattern Example

�
subject ✁ passive-verb

�
victim ✁ was murdered�

subject ✁ active-verb
�

perpetrator ✁ bombed�
subject ✁ verb infinitive

�
perpetrator ✁ attempted to kill�

subject ✁ auxiliary noun
�

victim ✁ was victim

passive-verb
�

dobj ✁
✂

killed
�

victim ✁
active-verb

�
dobj ✁ bombed

�
target ✁

infinitive
�

dobj ✁ to kill
�

victim ✁
verb infinitive

�
dobj ✁ threatened to attack

�
target ✁

gerund
�

dobj ✁ killing
�

victim ✁
noun auxiliary

�
dobj ✁ fatality was

�
victim ✁

noun prep
�

np ✁ bomb against
�

target ✁
active-verb prep

�
np ✁ killed with

�
instrument ✁

passive-verb prep
�

np ✁ was aimed at
�

target ✁

Several additional parts of a concept node definition must
be specified: a slot to extract the information

✄
, hard and soft

constraints for the slot, and a type. The syntactic constituent
in which the string was found is used for the slot expectation.
In the previous example, the string was found as the subject
of the clause so the concept node is defined with a slot that
expects its filler to be the subject of the clause.

The name of the slot (e.g., victim) comes from the tem-
plate slot where the information was originally found. In
order to generate domain-dependent concept nodes, Auto-
Slog requires three domain specifications. One of these
specifications is a set of mappings from template slots to
concept node slots. For example, information found in the
human target slot of a template maps to a victim slot in a
concept node. The second set of domain specifications are
hard and soft constraints for each type of concept node slot,
for example constraints to specify a legitimate victim.

Each concept node also has a type. Most concept nodes
accept the event types that are found in the template (e.g.,
bombing, kidnapping, etc.) but sometimes we want to use
special types. The third set of domain specifications are
mappings from template types to concept node types. In
general, if the targeted information was found in a kidnap-
ping template then we use “kidnapping” as the concept node
type. However, for the terrorism domain we used special
types for information from the perpetrator and instrument
template slots because perpetrators and instruments often

✂
In principle, passive verbs should not have objects. However,

we included this pattern because CIRCUS occasionally confused
active and passive constructions.☎

In principle, concept nodes can have multiple slots to extract
multiple pieces of information. However, all of the concept nodes
generated by AutoSlog have only a single slot.

appear in sentences that do not describe the nature of the
event (e.g., “The FMLN claimed responsibility” could refer
to a bombing, kidnapping, etc.).

Sample Concept Node Definitions

To illustrate how this whole process comes together, we
will show some examples of concept node definitions gen-
erated by AutoSlog. Figure 1 shows a relatively simple
concept node definition that is activated by phrases such as
“was bombed”, “were bombed”, etc. AutoSlog created this
definition in response to the input string “public buildings”
which was found in the physical target slot of a bombing
template from text DEV-MUC4-0657. Figure 1 shows the
first sentence in the text that contains the string “public
buildings”. When CIRCUS analyzed the sentence, it iden-
tified “public buildings” as the subject of the first clause.
The heuristic for the pattern <subject> passive-verb then
generated this concept node using the word “bombed” as its
triggering word along with enabling conditions that require
a passive construction. The concept node contains a single
variable slot

✆
which expects its filler to be the subject of

the clause (*S*) and labels it as a target because the string
came from the physical target template slot. The constraints
for physical targets are pulled in from the domain specifica-
tions. Finally, the concept node is given the type bombing
because the input string came from a bombing template.

Id: DEV-MUC4-0657 Slot filler: “public buildings”
Sentence: (in la oroya, junin department, in the central peruvian
mountain range, public buildings were bombed and a car-bomb

was detonated.)

CONCEPT NODE
Name: target-subject-passive-verb-bombed
Trigger: bombed
Variable Slots: (target (*S* 1))
Constraints: (class phys-target *S*)
Constant Slots: (type bombing)
Enabling Conditions: ((passive))

Figure 1: A good concept node definition

Figure 2 shows an example of a good concept node that
has more complicated enabling conditions. In this case,
CIRCUS found the targeted string “guerrillas” as the sub-
ject of the first clause but this time a different heuristic
fired. The heuristic for the pattern <subject> verb infini-
tive matched the phrase “threatened to murder” and gener-
ated a concept node with the word “murder” as its trigger
combined with enabling conditions that require the preced-
ing words “threatened to” where “threatened” is in an active
construction. The concept node has a slot that expects its
filler to be the subject of the clause and expects it to be a
perpetrator (because the slot filler came from a perpetrator

✝
Variable slots are slots that extract information. Constant slots

have pre-defined values that are used by AutoSlog only to specify
the concept node type.

template slot). The constraints associated with perpetra-
tors are incorporated and the concept node is assigned the
type “perpetrator” because our domain specifications map
the perpetrator template slots to perpetrator types in con-
cept nodes. Note that this concept node does not extract
the direct object of “threatened to murder” as a victim. We
would need a separate concept node definition to pick up
the victim.

Id: DEV-MUC4-0071 Slot filler: “guerrillas”
Sentence: (the salvadoran guerrillas on mar 12 89, today,

threatened to murder individuals involved in the mar 19 88
presidential elections if they do not resign from their posts.)

CONCEPT NODE
Name: perpetrator-subject-verb-infinitive-threatened-to-murder
Trigger: murder
Variable Slots: (perpetrator (*S* 1))
Constraints: (class perpetrator *S*)
Constant Slots: (type perpetrator)
Enabling Conditions: ((active)

(trigger-preceded-by? ’to ’threatened))

Figure 2: Another good concept node definition

Although the preceding definitions were clearly useful
for the domain of terrorism, many of the definitions that
AutoSlog generates are of dubious quality. Figure 3 shows
an example of a bad definition. AutoSlog finds the input
string, “gilberto molasco”, as the direct object of the first
clause and constructs a concept node that is triggered by the
word “took” as an active verb. The concept node expects
a victim as the direct object and has the type kidnapping.
Although this concept node is appropriate for this sentence,
in general we do not want to generate a kidnapping concept
node every time we see the word “took”.

Id: DEV-MUC4-1192 Slot filler: “gilberto molasco”
Sentence: (they took 2-year-old gilberto molasco, son of

patricio rodriguez, and 17-year-old andres argueta, son of
emimesto argueta.)

CONCEPT NODE
Name: victim-active-verb-dobj-took
Trigger: took
Variable Slots: (victim (*DOBJ* 1))
Constraints: (class victim *DOBJ*)
Constant Slots: (type kidnapping)
Enabling Conditions: ((active))

Figure 3: A bad concept node definition

AutoSlog generates bad definitions for many reasons,
such as (a) when a sentence contains the targeted string
but does not describe the event (i.e., our first observation
mentioned earlier does not hold), (b) when a heuristic pro-
poses the wrong conceptual anchor point or (c) when CIR-
CUS incorrectly analyzes the sentence. These potentially
dangerous definitions prompted us to include a human in

the loop to weed out bad concept node definitions. In the
following section, we explain our evaluation procedure and
present empirical results.

Empirical Results

To evaluate AutoSlog, we created a dictionary for the do-
main of terrorist event descriptions using AutoSlog and
compared it with the hand-crafted dictionary that we used
in MUC-4. As our training data, we used 1500 texts and
their associated answer keys from the MUC-4 corpus. Our
targeted information was the slot fillers from six MUC-4
template slots that contained string fills which could be eas-
ily mapped back to the text. We should emphasize that
AutoSlog does not require or even make use of these com-
plete template instantiations. AutoSlog needs only an an-
notated corpus of texts in which the targeted information
is marked and annotated with a few semantic tags denoting
the type of information (e.g., victim) and type of event (e.g.,
kidnapping).

The 1258 answer keys for these 1500 texts contained
4780 string fillers which were given to AutoSlog as input
along with their corresponding texts.

✞
In response to these

strings, AutoSlog generated 1237 concept node definitions.
AutoSlog does not necessarily generate a definition for ev-
ery string filler, for example if it has already created an
identical definition, if no heuristic applies, or if the sentence
analysis goes wrong.

As we mentioned earlier, not all of the concept node
definitions proposed by AutoSlog are good ones. Therefore
we put a human in the loop to filter out definitions that
might cause trouble. An interface displayed each dictionary
definition proposed by AutoSlog to the user and asked him
to put each definition into one of two piles: the “keeps” or
the “edits”. The “keeps” were good definitions that could
be added to the permanent dictionary without alteration.

✟

The “edits” were definitions that required additional editing
to be salvaged, were obviously bad, or were of questionable
value. It took the user 5 hours to sift through all of the
definitions. The “keeps” contained 450 definitions, which
we used as our final concept node dictionary.

Finally, we compared the resulting concept node
dictionary

✠
with the hand-crafted dictionary that we used

for MUC-4. To ensure a clean comparison, we tested
the AutoSlog dictionary using the official version of our
UMass/MUC-4 system. The resulting “AutoSlog” system
was identical to the official UMass/MUC-4 system except
that we replaced the hand-crafted concept node dictionary
with the new AutoSlog dictionary. We evaluated both sys-
tems on the basis of two blind test sets of 100 texts each.

✡
Many of the slots contained several possible strings (“dis-

juncts”), any one of which is a legitimate filler. AutoSlog finds the
first sentence that contains any of these strings.☛

The only exception is that the user could change the concept
node type if that was the only revision needed.☞

We augmented the AutoSlog dictionary with 4 meta-level
concept nodes from the hand-crafted dictionary before the final
evaluation. These were special concept nodes that recognized
textual cues for discourse analysis only.

These were the TST3 and TST4 texts that were used in the
final MUC-4 evaluation. We scored the output generated
by both systems using the MUC-4 scoring program. The
results for systems are shown in Table 1.

✌

Recall refers to the percentage of the correct answers
that the system successfully extracted and precision refers
to the percentage of answers extracted by the system that
were actually correct. The F-measure is a single measure
that combines recall and precision, in this case with equal
weighting. These are all standard measures used in the
information retrieval community that were adopted for the
final evaluation in MUC-4.

System/Test Set Recall Precision F-measure

MUC-4/TST3 46 56 50.51
AutoSlog/TST3 43 56 48.65
MUC-4/TST4 44 40 41.90
AutoSlog/TST4 39 45 41.79

Table 1: Comparative Results

The official UMass/MUC-4 system was among the top-
performing systems in MUC-4 [Lehnert et al., 1992b] and
the results in Table 1 show that the AutoSlog dictionary
achieved almost the same level of performance as the hand-
crafted dictionary on both test sets. Comparing F-measures,
we see that the AutoSlog dictionary achieved 96.3% of the
performance of our hand-crafted dictionary on TST3, and
99.7% of the performance of the official MUC-4 system
on TST4. For TST4, the F-measures were virtually indis-
tinguishable and the AutoSlog dictionary actually achieved
better precision than the original hand-crafted dictionary.
We should also mention that we augmented the hand-crafted
dictionary with 76 concept nodes created by AutoSlog be-
fore the final MUC-4 evaluation. These definitions im-
proved the performance of our official system by fillinggaps
in its coverage. Without these additional concept nodes, the
AutoSlog dictionary would likely have shown even better
performance relative to the MUC-4 dictionary.

Conclusions

In previous experiments, AutoSlog produced a concept node
dictionary for the terrorism domain that achieved 90% of
the performance of our hand-crafted dictionary [Riloff and
Lehnert, 1993]. There are several possible explanations for
the improved performance we see here. First, the previ-
ous results were based on an earlier version of AutoSlog.
Several improvements have been made to AutoSlog since
then. Most notably, we added 5 new heuristics to recognize
additional linguistic patterns. We also made a number of
improvements to the CIRCUS interface and other parts of
the system that eliminated many bad definitions

✍
and gener-

✎
The results in Table 1 do not correspond to our official MUC-4

results because we used “batch” scoring and an improved version
of the scoring program for the experiments described here.✏

The new version of AutoSlog generated 119 fewer definitions
than the previous version even though it was given 794 additional
string fillers as input. Even so, this smaller dictionary produced

ally produced better results. Another important factor was
the human in the loop. We used the same person in both
experiments but, as a result, he was more experienced the
second time. As evidence, he finished the filtering task in
only 5 hours whereas it took him 8 hours the first time.

✑

AutoSlog is different from other lexical acquisition sys-
tems in that most techniques depend on a “partial lexicon”
as a starting point (e.g., [Carbonell, 1979; Granger, 1977;
Jacobs and Zernik, 1988]). These systems construct a def-
inition for a new word based on the definitions of other
words in the sentence or surrounding context. AutoSlog,
however, constructs new dictionary definitions completely
from scratch and depends only on a part-of-speech lexicon,
which can be readily obtained in machine-readable form.

Since AutoSlog creates dictionary entries from scratch,
our approach is related to one-shot learning. For exam-
ple, explanation-based learning (EBL) systems [DeJong and
Mooney, 1986; Mitchell et al., 1986] create complete con-
cept representations in response to a single training instance.
This is in contrast to learning techniques that incremen-
tally build a concept representation in response to multi-
ple training instances (e.g., [Cardie, 1992; Fisher, 1987;
Utgoff, 1988]). However, explanation-based learning sys-
tems require an explicit domain theory which may not be
available or practical to obtain. AutoSlog does not need any
such domain theory, although it does require a few simple
domain specifications to build domain-dependent concept
nodes.

On the other hand, AutoSlog is critically dependent on a
training corpus of texts and targeted information. We used
the MUC-4 answer keys as training data but, as we noted
earlier, AutoSlog does not need these complete template
instantiations. AutoSlog would be just as happy with an
“annotated” corpus in which the information is marked and
tagged with event and type designations. NLP systems
often rely on other types of tagged corpora, for example
part-of-speech tagging or phrase structure bracketing (e.g.,
the Brown Corpus [Francis and Kucera, 1982] and the Penn
Treebank [Marcus et al.]). However, corpus tagging for
automated dictionary construction is less demanding than
other forms of tagging because it is smaller in scope. For
syntactic tagging, every word or phrase must be tagged
whereas, for AutoSlog, only the targeted information needs
to be tagged. Sentences, paragraphs, and even texts that are
irrelevant to the domain can be effectively ignored.

We have demonstrated that automated dictionary con-
struction is a viable alternative to manual knowledge en-
gineering. In 5 person-hours, we created a dictionary that
achieves 98% of the performance of a hand-crafted dictio-
nary that required 1500 person-hours to build. Since our
approach still depends on a manually encoded training cor-
pus, we have not yet eliminated the knowledge engineering
bottleneck. But we have significantly changed the nature of
the bottleneck by transferring it from the hands of NLP ex-
perts to novices. Our knowledge engineering demands can

better results than the larger one constructed by the earlier system.✒
For the record, the user had some experience with CIRCUS

but was not an expert.

be met by anyone familiar with the domain. Knowledge-
based NLP systems will be practical for real-world appli-
cations only when their domain-dependent dictionaries can
be constructed automatically. Our approach to automated
dictionary construction is a significant step toward making
information extraction systems scalable and portable to new
domains.

Acknowledgments

We would like to thank David Fisher for designing and program-
ming the AutoSlog interface and Stephen Soderland for being
our human in the loop. This research was supported by the
Office of Naval Research Contract N00014-92-J-1427 and NSF
Grant no. EEC-9209623, State/Industry/University Cooperative
Research on Intelligent Information Retrieval.

References

Carbonell, J. G. 1979. Towards a Self-Extending Parser. In
Proceedings of the 17th Meeting of the Association for Compu-
tational Linguistics. 3–7.

Cardie, C. 1992. Learning to Disambiguate Relative Pronouns.
In Proceedings of the Tenth National Conference on Artificial
Intelligence. 38–43.

DeJong, G. and Mooney, R. 1986. Explanation-Based Learning:
An Alternative View. Machine Learning 1:145–176.

Fisher, D. H. 1987. Knowledge Acquisition Via Incremental
Conceptual Clustering. Machine Learning 2:139–172.

Francis, W. and Kucera, H. 1982. Frequency Analysis of English

Usage. Houghton Mifflin, Boston, MA.

Granger, R. H. 1977. FOUL-UP: A Program that Figures Out
Meanings of Words from Context. In Proceedings of the Fifth
International Joint Conference on Artificial Intelligence. 172–
178.

Jacobs, P. and Zernik, U. 1988. Acquiring Lexical Knowledge
from Text: A Case Study. In Proceedingsof the Seventh National

Conference on Artificial Intelligence. 739–744.

Lehnert, W. 1990. Symbolic/Subsymbolic Sentence Analysis:
Exploiting the Best of Two Worlds. In Barnden, J. and Pollack,
J., editors 1990, Advances in Connectionist and Neural Compu-
tation Theory, Vol. 1. Ablex Publishers, Norwood, NJ. 135–164.

Lehnert, W.; Cardie, C.; Fisher, D.; McCarthy, J.; Riloff, E.; and
Soderland, S. 1992a. University of Massachusetts: Description
of the CIRCUS System as Used for MUC-4. In Proceedings of the

Fourth Message Understanding Conference(MUC-4). 282–288.

Lehnert, W.; Cardie, C.; Fisher, D.; McCarthy, J.; Riloff, E.; and
Soderland, S. 1992b. University of Massachusetts: MUC-4 Test
Results and Analysis. In Proceedings of the Fourth Message
Understanding Conference (MUC-4). 151–158.

Lehnert, W. G. and Sundheim, B. 1991. A Performance Evalua-
tion of Text Analysis Technologies. AI Magazine 12(3):81–94.

Marcus, M.; Santorini, B.; and Marcinkiewicz, M. Building a
Large Annotated Corpus of English: The Penn Treebank. Com-

putational Linguistics. Forthcoming.

Mitchell, T. M.; Keller, R.; and Kedar-Cabelli, S. 1986.
Explanation-Based Generalization: A Unifying View. Machine

Learning 1:47–80.

Proceedings of the Fourth Message Understanding Conference

(MUC-4). 1992. Morgan Kaufmann, San Mateo, CA.

Riloff, E. and Lehnert, W. 1993. Automated Dictionary Con-
struction for Information Extraction from Text. In Proceedings

of the Ninth IEEE Conference on Artificial Intelligence for Ap-
plications. IEEE Computer Society Press. 93–99.

Utgoff, P. 1988. ID5: An Incremental ID3. In Proceedingsof the
Fifth International Conference on Machine Learning. 107–120.

