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Abstract

This paper describes a system that learns discourse
rules for domain-speci�c analysis of unrestricted text.
The goal of discourse analysis in this context is to
transform locally identi�ed references to relevant in-
formation in the text into a coherent representation of
the entire text. This involves a complex series of deci-
sions about merging coreferential objects, �ltering out
irrelevant information, inferring missing information,
and identifying logical relations between domain ob-
jects. The Wrap-Up discourse analyzer induces a set
of classi�ers from a training corpus to handle these
discourse decisions. Wrap-Up is fully trainable, and
not only determines what classi�ers are needed based
on domain output speci�cations, but automatically se-
lects the features needed by each classi�er. Wrap-Up's
classi�ers blend linguistic knowledge with real world
domain knowledge.

Introduction
Discourse analysis takes on a special role in a system
that analyzes real-world text such as news-wire stories
to identify information that is relevant to a particu-
lar information need. For a given application, domain
guidelines specify what objects and attributes are con-
sidered relevant and what relationships between ob-
jects are of interest. Each domain object found in a
text is represented as a case frame, with logical rela-
tionships between separate objects indicated by point-
ers between frames.
In this context, discourse analysis must make a num-

ber of decisions about references which a sentence anal-
ysis component has identi�ed as relevant to the do-
main. Separately extracted references to the same do-
main object must be merged, and other references dis-
carded as irrelevant. Pointers must be added between
objects that are deemed to be logically related. Ob-
jects or attributes that are not explicitly stated in the
text must in some cases be inferred.
This paper describes Wrap-Up, a trainable discourse

module that uses machine learning techniques to build
�This research was supported by NSF Grant no. EEC-
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a set of classi�ers for domain-speci�c discourse analy-
sis. Wrap-Up is a fully trainable system and is unique
in that it not only decides what classi�ers are needed
for the domain, but automatically derives the feature
set for each classi�er. The user supplies a de�nition of
the objects and relationships of interest to the domain
and a training corpus with hand-coded target output.
Wrap-Up does the rest with no further hand coding
needed to tailor the system to a new domain.

Discourse Analysis in the

Microelectronics Domain

To get a sense of the processing involved in discourse
analysis, consider the text fragment shown in Figure
1, which is from the microelectronics domain of the
ARPA-sponsored Fifth Message Understanding Con-
ference (MUC-5 1993). Relevant information in this
domain are microchip fabrication processes, such as
the x-ray lithography process mentioned in this text,
as well as the companies, equipment, and devices as-
sociated with these processes.

IBM’s Systems Integration division has

awarded Hampshire Instruments Inc. a

subcontract for x-ray mask making and

wafer exposure under the Defense Advanced

Research Projects Agency’s National X-ray

Lithography Program. : : :

Under the contract, Hampshire will produce

gold-on-silicon photomasks from data

provided by IBM, print test wafers from

the masks in its Series 5000 wafer stepper

: : : using a laser-based soft x-ray

source : : :

Test patterns for the contract include

0.5 micron features from microprocessor

and memory devices. : : :

Figure 1: A sample microelectronics text

One of the main jobs of discourse analysis is to deter-
mine logical relationships between domain objects ac-



cording to domain speci�cations of what relationships
are reportable. Domain objects are represented as case
frames with pointers between objects. A microchip
fabrication process can point to equipment used in the
process and to devices manufactured. Equipment can
point to manufacturer(s) and to equipment modules.
There are four possible relationships de�ned between
fabrication process and company: developer, manufac-
turer, distributor, and purchaser/user, with multiple
roles possible by a company.
The relevant domain objects in the sample text in-

clude an x-ray lithography process which uses \step-
per" equipment and is used to make two types of de-
vices, microprocessors and memory chips. The stepper
in turn has \radiation-source" equipment as a sub-
module. Although two companies and a government
agency were mentioned, only Hampshire Instruments
Inc. plays a direct role in the lithography process,
so IBM and DARPA are not considered relevant and
should be ignored.
The desired output for this text is shown in Figure

2. A \microelectronics-capability" object is created to
show the relationship between company and processes,
with Hampshire Instruments as the developer of the
lithography process. Lithography points to the step-
per, which points to the radiation source equipment
and back to Hampshire Instruments. The lithography
also points to two devices.

Template

  Content: Entity

  Type: company

  Name: Hampshire

             Instruments Inc.

Equipment

  Type: stepper

  Name: Series 5000

  Status: in-use

  Manufacturer:

  Modules:

Equipment

  Type: radiation-source

  Status: in-use

ME-Capability

  Developer:

  Process:

Lithography

  Type: x-ray

  Equipment:

  Granularity:

    (feature-size 0.5 MI)

  Device:

Device

  Type: microprocessor

Device

  Type: memory

Figure 2: Output of analysis of the sample text

The following section describes how Wrap-Up uses
decision trees to tailor its discourse processing to each
new domain, how features are generated for these trees,
and how the trees are trained from hand-coded target
output.

The Wrap-Up Discourse Analyzer
Wrap-Up is a domain-independent framework that is
instantiated with a set of classi�ers to handle domain-
speci�c discourse analysis. During its training phase,

Wrap-Up derives a set of ID3 decision trees (Quinlan
1986) from a representative set of training texts. Each
training text has a hand-coded output key indicating
the objects and relationships that should be identi�ed
for that text.
The input to Wrap-Up is a set of domain objects

identi�ed by the University of Massachusetts CIRCUS
sentence analyzer (Lehnert 1990; Lehnert et al. 1993).
CIRCUS uses domain-speci�c extraction patterns to
create a \concept node" (CN) for each noun phrase
that contains relevant information (Rilo� 1993). Each
CN has a case frame for the extracted information
along with the position of the reference and a list of
extraction patterns used.
Wrap-Up must merge information from coreferential

CN's, discard information that was erroneously iden-
ti�ed during sentence analysis, and determine logical
relationships between objects. A key to using machine
learning classi�ers for a complex task such as discourse
analysis is to break the processing down into a number
of small decisions, each handled by a separate classi�er.
The Wrap-Up algorithm consists of six steps, with a

set of classi�ers built to guide processing in each step.

1. Filtering out spuriously extracted information
2. Merging coreferential object attributes
3. Linking logically related objects
4. Splitting objects with multiple pointers
5. Inferring missing objects
6. Adding default slot values

Wrap-Up automatically determines the trees needed
for each step from a domain output speci�cation, which
consists of a list of the objects and possible pointers be-
tween objects. The �ltering stage has a separate clas-
si�er for each slot of each domain object; the merging
stage has a separate classi�er for each type of object;
the linking stage has a separate classi�er for every pos-
sible pointer relationship in the output speci�cations,
and so forth. A total of 91 decision trees were used for
the microelectronics domain.
The following section illustrates how decision trees

guide Wrap-Up's processing.

Decision Trees for Discourse Analysis

During analysis of a text, Wrap-Up creates an instance
for one of its classi�ers each time it encounters a dis-
course decision in the text. For example, CIRCUS
identi�ed an x-ray lithography object in the Figure
1 text as well as two equipment objects, one of type
\stepper" and the other of type \radiation-source".
One of the decisions in the linking stage of Wrap-Up is
whether to add a pointer from the lithography process
to either or both equipment objects.
Wrap-Up creates a separate instance for each pair

of possibly linked objects, one for the lithography and
the radiation source pair, and another for lithography
and the stepper equipment. Each instance is passed to



a \Lithography-Equipment-Link" decision tree and a
pointer is added if the tree returns \positive".
An instance has features for each of the pair of

objects, such as the features \obj1:type-x-ray" and
\obj2:type-radiation-source" which express informa-
tion from slots of the CN case frames. Other features
are derived from the CN de�nitions (a combination of
keywords and linguistic patterns) that CIRCUS used
to identify references to the object. These features
include \obj1:keyword-x-ray", \obj1:subcontract-for-
X", and \obj1:using-X". The instance also includes
features indicating the relative position of references
to the two objects, such as \same-sentence" or \one-
common-phrase". More details about feature genera-
tion are provided in the following section.
Figure 3 shows a portion of the Lithography-

Equipment-Links tree. ID3 recursively selects features
to partition the training instances according to an in-
formation gain metric, choosing \same-sentence" as
the root of the tree. The baseline probability of a link
from lithography to equipment was 31%, but only 9%
of the training instances were positive when references
to both objects did not occur in the same sentence.
ID3 selects the feature \obj2:type-radiation-source"

to partition the instances where \same-sentence" is
true. All training instances with equipment type
\radiation-source" are negative, since a radiation
source can only serve as a sub-module of other equip-
ment and not be directly linked to a lithography pro-
cess. These two tree nodes are su�cient to classify the
lithography-radiation-source instance as negative.
Further tests are needed for equipment other than

radiation source. If the lithography process was iden-
ti�ed using the keyword \stepper" the probability of a
link increases to 77%. This is not the case here, and
the next true-valued feature is \obj2:modules", since
a previous linking decision has added a pointer to the
radiation source from the \modules" slot of the step-
per's case frame. After branching on true for lithog-
raphy type \x-ray" the lithography-stepper instance is
classi�ed as positive.
These paths through the tree illustrate useful do-

main knowledge learned by Wrap-Up. Do not add a
pointer from lithography to equipment of type radi-
ation source, even if both references are cosentential.
A pointer should be added when both references are
from the same sentence, the equipment has a module,
and the lithography is of type \x-ray". This tree illus-
trates howWrap-Up 
uidly combines real world knowl-
edge about what equipment can be used for lithogra-
phy with rules about the relative position of references
and about speci�c lexical context.
Figure 4 shows a \Lithography-Merging" decision

tree from stage 2 of Wrap-Up. In virtually all the
positive training instances object 1 has the attribute
type, such as \x-ray" lithography, and object 2 has
the attribute granularity, such as \feature-size 0.5 MI".
Multiple references to objects of the same type have
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Same-sentence

F T
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Obj2:type-radiation-source
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F

F

F
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Figure 3: Decision tree for adding pointers from lithog-
raphy (object 1) to equipment (object 2)

already been merged without consulting a classi�er,
such as all the references to \x-ray" lithography. Pairs
of lithography objects of di�erent type are not merge-
able.
ID3 has selected \obj2:granularity" as the root of the

tree and has a variety of tests at other nodes, includ-
ing linguistic patterns such as \resolutions of X" and
\using X". The domain knowledge encapsulated in the
this \Lithography-Merge" decision tree indicates that
positive instances of merging lithography with granu-
larity often occur for \I-line" and \UV" lithography
and are often associated with the keyword \features".

The two decision trees shown in this section are from
only two of Wrap-Up's six stages of discourse process-
ing. The �ltering stage has a classi�er to judge the
validity of each slot of each CN, possibly discarding
slots as irrelevant if a tree returns \negative". After
the merging and linking stages, Wrap-Up has a stage
that considers objects with multiple pointers. In some
cases the object is split into multiple copies, each with
a single pointer.
The next stage considers \orphaned" objects, those

with no other objects pointing to them, and may infer
an object to point to an orphan. Trees for this stage
return a classi�cation that speci�es what type of object
to infer. The last stage adds context-sensitive default
values to empty slots, such as the status of \in-use" or



\in-development" for equipment objects.
For all of these classi�ers it is critical that the feature

encoding is expressive enough to support the necessary
discriminations. We now look at Wrap-Up's mecha-
nism for generating features automatically.

Automatic Feature Generation

When Wrap-Up creates an instance for an object or
a pair of objects, it encodes as much of the infor-
mation passed to it by the sentence analyzer as pos-
sible. Each \concept node" extracted by CIRCUS
has a case frame with a slot for each attribute, such
as equipment-type or equipment-name. CIRCUS also
passes along the position of each reference in the text
along with the CN de�nitions used to identify that
reference, from a domain-speci�c dictionary of extrac-
tion patterns such as \using-X", \subcontract-for-X",
or \keyword-stepper".
Instances are encoded as a list of binary features,

some features indicating the slot-values of each object,
some expressing the relative position in the text of the
nearest references to the two objects, some showing
the CN-de�nition patterns for each reference, and the
number of such patterns.
Here is an instance from the sample text for the

Lithography-Equipment-Links tree.

(obj1:type-x-ray . t) (obj1:type . t)
(obj1:granularity-feature-size . t)
(obj1:granularity-MI . t) (obj1:granularity . t)
(obj2:type-stepper . t) (obj2:type . t)
(obj2:name-series . t) (obj2:name-5000 . t)
(obj2:name .t) (obj2:modules . t)
(obj2:manufacturer . t) (obj1:keyword-x-ray . t)
(obj1:using-X . t) (obj1:subcontract-for-X . t)
(obj1:cn-count>=2 . t) (obj2:masks-in-X . t)
(obj2:keyword-stepper . t) (obj2:awarded-X . t)
(obj2:keyword-inc . t) (obj2:cn-count>=2 . t)
(same-sentence . t) (common-noun-phrase . t)

Object-1 is a lithography object with type x-ray and
object-2 is equipment with type \stepper". By the
time Wrap-Up creates this instance, the granularity
\feature-size 0.5 MI" has already been merged with the
x-ray lithography object and pointers have been added
from the stepper equipment to Hampshire Instruments
as manufacturer and to the radiation source as module.
CN de�nition features include the patterns \using

X", \subcontract for X", and keyword \x-ray" that
identi�ed x-ray lithography. Stepper equipment was
extracted with the pattern \masks in X" and the key-
word \stepper". The equipment object also inherits
CN de�nition features from its manufacturer pointer
to Hampshire Instruments: \awarded X" and keyword
\Inc".
Some features that encode speci�c linguistic pat-

terns or equipment names may have low frequency and
contribute only noise to the classi�cation. Wrap-Up
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Figure 4: Decision tree to merge lithography attributes

prunes the features by setting a minimum number of
texts that a feature must be found in, and discards
features below this threshold.
Having looked brie
y at Wrap-Up's mechanism for

generating features, we consider how Wrap-Up uses a
corpus of training texts to create its training instances.

Creating Training Instances

ID3 is a supervised learning algorithm and requires a
set of training instances, each labeled with the cor-
rect classi�cation for that instance. The user supplies
Wrap-Up with a representative set of training texts
and hand-coded target output for each text. Wrap-Up
begins its tree-building phase by passing each train-
ing text to the sentence analyzer, which creates a set
of objects representing the extracted information. The
output from sentence analysis forms the initial input to
Wrap-Up's �rst stage. Wrap-Up encodes instances and
builds trees for this stage, then uses trees from stage
one to build trees for stage two, and so forth until trees
have been built for all six stages.
As it encodes instances, Wrap-Up repeatedly con-

sults the target output to assign a classi�cation for



Classi�er Ftrs Insts % Pos Accuracy Precision Recall
Filtering:
device type 214 1029 40.3 73.2 61.5 90.1
entity name 359 3282 34.8 75.6 63.1 71.7
equipment type 181 1284 62.6 86.6 82.4 99.9
etching type 40 295 32.9 60.0 44.4 86.6
layering type 78 561 62.2 70.9 70.9 90.3
lithography type 96 538 57.4 74.7 71.4 93.5
packaging type 127 637 55.2 69.5 67.6 86.4

Merging:
device attributes 736 1433 17.9 86.9 67.2 52.5
entity attributes 899 7278 39.6 62.4 51.9 70.2
equipment attributes 426 1229 28.1 86.5 77.5 73.7
lithography attributes 234 361 11.1 88.6 48.6 42.5

Linking:
equipment manufacturer 623 1966 22.5 81.1 56.4 69.5
equipment modules 554 990 6.9 94.0 58.3 50.7
lithography device 349 563 24.2 83.9 68.9 60.3
lithography equipment 489 774 29.9 78.8 63.6 68.0
lithography developer 696 1312 9.2 86.4 22.9 19.8
lithography distributor 696 1312 8.0 91.5 46.2 34.3
lithography manufacturer 696 1312 9.7 90.9 53.9 43.3
lithography purchaser/user 696 1312 8.8 86.6 28.9 35.3

Figure 5: Performance of individual decision trees

each training instance. For the merging stage an in-
stance is created for each pair of objects of the same
type. If both objects can be mapped to the same object
in the target output, the instance is classi�ed as posi-
tive. The links stage will similarly encode an instance
for object A and object B, then look in the target out-
put for an object matching A that has a pointer to an
object matching B.

There are limits to the supervision provided by tar-
get output of the granularity used by Wrap-Up. In par-
ticular it is inadequate for learning coreference merging
and anaphora resolution. Suppose a lengthy text has
several references to lithography processes, as well as
generic references to new \technology", a \process",
and various pronominal references. Some of these ref-
erences may indeed equate to a lithography object in
the target output, but others may be vague references
that are not reportable by domain guidelines. If the
target output has more than one process, it is not clear
how to map them to speci�c references in the text.

Wrap-Up faces a di�cult problem dealing with spu-
rious objects that were extracted by the sentence ana-
lyzer, but were not found in the target output. Some
of these were legitimate references to a company, such
as IBM in our example text, that are not linked di-
rectly to a microchip fabrication process and should
be discarded. Devices and equipment should likewise
be discarded if it is not associated with a speci�c pro-
cess and processes discarded that are not linked to a
company. About half of the objects identi�ed by CIR-

CUS in this domain were spurious. Those that persist
past Wrap-Up's �ltering step are a source of noise in
the training for later steps.

System Performance

As previously reported (Soderland and Lehnert 1994a,
1994b) the full system with Wrap-Up compares favor-
ably with the discourse module used in the MUC-5
evaluation by UMass, which was only partially train-
able. Here we will look at the performance of Wrap-
Up from the point-of-view of individual classi�ers, as
shown in Figure 5.
Wrap-Up's performance is best evaluated in terms

of the metrics \recall" and \precision". Recall is the
percentage of possible information that was reported.
Precision is the percent correct of the reported infor-
mation. If there are 400 positive instances and the
classi�er identi�es 300 of them as positive, recall is
75%. If the classi�er had 300 false positives as well, its
precision is 50%.
The high degree of spurious input toWrap-Up can be

seen from the low percent of positive instances for the
�ltering stage classi�ers. Only 40% of the device types
and 35% of the company names identi�ed by CIRCUS
were relevant to the domain. Wrap-Up's �ltering stage
is able to raise precision above that of CIRCUS output
by discarding more than half of the spurious objects,
although at the cost of discarding some valid objects
as well.
Classi�ers for later stages of Wrap-Up were ham-



pered by noisy training due to the spurious objects that
were retained and more seriously by the coarse granu-
larity of sentence analysis. Information that is not re-
portable according to domain guidelines (pronominal
and generic references), is often critically important to
inferring relationships between domain objects. Wrap-
Up encoded in its instances as much information about
local linguistic context as was provided by the sentence
analysis component, but this was insu�cient for deep
reasoning.

Conclusions

The goal of Wrap-Up is to be a fully trainable discourse
component, a turnkey system that can be tailored to
new information needs by users who have no special
linguistic or technical expertise. The user de�nes an
information need and output structure, then provides a
training corpus of representative texts with hand coded
target output for each text.
Wrap-Up takes it from there and instantiates a fully

functional discourse analyzer for the new domain with
no further customization needed by the user. Wrap-
Up is the �rst fully trainable system to handle dis-
course processing, automatically determining the clas-
si�ers needed for the domain output structure and de-
riving the feature set for each classi�er from sentence
analyzer output.
While creating a su�cient training corpus represents

a labor-intensive investment on the part of domain ex-
perts, it is easier to generate a few hundred answer keys
than it is to write down explicit and comprehensive do-
main guidelines. Once available, this corpus of training
texts can be used repeatedly for knowledge acquisition
at all levels of processing. The same training corpus
was used to induce a dictionary of CN de�nitions used
by CIRCUS in sentence analysis (Rilo� 1993).
A thousand texts provided the training for Wrap-

Up in the microelectronics domain. The number of
actual training instances provided by these texts varied
for di�erent classi�ers, with some reaching saturation
from as few as two hundred texts and others that dealt
with less frequent domain objects and relationships,
still under trained at a thousand texts.
Wrap-Up di�ers from other work on discourse, which

has often involved tracking shifts in topic and in the
speaker/writer's goals (Grosz and Sidner 1986; Liddy
et al. 1993) or in resolving anaphoric references (Hobbs
1978). Domain-speci�c discourse analysis that pro-
cesses unrestricted text may concern itself with some of
these issues, but only as a means to its main objective
of transforming bits and pieces of extracted informa-
tion into a coherent representation.
Wrap-Up does not have available an in-depth anal-

ysis of the text, or a model of the writer's goals and
beliefs. Wrap-Up relies instead on the information sup-
plied by sentence analysis, which gives the local context
of domain objects found in the text. A domain-speci�c
text analysis system concerns itself only with clauses

that contain information relevant to the information
extraction task and ignores other portions of text.
Wrap-Up must make discourse decisions robustly in

the face of unrestricted text and incomplete knowledge.
Much of its discourse processing is dominated by real-
world knowledge about the domain objects involved.
Other processing is based on the relative position in the
text of two references or on the keyword or phrase used
in that reference. Wrap-Up's classi�ers blend together
these types of knowledge based on actual usage in a
representative text corpus.
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