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Abstract

One of the central knowledge sources of an in-
formation extraction (IE) system is a dictio-
nary of linguistic patterns that can be used
to identify references to relevant information
in a text. Automatic creation of conceptual
dictionaries is important for portability and
scalability of an IE system. This paper de-
scribes CRYSTAL, a system which automat-
ically induces a dictionary of \concept-node
de�nitions" su�cient to identify relevant in-
formation from a training corpus. Each of
these concept-node de�nitions is generalized as
far as possible without producing errors, so
that a minimum number of dictionary entries
cover the positive training instances. Because it
tests the accuracy of each proposed de�nition,
CRYSTAL can often surpass human intuitions
in creating reliable extraction rules.

1 Information Extraction

An information extraction (IE) system analyzes unre-
stricted natural language text and produces a repre-
sentation of the information from the text which is
considered relevant to a particular application. In-
formation extracted from the text is represented as
case frames, called \concept nodes" (CN's) in the Uni-
versity of Massachusetts BADGER sentence analyzer,
which performs selective concept extraction similar to
that of the previous CIRCUS system [Lehnert, 1991;
Lehnert et al., 1993].
The domain knowledge needed to identify relevant ref-

erences is stored in a dictionary of \CN de�nitions"
that describe the local syntactic and semantic context
in which relevant information is likely to be found. Be-
fore the CN de�nition is applied, BADGER segments the
input text to identify syntactic constituents such as sub-
ject, verb phrase, direct and indirect object, and prepo-
sitional phrases, and also looks up the semantic class of
each word in a domain-speci�c semantic lexicon. A CN
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de�nition speci�es a set of syntactic and semantic con-
straints that must be satis�ed for the de�nition to apply
to a segment of text.
Examples in this paper are from a medical domain,

where the task is to analyze hospital discharge reports
and identify references to \diagnosis" and to \sign or
symptom". These are further classi�ed with subtypes.

Diagnosis: Sign or Symptom:
con�rmed present
ruled out absent
suspected presumed
pre-existing unknown
past history

The example shown in Figure 1 is a CN de�nition
from this domain that identi�es references to absent
symptoms. This CN de�nition extracts the phrase in
the direct object bu�er when the subject bu�er has
the word \patient" (semantic class <Patient or Dis-
abled Group>), the verb is \denies" in the active voice,
and the direct object has the semantic class <Sign or
Symptom>.

CN-type: Sign or Symptom

Subtype: Absent

Extract from Direct Object

Active voice verb

Subject constraints:

     words include  "PATIENT"

     head class:       <Patient or Disabled Group>

Verb constraints:

     words include  "DENIES"

Direct Object constraints:

     head class       <Sign or Symptom>

Figure 1: A CN de�nition to identify \sign or symptom,
absent"

This CN de�nition would extract \any episodes of nau-
sea" from the sentence \The patient denies any episodes
of nausea". It would fail to apply to the sentence \Pa-
tient denies a history of asthma", since asthma is of se-
mantic class <Disease or Syndrome>, which is not a
subclass of <Sign or Symptom>. For the hospital dis-
charge report domain, we are using a semantic lexicon



and semantic hierarchy derived from the Uni�ed Medi-
cal Language Systems (UMLS) medical MetaThesaurus
and Semantic Network [Lindberg et al., 1993], which is
currently under development by the National Library of
Medicine.
A dictionary of CN de�nitions for this domain is spe-

ci�c to the semantics and writing style of hospital dis-
charge records and could not be transferred to other ap-
plications. A new conceptual dictionary must be con-
structed for each IE application. The de�nitions must
be general enough to cover previously unseen instances,
but at the same time constrained tightly enough to avoid
over generalizing to instances that do not contain the de-
sired information.
A tool that automatically generates a dictionary of

CN de�nitions is needed to ensure that BADGER can be
easily ported to new domains. The CRYSTAL dictionary
induction tool is one of the �rst systems to automatically
create a conceptual dictionary from a training corpus.
Before presenting CRYSTAL, we will describe in more
detail the CN de�nitions used by the BADGER sentence
analyzer, which CRYSTALmust generate automatically.

2 Concept Node De�nitions

A concept node (CN) is a case frame instantiated by the
BADGER sentence analyzer to represent relevant infor-
mation identi�ed in the text. The CN has two �xed slots,
CN type and subtype, as well as slots to hold extracted
information, which are usually noun phrases from the
text. A CN is instantiated from a text segment when
the constraints of a CN de�nition are satis�ed.
These constraints operate on major syntactic con-

stituents: the subject, verb phrase, direct or indirect
object, and prepositional phrases. Any of these con-
stituents may be tested for a sequence of speci�c words,
for speci�c semantic classes in the head noun of a phrase,
or for speci�c semantic classes in the modi�ers of a
phrase. The verb can be further constrained with re-
spect to active or passive voice.
Figure 2 shows a CN de�nition that identi�es pre-

existing diagnoses with a set of constraints that could
be summarized as \: : : was diagnosed with recurrence
of (body part) (disease)". Here the information to be
extracted is found in a prepositional phrase which must
have the preposition \with" and contain the words \re-
currence of". The prepositional phrase must have a head
noun whose semantic class is a <Disease or Syndrome>
and a modifying term whose class is a <Body Part or
Organ>. This CN de�nition applies to a sentence such
as \The patient was diagnosed with a recurrence of la-
ryngeal cancer". Since there are no constraints on the
subject, the text segment is free to have any subject,
including a relative pronoun or an omitted subject.
Will this CN de�nition reliably identify only pre-

existing diagnoses? Perhaps in some texts the recur-
rence of a disease is actually a principal diagnosis of the
current hospitalization and should be identi�ed as \di-
agnosis, con�rmed" or may be a condition that no longer
exists and should be identi�ed as \diagnosis, past". In
such cases the CN de�nition will produce an extraction
error. On the other hand, this de�nition might be reli-

CN-type: Diagnosis

Subtype: Pre-existing

Extract from Prep. Phrase "WITH"

Passive voice verb

Verb constraints:

     words include   "DIAGNOSED"

Prep. Phrase constraints:

     preposition =    "WITH"

     words include   "RECURRENCE OF"

     modifier class   <Body Part or Organ>

     head class        <Disease or Syndrome>

Figure 2: A CN de�nition for \diagnosis, pre-existing"

able, but miss some valid examples that it would cover
if the constraints were relaxed slightly.
Judgments about how tightly to constrain a CN def-

inition are di�cult to make a priori, and would require
careful consideration by someone who combines domain
expertise with a deep understanding of the BADGER
sentence analyzer. An alternate to manually engineer-
ing these CN de�nitions is to induce them automatically
from a training corpus of representative texts that have
been annotated by a domain expert. This is the ap-
proach taken by CRYSTAL, which we will describe in
the following section.

3 The CRYSTAL Dictionary Induction

Tool

CRYSTAL derives a domain-speci�c dictionary of CN
de�nitions from a training corpus, initializing the dic-
tionary with a CN de�nition for each positive training
instance. These initial CN de�nitions are designed to
extract the relevant phrase in the training instance that
motivated them, but are too speci�c to apply broadly to
previously unseen sentences.
The main work of CRYSTAL is to gradually relax the

constraints on these initial de�nitions to broaden their
coverage, while merging similar de�nitions to form a
more compact dictionary. The CN de�nitions in CRYS-
TAL's �nal dictionary are generalized as much as possi-
ble without producing extraction errors on the training
corpus.

3.1 Creating Initial CN De�nitions

The �rst step in dictionary creation is the annotation of
a set of training texts by a domain expert. Each phrase
that contains information to be extracted is bracketed
with SGML-style tags to mark the appropriate CN type
and subtype. A team of three nurses under the super-
vision of a physician annotated our training documents
for us. The annotated texts are then segmented by the
BADGER sentence analyzer to create a set of training
instances. Each instance is a text segment, generally a
simple clause, some of whose syntactic constituents may
be tagged as positive instances of a particular CN type
and subtype.
CRYSTAL begins its induction with a dictionary of

CN de�nitions built from each instance that contains



the CN type and subtype being learned. If a training in-
stance has its subject bu�er tagged as \diagnosis" with
subtype \pre-existing", an initial CN de�nition is cre-
ated that extracts the phrase in the subject bu�er as a
pre-existing diagnosis. The constraints on an initial CN
de�nition are derived from the words and classes found
in the motivating instance.
Before the induction process begins, CRYSTAL can-

not predict which characteristics of an instance are es-
sential to the CN de�nition and which are merely acci-
dental features. CRYSTAL encodes all the details of the
text segment as constraints to the initial CN de�nition,
requiring the exact sequence of words and the exact sets
of semantic classes in each syntactic bu�er. CRYSTAL
will later learn which constraints should be relaxed.
Figure 3 shows the initial CN de�nition derived from

the sentence fragment \Unremarkable with the excep-
tion of mild shortness of breath and chronically swollen
ankles." The domain expert has marked \shortness of
breath" and \swollen ankles" with CN type \sign or
symptom" and subtype \present". When BADGER an-
alyzes this sentence, it assigns the complex noun phrase
\the exception of mild shortness of breath and chron-
ically swollen ankles" to a single prepositional phrase
bu�er. When a complex noun phrase has multiple head
nouns or multiple modi�ers, the class constraint becomes
a conjunctive constraint. Class constraints on words
such as \unremarkable" which are of class <Root Class>
are dropped as vacuous.

CN-type: Sign or Symptom

Subtype: Present

Extract from Prep. Phrase "WITH"

Verb = <NULL>

Subject constraints:

     words include   "UNREMARKABLE"

Prep. Phrase constraints:

     preposition =   "WITH"

     words include 

          "THE EXCEPTION OF MILD SHORTNESS OF

           BREATH AND CHRONICALLY SWOLLEN ANKLES"

     modifier class <Sign or Symptom>

     head class 

           <Sign or Symptom>, <Body Location or Region>

Figure 3: An initial CN de�nition, with exact words from
the instance

It is highly unlikely that this CN de�nition will ever
apply to a sentence from a di�erent text, but it is guar-
anteed to operate properly on the sentence that moti-
vated it. The initial CN de�nitions created from a train-
ing corpus are too tightly constrained to be useful until
CRYSTAL relaxes some of the constraints. Semantic
constraints are relaxed by moving up the semantic hier-
archy or by dropping the constraint. Exact word con-
straints are relaxed by dropping all but a subsequence
of the words or dropping the constraint. The combina-
torics on ways to relax constraints becomes overwhelm-
ing. There are over 57,000 possible generalizations of the
initial CN de�nition in Figure 3.

The CRYSTAL algorithm:

Initialize Dictionary and Training Instances Database
Do until no more initial CN de�nitions in Dictionary

D = an initial CN de�nition removed
from the Dictionary

Loop
D' = the most similar CN de�nition to D
If D' = NULL, exit loop
U = the uni�cation of D and D'
Test the coverage of U in Training Instances
If the error rate of U > Tolerance

exit loop
Delete all CN de�nitions covered by U
Set D = U

Add D to the Dictionary
Return the Dictionary

The following section shows how CRYSTAL induces
generalizations from a set of initial CN de�nitions, test-
ing that each proposed de�nition does not over general-
ize.

3.2 Inducing Generalized CN De�nitions

CRYSTAL �nds useful generalizations of its initial CN
de�nitions by locating and comparing de�nitions that
are highly similar. Let D be the de�nition being gener-
alized. Assume we have found a second de�nition, D',
which is very similar to D according to a similarity metric
that counts the number of relaxations required to unify
two CN de�nitions. A new de�nition U is then created
with constraints relaxed just enough to unify D and D'.
The new de�nition U is then tested against the training
corpus to make sure that it does not extract phrases that
were not marked with the CN type and subtype being
learned.
If U is a valid CN de�nition, CRYSTAL deletes from

the dictionary all de�nitions covered by U, thus reducing
the size of the dictionary while still covering all the pos-
itive training instances. In particular, D and D' will be
deleted. The de�nition U becomes the current de�nition
and this process is repeated, using similar CN de�nitions
to guide the further relaxation of constraints. Eventually
a point is reached where further relaxation would pro-
duce a de�nition that exceeds some pre-speci�ed error
tolerance. At that point, CRYSTAL begins the gener-
alization process on another initial CN de�nition until
all initial de�nitions have been considered for general-
ization.
Faced with an exponential number of ways in which

the constraints could be relaxed, CRYSTAL relaxes ex-
actly those constraints that allow the current CN de�-
nition to be uni�ed with a similar de�nition. An imple-
mentation that allows CRYSTAL to locate similar de�-
nitions e�ciently is discussed in the next section.
CRYSTAL uni�es two similar de�nitions by �nding

the most restrictive constraints that cover both. If word
constraints from the two de�nitions have an intersecting
string of words, the uni�ed word constraint is that inter-
secting string. Otherwise the word constraint is dropped.



Unifying two class constraints may involve moving up the
semantic hierarchy to �nd a common ancestor of classes
in the two constraints. Class constraints are dropped
entirely when they reach the root of the semantic hier-
archy. If a constraint on a particular syntactic bu�er is
missing from one of the two de�nitions, that constraint
is dropped from the uni�ed constraints.
As an example of unifying two CN de�nitions, sup-

pose that one de�nition has the class constraint <Sign
or Symptom> for the subject bu�er and the other has
the class constraint <Laboratory or Test Result>. These
unify to <Finding>, their common parent in the seman-
tic hierarchy. If the direct object of one de�nition has a
class constraint requiring both <Disease or Syndrome>
and <Acquired Abnormality> and the other only re-
quires <Disease or Syndrome>, then the uni�ed class
constraint on direct object will have only <Disease or
Syndrome>.
Rather than reprocessing the training texts each time

it tests the validity of a proposed CN de�nition, CRYS-
TAL uses the BADGER sentence analyzer to segment
the training documents and creates a database of in-
stances. This database includes an entry for each seg-
ment of the training corpus, not just those with phrases
marked as having relevant information. If an instance
meets all the constraints of a CN de�nition, but the
phrase extracted had not been tagged with the appro-
priate CN type and subtype, it is counted as an error.
CRYSTAL accommodates a limited amount of noise in
the training data by using an error tolerance threshold
instead of calling a de�nition bad from a single extrac-
tion error. This adds robustness to the dictionary, which
is needed when dealing with unrestricted text.
The algorithm presented here has glossed over some

implementation issues of how to �nd the most similar
CN de�nitions or test the coverage and error rate of a
proposed CN de�nition against the training instances
e�ciently. The following section discusses these issues,
which can be critically important in scaling up to a large
training corpus.

3.3 E�ciency Issues: Finessing
Intractability

Since each CN de�nition may have several constraints
and a variety of ways to relax each constraint, there are
an exponential number of generalizations possible for a
given CN de�nition. CRYSTAL has the challenge of
producing a near optimal dictionary while avoiding in-
tractability and maintaining a rich expressiveness of its
CN de�nitions.
CRYSTAL reduces the intractable problem of con-

straint relaxation to the easier problem of �nding a sim-
ilar CN de�nition. Relaxing the constraints to unify a
CN de�nition with a similar de�nition has the e�ect of
retaining the constraints shared with another valid def-
inition and dropping accidental features of the current
de�nition. This is also guaranteed to produce a CN de�-
nition with greater coverage that either of the de�nitions
being uni�ed, since the coverage of the two CN de�ni-
tions is disjoint.
Finding similar de�nitions e�ciently is achieved by

indexing the CN de�nitions database by verbs and by
extraction bu�ers. In this way, CRYSTAL can retrieve
a list of similar de�nitions which is small relative to the
entire database. Each of these is tested with a similarity
metric that looks for intersecting classes and intersecting
strings of words for corresponding syntactic bu�ers.
Testing a generalized de�nition's error rate on the

training corpus is actually done on the BADGER In-
stances Database, a database of instances which have
already been segmented by the BADGER sentence an-
alyzer. The primary index is on verbs, including the
<null> verb for sentence fragments. Testing a CN de�-
nition that has a constraint on the verb can be done by
retrieving a small percent of the instances, with most of
the constraint testing done on pointers in memory with-
out the need to retrieve the actual instance. CRYSTAL
drops the constraint on exact verb only after relaxing all
other constraints as far as possible, to take full advantage
of the e�ciency of indexing by verb.
CRYSTAL has been tested on a corpus of 385 hospi-

tal discharge reports, averaging just under one thousand
words each, which produced 14,719 training instances
with 2,122 positive instances of \diagnosis" and 6,047
positive instances of \sign or symptom". CRYSTAL is
able to induce a dictionary of all CN types and subtypes
from this training set in about 10 minutes of clock time
on a DEC ALPHA AXP 3000 using 45 MB of memory.

4 Experimental Results

Experiments were conducted in which 385 annotated
hospital discharge reports were partitioned into a train-
ing set and a blind test set. Dictionaries for each CN type
and subtype were induced from the training set and then
evaluated on the test set. Performance is measured here
in terms of recall and precision, where recall is the per-
centage of possible phrases that the dictionary extracts
and precision is the percentage correct of the extracted
phrases. For example if there are 5,000 phrases that
could possibly be extracted from the test set by a dic-
tionary, but the dictionary extracts only 3,000 of them,
recall is 60%. If the dictionary extracts 4,000 phrases,
only 3,000 of them correct, precision is 75%.
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Figure 4: E�ect of the error tolerance setting on perfor-
mance

The choice of error tolerance parameter has a signi�-
cant impact on performance and can be used to manip-
ulate a tradeo� between recall and precision of a dictio-



nary. Figure 4 shows performance of a dictionary of CN
de�nitions that identify \sign or symptom" of any sub-
type, where the error tolerance is varied from 0.0 to 0.4.
The results shown here are the averages of 50 random
partitions of the corpus into 90% training and 10% test
documents for each error tolerance.
There is another parameter that a�ects recall and pre-

cision. The results in Figure 4 are for generalized CN
de�nitions, those with coverage >= 2. Precision can be
boosted by raising the minimum coverage threshold. At
error tolerance of 0.0 the dictionary for \sign or symp-
tom" had precision 79 and recall 44 at minimum coverage
of 2, precision 87 and recall 35 at minimum coverage of
5, and precision 91 and recall 24 at minimum coverage
of 10.
The dictionary for all CN types and subtypes had

194 CN de�nitions that covered 10 or more training in-
stances, 527 that covered from 3 to 9, and 793 with cov-
erage of 2. This is for a dictionary induced at error
tolerance 0.2 from all 14,719 training instances.
To assess the learning curve as training size increases,

we set the training partition at 10%, 30%, 50%, 70%,
and 90% of the 385 annotated documents. This was
done 50 times for each training size and results averaged.
The number of positive training instances in a partition
depends on what CN type and subtype is being learned.
The graph in Figure 5 plots recall against the number

of positive training instances for the most frequent CN
type and subtypes in the corpus. Recall is over 60 and
still increasing at this level of training for \diagnosis"
and \sign or symptom" of any subtype. With this error
tolerance set at .20 and minimum coverage at 2, preci-
sion remains fairly constant regardless of training size,
at about 70 for most CN types and subtypes.
The di�erence in coverage for \symptom, absent" and

\symptom, present" is due to a limitation in negation
handling by the current version of CRYSTAL. CN de�-
nitions for absent symptoms can include a constraint re-
quiring the word \no", but CRYSTAL has no mechanism
to require the absence of \no" for present symptoms.
The next version of CRYSTAL will handle conjunctions,
disjunction, and the scoping of negation.
Here are a few representative CN de�nitions to give a

feeling of what CRYSTAL is learning. Symptom, present
is extracted from the direct object when the verb is \re-
vealed" and the direct object has the word \a" and head
class <Finding>. This covers cases where a test re-
veals \a mass", \a pleural e�usion", \a murmur" and
so forth. If the constraint on \a" is relaxed the CN
de�nition would erroneously identify \no murmurs" or
\normal bowel sounds" which are symptoms of subtype
absent.
A similar CN de�nition that identi�es symptom, ab-

sent in the direct object requires the verb \revealed"
and the word \no" in the direct object. This has over
90% accuracy with no semantic constraints. Another
CN de�nition with no semantic constraints �nds symp-
tom, absent in a prepositional phrase with the preposi-
tion \WITHOUT", covering 229 training instances with
13% error rate. If a constraint is added to require the
class <Finding> in the prepositional phrase, coverage
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Figure 5: Learning curve: increase of coverage with
training size

drops to 75 with 5% errors.
Some CN de�nitions look for speci�c words, such as

\normal", \unremarkable", \regular", and \negative" to
identify symptom, absent, or \enlarged", \increased",
\mild", and \supple" to identify symptom, present.
The lack of semantic constraints on most of the high

coverage CN de�nitions may be attributed to gaps in
the semantic lexicon. We refrained from customizing the
UMLS medical MetaThesaurus for our particular task,
since our main research interest is designing portable sys-
tems with a minimum of knowledge engineering. UMLS,
unfortunately, has spotty coverage of clinical terms. It's
remarkable that we have gotten good performance from
a lexicon that lacks words such as \lesions", \rate",
\rhythm", \tenderness", and \distention".

5 Related Work

Previous research on inductive learning in natural lan-
guage processing has concentrated on the semantics of
isolated words [Granger, 1977; Mooney, 1987; Zernik,
1991]. CRYSTAL is one of the �rst systems to automati-
cally induce a dictionary of information extraction rules.
Only two of the seventeen research sites participating
in the ARPA-sponsored Fifth Message Understanding
Conference [MUC-5, 1993] described automatically gen-
erated dictionaries, the University of Massachusetts and
the University of Southern California.
The UMass system used the Autoslog dictionary con-

struction tool [Rilo�, 1993], which generates a proposed
CN de�nition for each phrase to be extracted from a mo-
tivating instance in the text. AutoSlog uses heuristics to
select certain exact words from the instance as \trig-
ger words", often selecting the head verb. The semantic
constraints on the extracted bu�er are set in advance
by the user. AutoSlog made no attempt to relax con-
straints, merge similar CN de�nitions, or test proposed
de�nitions on the training corpus. Each proposed de�-
nition had to be reviewed by a human who retained the
de�nitions that looked reasonable, and discarded those
that were more dubious (roughly 70% of AutoSlog's pro-



posed de�nitions had to be manually discarded).
The PALKA system [Moldovan and Kim, 1992;

Moldovan et al., 1993] used by USC includes an
induction step similar to CRYSTAL. PALKA con-
structs an initial \Frame-Phrasal pattern structure"
(FP-structure) from each example clause that has been
marked as having information to be extracted. The FP-
structure includes a constraint on the root form of the
verb and semantic constraints on noun groups except
for prepositional phrases with no marked information.
PALKA generalizes the semantic constraints by mov-
ing up the semantic hierarchy and specializes by mov-
ing down until the FP-structure covers all the applica-
ble positive training instances and none of the negative.
PALKA is not tolerant of noise in the training data, and
a single negative instance can block an otherwise good
generalization.
CRYSTAL allows more expressive extraction patterns

than either AutoSlog or PALKA. While AutoSlog re-
quires an exact word constraint on the trigger word or
words, which was determined heuristically from a single
instance, CRYSTAL allows an exact word constraint on
any words it learns to be signi�cant, and it can also learn
CN de�nitions with no word constraints. PALKA's FP-
structures constrain the root form of the verb but allow
no other exact word constraints. Unlike AutoSlog and
PALKA, CRYSTAL makes no a priori decision on which
constituents are to be included in its CN de�nitions.
The inductive concept learning in CRYSTAL is similar

to an inductive learning algorithm described by Mitchell
[1982], a \speci�c-to-general" data-driven search to �nd
the most speci�c generalization that covers all positive
and no negative instances. CRYSTAL has the same goal,
but uses a greedy uni�cation of similar instances rather
than breadth-�rst search. This does not guarantee that
CRYSTAL will always �nd the optimal dictionary, but
in practice, CRYSTAL dictionaries appear to be near
optimal.
Another survey of inductive concept learning, by

Michalski [1983] describes a \star methodology" that is
quite similar to CRYSTAL algorithm. This methodology
is capable of learning a set of multiple generalizations
to cover the positive instances by keeping only the best
uni�cation rather than branching on all possible gen-
eralizations. Michalski sees this methodology in terms
of a set covering algorithm, with the goal of merging
generalizations to �nd the minimum set that cover all
positive training instances, while avoiding negative in-
stances. This is exactly the goal of CRYSTAL.

6 Conclusions

CRYSTAL is one of the �rst systems to automatically
derive a conceptual dictionary from a training corpus,
and represents an improvement over previous attempts
to derive text analysis rules from training examples. The
goal of CRYSTAL is to �nd the minimum set of gen-
eralized CN de�nitions that cover all of the positive
training instances and to test each proposed de�nition
against the training corpus to ensure that the error rate
is within a prede�ned tolerance. CRYSTAL's error toler-

ance parameter also allows a user to manipulate a recall-
precision tradeo�.
The requirements of CRYSTAL are a sentence ana-

lyzer, a semantic lexicon that maps individual words into
classes in a semantic hierarchy, and a set of annotated
training texts. The approach taken by CRYSTAL fa-
cilitates a turnkey information extraction system that
requires no familiarity with language processing tech-
nologies on the part of the end-user who creates an an-
notated training corpus. CRYSTAL then uses the train-
ing to build a fully functional conceptual dictionary that
requires no further knowledge engineering.
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