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Abstract

An enormous amount of knowledge is needed to infer the meaning of unre-
stricted natural language. The problem can be reduced to a manageable size
by restricting attention to a prede�ned set of concepts in a speci�c domain.
Two widely di�erent domains are used to illustrate this domain-speci�c ap-
proach. One domain is a collection of Wall Street Journal articles in which the
target concept is management succession events: identifying persons moving
into and out of corporate management positions. A second domain is a collec-
tion of hospital discharge summaries in which the target concepts are various
classes of diagnosis or symptom.

The goal of an information extraction system is to identify references to
the concept of interest for a particular domain. Each domain needs a set of
text extraction rules based on the vocabulary, semantic classes, and writing
style peculiar to the domain and the target concept.

This paper presents CRYSTAL, an implemented system that automatically
induces domain-speci�c text analysis rules from training examples. CRYSTAL
learns rules that approach the performance of hand-coded rules, are robust in
the face of noise and inadequate features, and require only a modest training
size.

CRYSTAL belongs to the class of machine learning algorithms called cov-
ering algorithms, and presents a novel control strategy with time and space
complexity independent of the feature size. CRYSTAL navigates e�ciently
through an extremely large space of possible rules.

CRYSTAL also demonstrates that expressive rule representation is essential
for high performance, robust text extraction. While simple rules are adequate
to capture the most salient regularities in the training data, the subtlety and
variability of unrestricted natural language require rich expressiveness in the
rules for high performance.
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Chapter 1

Introduction

Developing automated text understanding systems is of practical as well as
theoretical interest. The vast quantity of text data available on-line can best
be handled by intelligent agents whose understanding of the text goes beyond
keyword search. This requires a system that can reliably extract both the
explicitly stated information and that which can be reasonably inferred.

Unfortunately, the amount of knowledge needed for in-depth understand-
ing is overwhelming. The BORIS system [Lehnert et al. 1983], developed by
Michael Dyer and other researchers at Yale in the 1980's gives an indication
of just how much knowledge is needed. Three years of intensive knowledge
engineering produced a system capable of impressive in-depth understanding
of a two paragraph narrative, but unable to handle input other than those two
paragraphs.

One approach to reducing the knowledge acquisition to a manageable size
has been that of information extraction (IE). In an IE system, the task is
restricted to identifying a prede�ned set of concepts in a speci�c domain and
ignoring other information. A series of Message Understanding Conferences
[MUC-3 1991, MUC-4 1992, MUC-5 1993, MUC-6 1995] sponsored by ARPA
has given impetus to this approach.

I will present CRYSTAL [Soderland et al. 1995], a system that automati-
cally learns domain-speci�c rules for information extraction. Learning extrac-
tion rules from examples is critical if information extraction is to be a feasible
technology, since these rules are highly speci�c to a given domain and are
di�cult and time consuming to write by hand.

1.1 Domain-speci�c Text Analysis

Information extraction operates in the context of a clearly de�ned information
need. To illustrate how an IE system works, let us consider the Management
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Succession domain, which was used in the MUC-6 performance evaluation
[MUC-6 1995]. The task for this domain is to analyze news articles and identify
persons moving into or out of top corporate management positions. The only
information considered relevant are the persons, positions, and corporations
that are directly involved in a management succession event. Other persons,
positions, and corporations are ignored as irrelevant to the domain.

The excerpt from a Wall Street Journal article in Figure 1.1 illustrates the
type of information extracted from the Management Succession domain.

Who's News: Topologix Inc.

Donald E. Martella, formerly vice president, operations, was
named president and chief executive o�cer of this maker of
parallel processing subsystems. He succeeds Jack Harper, a
company founder who was named chairman.
...

Figure 1.1: A text from the Management Succession domain

Succession Event:
Person In: Donald E. Martella
Person Out: Jack Harper
Position: president and chief executive o�cer
Organization: Topologix Inc.

Succession Event:
Person Out: Donald E. Martella
Position: vice president, operations
Organization: Topologix Inc.

Succession Event:
Person In: Jack Harper
Position: chairman
Organization: Topologix Inc.

Figure 1.2: Output from the sample text: three case frames

This text has three succession events: Donald Martella is moving into a
position that Jack Harper is leaving; Martella is moving out of his old job as
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vice president; Harper is moving in as chairman. These succession events can
be represented as three case frames, each case frame having up to four slots:
Person In, Person Out, Position, and Organization1. The output from this
text is shown in Figure 1.2

How can an information extraction system start from the raw text in Figure
1.1 and produce the desired output representation? This is done in several
stages of processing, beginning with syntactic analysis that identi�es syntactic
constituents such as subject, verb phrase, direct object, and prepositional
phrases. Each word is also assigned a semantic class.

At this point the IE system applies a set of domain-speci�c text extraction
rules to identify references to relevant information. Rules that apply to the
text in Figure 1.1 might look for patterns such as:

1. \<Person> WAS NAMED <Position> OF <Organization>"
2. \<Person> SUCCEEDS <Person>"
3. \<Person> FORMERLY <Position>"
4. \<Person> WHO WAS NAMED <Position>"

The exact nature of these rules will vary from system to system, but all
participants in the MUC evaluations included some form of rules that detect
relevant information based on local context. The rules used by CRYSTAL will
be described in detail in Chapter 3.

Text extraction rules produce a fragmentary view of the text. For ex-
ample, a rule based on the pattern \<Person> WAS NAMED <Position> OF

<Organization>" would identify Donald E. Martella as Person In with a Po-

sition of president and chief executive o�cer, but would leave the Person Out

blank and �nd only a generic reference for the Organization.

Succession Event:
Person In: Donald E. Martella, formerly vice president, operations
Position: president and chief executive o�cer
Organization: this maker of parallel processing subsystems

Figure 1.3: Information extracted using pattern 1

1For the sake of clarity, I am using a somewhat simpler representation than the o�cial
MUC-6 output format.
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A rule that looks for the pattern \<Person> SUCCEEDS <Person>" would
identify \He" as the Person In and Jack Harper as Person Out, but would not
be able to determine the Position or Organization.

Succession Event:
Person In: He
Person Out: Jack Harper, a company founder

Figure 1.4: Information extracted using pattern 2

An IE system needs to consolidate the output of the text extraction rules
in a later step known as discourse processing. This trims extraneous terms
from case frame slots, handles coreference resolution of pronouns and generic
references, merges related case frames, and infers values of empty slots.

This paper will concentrate on the rules that extract information based
on local context, keeping in mind that this only one of many components in
a full IE system. Text extraction rules form a critical information source for
information extraction, but one which, unfortunately, is highly domain-speci�c
and must be acquired for each new domain.

1.2 The Need for Trainable Systems

Text extraction rules developed for one domain cannot, in general, be trans-
ferred to a new domain. Rules to extract management succession events are of
no use in a medical domain in which the relevant information is symptoms and
diagnoses. Instead, rules are based on patterns such as the following, which
would apply to the input \Chest x-ray revealed a new right pleural e�usion".

\<Diagnostic Procedure> REVEALED <Finding>"

Figure 1.5: A pattern used in extraction from a medical domain

These rules also depend on appropriate semantic class assignment of indi-
vidual words. The IE system needs a semantic lexicon that assigns the class
<Diagnostic Procedure> to \x-ray" and the class <Finding> to \pleural ef-
fusion". Even given such semantic class assignment, creating a su�cient set
of reliable extraction rules is a di�cult and time-consuming task.
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Building rules by hand requires both system expertise and domain exper-
tise. A reasonable approach, and the paradigm adopted by the MUC evalua-
tions, is corpus-based system development. Domain experts take a represen-
tative set of several hundred texts and annotate them by hand to create an
answer key for each text. This corpus of annotated texts de�nes the relevant
information by example, and is used by system developers to guide develop-
ment of text extraction rules.

If some of the annotated information is missed by the rules, this indicates
the need for new rules or for broadening of existing rules. If information is
extracted that was not marked as relevant by a domain expert, this indicates
that a rule is overly general and is creating errors.

CRYSTAL automates this method of corpus-based rule generation. A set
of hand-annotated texts serves to de�ne the underlying de�nition of relevant
information. During induction of a rule base, CRYSTAL looks for an instance
of relevant information not covered by existing rules. This instance becomes a
seed for the creation of a new extraction rule. CRYSTAL tests each rule that
it proposes against the entire training corpus to ensure that the rule has not
been generalized too far.

The goal of CRYSTAL is a turnkey system that can be easily adapted
to the information needs of an end user. The user de�nes an information
extraction task by annotating a set of training texts. This does not require
expertise in linguistics or computer science. CRYSTAL then induces a set of
text extraction rules automatically.
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Chapter 2

Test Domains

CRYSTAL has been applied successfully to several domains. I have chosen
two domains with sharply contrasting characteristics as a test bed for the ex-
periments presented in this dissertation. The Management Succession domain
involves business-related news articles, while the Hospital Discharge domain
involves medical records with a specialized medical vocabulary.

2.1 The Management Succession Domain

The Management Succession domain was briey introduced in Chapter 1. This
domain is a corpus of Wall Street Journal texts, in which the information to
be extracted are persons moving into and out of top corporate management
positions.

It is important to be clear about what is not considered relevant in this
domain. Only top management positions in corporations are relevant: not
government positions, partners in law �rms, or appointment of union o�cials.
Being a member of the board of directors is also not relevant, although chair-
manship of a company is relevant.

The output of Management Succession is represented as case frames with
four slots: Person In, Person Out, Position, and Organization. One example
of Management Succession output has already been presented in Figure 1.2.
The text in Figure 2.1 shows another text, which has a mixture of relevant
and irrelevant appointments and removals from o�ce.

Sometimes judging whether an event is relevant cannot be done solely on
the basis of local context. The sentence \He succeeded George Adams, who
resigned in July" may or may not be a management succession event. If Mr.
Adams resigned as a corporate o�cer, then it is relevant. If he was head of a
government agency, editor of a newspaper, or member of a board of directors,
then it is not relevant. Text extraction rules that are based on local context
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Input text:

Staar Surgical Co.'s board said that it has removed
Thomas R. Waggoner as president and chief executive
o�cer and that John R. Wolf, formerly executive
vice president, sales and marketing, has been named
president and chief executive o�cer.
...
The Staar board also said that John R. Ford resigned
as a director, and that Mr. Wolf was named a member
of the board.

Output representation:

Succession Event:
Person In: John R. Wolf
Person Out: Thomas R. Waggoner
Position: president and chief executive o�cer
Organization: Staar Surgical Co.

Succession Event:
Person Out: John R. Wolf
Position: executive vice president, sales and marketing
Organization: Staar Surgical Co.

Figure 2.1: Output from a Management Succession text (being named to or
leaving the board of directors is ignored as irrelevant to the domain)

7



cannot make such distinctions and must rely on later discourse processing to
�lter out incorrect extractions.

The corpus of Management Succession texts includes the 200 texts pro-
vided by the MUC-6 performance evaluation. I expanded the corpus with
additional texts from the Wall Street Journal. The texts include a mix of
actual management succession events as well as \near misses" involving irrel-
evant positions such as director or editor and irrelevant organizations such as
government agencies.

The training for this domain consists of 599 annotated texts with the fol-
lowing statistics. A sentence may result in multiple \training instances" de-
pending on how it is syntactically analyzed. For example a sentence with
multiple independent clauses becomes multiple instances.

Texts: 599 Person In: 678
Sentences: 10,053 Person Out: 714
Instances: 16,325 Position: 1,025

Organization: 833

Table 2.1: Statistics on number of sentences and instances in the Management
Succession domain

2.2 The Hospital Discharge Domain

Hospital discharge summaries are dictated by a physician at the conclusion
of a patient's hospitalization. The writing style and vocabulary include terms
and usages peculiar to medical notes and contain a mixture of full sentences
and sentence fragments.

The task in this domain is to identify all references to symptoms and to
diagnoses. These are further broken down into four categories:

Symptom, Present

Symptom, Absent

Diagnosis, Con�rmed

Diagnosis, Ruled Out

Symptom includes both clinical �ndings and statements by a patient about
his or her condition. Phrases that indicate an abnormal condition are instances

8



of Symptom,Present, while normal or unremarkable �ndings are instances of
Symptom,Absent.

Diagnosis means a conclusion drawn by a physician. If the text explicitly
states that the patient does not have a disease or allergy, this is classi�ed
as Diagnosis,Ruled Out. Other diagnoses are considered Diagnosis,Con�rmed,
whether the diagnosis was made during the current hospitalization or was
previously made.

Medical conditions of family members or conditions that are only suspected
are considered irrelevant and not extracted.

Figure 2.2 shows an excerpt of a Hospital Discharge text. The output has
nine separate case frames, one for each extracted fact. Unlike the Management
Succession domain, in which the output representation has multi-slot case
frames, the Hospital Discharge domain has only single-slot case frames.

This is a major di�erence between the two domains. Information in the
Management Succession domain centers around events. Individual facts such
as persons, positions, and organizations are relevant only because of a rela-
tionship between the facts. Extracted facts in the Hospital Discharge domain,
however, stand in isolation from each other. A phrase such as \lung nodules"
will always be a Symptom,Present when it occurs in an a�rmative context
(e.g. \was found to have lung nodules") and a Symptom,Absent if negated
(e.g. \exam revealed no lung nodules").

The Hospital Discharge corpus consisted of 502 texts with the following
characteristics. This domain is denser in information content than Manage-
ment Succession, with twice as many slot �lls per sentence.

Texts: 502 Symptom, Present: 3,915
Sentences: 15,250 Symptom, Absent: 4,309
Instances: 17,500 Diagnosis, Con�rmed: 2,100

Diagnosis, Ruled Out: 446

Table 2.2: Statistics on number of sentences and instances in the Hospital
Discharge domain

2.3 Annotating the Training Corpora

CRYSTAL is a supervised learning algorithm, and as such needs training in-
stances that have been annotated by a human expert. CRYSTAL is given a
training set of texts in which every instance of the concept being learned (e.g.
management succession event) has been explicitly marked in the text. Any
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Input text:

HISTORY OF PRESENT ILLNESS: ... He also has a medical
history signi�cant for cirrhosis and on a recent screening
chest X-Ray, was found to have new right sided lung nodules. ...
He also is complaining of night sweats but denies any
chest pain, hemoptysis, or shortness of breath. ...
ALLERGIES: He has no known drug allergies.
PHYSICAL EXAMINATION: ... LUNGS: Initially had di�use
rhonchi and all �elds cleared after coughing.

Output representation:

Diagnosis, Con�rmed: cirrhosis

Symptom, Present: new right sided lung nodules

Symptom, Present: night sweats

Symptom, Absent: chest pain

Symptom, Absent: hemoptysis

Symptom, Absent: shortness of breath

Diagnosis, Ruled Out: no known drug allergies

Symptom, Present: di�use rhonchi

Symptom, Absent: all �elds cleared

Figure 2.2: A Hospital Discharge text and a list of extracted facts
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phrases not marked as instances of the target concept are considered to be
negative instances.

CRYSTAL's job is to induce a set of general rules from this training that
will allow it to identify the target concept in previously unseen texts. In
e�ect, CRYSTAL is learning to imitate the human experts who annotated the
training material.

Training texts for these experiments were annotated by inserting SGML
tags around relevant phrases to label that phrase's role in a target concept. A
point-and-click interface was used to facilitate the process.

The sentence in Figure 2.3 has been annotated to show that \night sweats"
is a Symptom,Present (<SP>) and that \chest pain", \hemoptysis", and \short-
ness of breath" are Symptom,Absent (<SA>).

He also is complaining of <SP> night sweats </SP> but denies
any <SA> chest pain </SA>, <SA> hemoptysis </SA>, or
<SA> shortness of breath </SA>.

Figure 2.3: Training annotations in a Hospital Discharge text

The annotation for the Hospital Discharge domain was done by a team of
three nurses under the supervision of the physician who helped to de�ne the
information extraction task. They were able to mark an average of �ve texts
per hour.

In domains with output represented as multi-slot case frames, the SGML
tags must also indicate which phrases participate in the same case frame. In
the Management Succession domain, phrases that play a role in succession
event 1 are labeled with \SE=1", and so forth. Figure 2.4 shows a sentence
with two succession events.

<PI SE=1> He </PI> succeeds <PO SE=1> <PI SE=2> Jack Harper
</PI> </PO>, a <SO SE=2> company </SO> founder who was
named <SP SE=2> chairman </SP>.

Figure 2.4: Training annotations for Management Succession

In this sentence, succession event 1 (SE=1) has two slots �lled: \he" is
Person In and \Jack Harper" is Person Out. Mr. Harper plays the role of
Person In in succession event 2 (SE=2), which also has an Organization (SO)

and a Position (SP).
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Note that generic references and pronouns are marked as valid phrases to
extract. This is done under the assumption that later discourse processing
will resolve these to an actual person or company name. Another decision
that I made in creating training for Management Succession was to mark only
information that could be inferred from the context of the current sentence.
Once I had settled on annotation guidelines, text marking went quickly, at an
average of 20 texts per hour.

The SGML tags that are added directly to the training texts make no
assumptions about what syntactic analysis and semantic tagging will later be
done by the information extraction system. The annotation is also neutral
about the representation language of the text extraction rules. CRYSTAL's
rule representation is presented in the following chapter.
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Chapter 3

CRYSTAL's Text Extraction

Rules

CRYSTAL learns rules to extract concepts of interest to a particular domain
(e.g. succession events) based on local linguistic context. These rules use a
combination of syntactic, semantic, and lexical evidence to identify references
to the target concept.

What features of the local context will be su�cient for CRYSTAL's text ex-
traction rules, and what representation of the text should be passed to CRYS-
TAL? The representation must be expressive enough to capture the richness
of natural language, yet not so complex that a machine learning algorithm has
trouble �nding regularities in the training.

The rules must have access to some level of syntactic knowledge, at least
distinguishing major syntactic constituents such as subject, verb, and direct
object. Otherwise CRYSTAL could not tell who is the Person In and who is
the Person Out in \Mr. A succeeds Mr. B as chairman" and \Mr. B succeeds
Mr. A as chairman". The rules will also need to distinguish a�rmative from
negative phrases and distinguish active from passive verbs.

Expressing rules in terms of semantic classes allows compact rules with
greater generality than rules using only exact word constraints. The semantic
class assignment must be appropriate to the domain. Rules for the Manage-
ment Succession domain can be expressed in terms of semantic classes such as
<Person Name>, <Organization Name>, and <Position>. The Hospital Dis-
charge domain needs classes such as <Disease or Syndrome>, <Body Part>,
and <Finding>.

Semantic classes alone may not be su�cient in some cases, however. In
the Management Succession domain, the word \former" is a good clue that
someone is a Person Out (\the former chairman"), while \new" is evidence for
Person In (\the new chairman"). Using exact word constraints as well as se-
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mantic constraints is especially important when the semantic class assignment
has not been �ne-tuned to make the distinctions needed for the information
extraction task.

Another consideration that applies to both semantic class constraints and
exact word constraints is the distinction between head terms and modifying
terms. The meaning of a word or class may depend on whether it is found as
a head or modi�er. For example, the term \cancer" in a hospital discharge
report is usually evidence of the concept Diagnosis, but not when it is used as
a modi�er (\cancer studies" or \cancer treatment").

The following section shows how CRYSTAL incorporates these various
types of linguistic evidence in the representation of instances and of rules.

3.1 Concept De�nitions

CRYSTAL's text extraction rules, called concept de�nitions, do not operate
directly on the raw text. The text is �rst processed by a sentence analyzer to
produce instances for CRYSTAL. These instances have been segmented into
syntactic constituents such as subject, verb, object, and prepositional phrases.
In addition, each word has been tagged with a semantic class. The concept
de�nitions apply semantic and lexical constraints to syntactic constituents of
the instance.

CRYSTAL is independent of the syntactic analysis and the semantic class
assignment. It uses whatever syntactic labels and semantic classes are found
in the training instances. The only requirement is that the instances are pre-
sented as a at list of syntactic constituents. In addition to training instances,
CRYSTAL is given a semantic hierarchy for the domain and a data �le listing
the concepts for the domain. The semantic hierarchy allows rules with class
constraints to cover sub-classes, for example a constraint requiring the class
<Person> covers the sub-classes <Person Name> and <Generic Person> in
Management Succession instances.

Training instances for these experiments were created by the BADGER
sentence analyzer of the University of Massachusetts [Fisher et al. 1995]. The
Hospital Discharge domain used a version of BADGER that segments each
simple clause into constituents such as SUBJ, VERB, OBJ, ADV, and PP
(prepositional phrase). The version used for the Management Succession do-
main uses those syntactic constituents and also has constituents labeled REL-
SUBJ, REL-VERB, REL-OBJ, and REL-PP for relative clauses attached to
the subject, verb, object, and prepositional phrase, respectively.

A concept de�nition has a list of constraints that operate on syntactic
constituents of an instance. For example, one concept de�nition may have
constraints on the subject, verb, and direct object, while another de�nition

14



may have constraints on the subject and on three prepositional phrases. Each
of these syntactic constituents may have any of the following constraints.

Constraints on syntactic constituents:
Terms
Head terms
Modi�er terms
Classes
Head classes
Modi�er classes
Root
Preposition
Mode (a�rmative/negative, active/passive)

Figure 3.1: Constraints in a concept de�nition

Any combination of the above constraints may be included in a concept
de�nition. The term constraint is an unordered list of words that must be
included in the syntactic constituent. The classes constraint is an unordered
list of semantic classes that must be present, either directly or through an IS-A
relationship. Head terms and classes are those found as the last term of the
phrase, or just before punctuation, before a preposition, or before an adverb.
All other terms are considered modi�ers.

The mode constraint is used for \a�rmative" or \negative", \active" or
\passive". CRYSTAL attaches no meaning to these labels, and will accept
whatever modes are assigned by the sentence analyzer. The root constraint is
used if the sentence analyzer provides the verb root. The preposition constraint
requires that a prepositional phrase have a particular preposition.

If all constraints for each syntactic constituent are satis�ed, CRYSTAL
creates a case frame for the target concept. The concept de�nition speci�es the
output concept and associates each case frame slot with a syntactic constituent
of the instance. For example, a concept de�nition for Succession Event may
�ll the Person In slot with the subject and the Person Out slot with the direct
object of the instance.

A few concrete examples of concept de�nitions will make this clear.

3.2 A Few Sample Concept De�nitions

Figure 3.2 shows a sentence that has been syntactically segmented and se-
mantically tagged to produce an instance for CRYSTAL. Note that the phrase
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Input Sentence:
He succeeds Jack Harper, a company founder who was
named chairman.

CRYSTAL Instance:
SUBJ:

Terms: HE

Classes: <Generic Person>
Mode: a�rmative

VERB:
Terms: SUCCEEDS

Root: SUCCEED

Mode: active, a�rmative
OBJ:

Terms: JACK HARPER %COMMA% A COMPANY FOUNDER

Classes: <Person Name>, <Generic Organization>,
<Generic Person>

Mode: a�rmative
REL-OBJ:

Terms: WHO WAS NAMED CHAIRMAN %PERIOD%

Classes: <Past>, <Event>, <Corporate O�ce>
Mode: a�rmative

Figure 3.2: Syntactic analysis and semantic tagging of Management Succession
input

\who was named chairman" is included in the instance as a REL-OBJ (relative
clause attached to the direct object).

The instance also has semantic classes assigned to each word. The words
\he", \company", \founder", \was", \named", and \chairman" are all found
in the semantic lexicon for this domain, although \succeeds" was not, due to
an oversight. Words not found in the semantic lexicon for the domain are
given the class <Root Class> (not shown in the �gure).

In the Management Succession domain, BADGER augments its semantic
lexicon with a proper name recognizer that identi�es persons, organizations,
and locations. This module has assigned the semantic class <Person Name>
to \Jack Harper".

Figure 3.3 show a concept de�nition that applies to the instance in Figure
3.2. This de�nition tests that the subject contains a word with semantic class
<Person>, that the verb root is \succeed", and that the direct object contain
the class <Person Name>. If all these constraints are met CRYSTAL creates a
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Succession Event case frame with the subject of the instance in the Person In

slot and the direct object in the Person Out slot.

Concept type: Succession Event
Constraints:

SUBJ::
Classes include: <Person>
Extract: Person In

VERB::
Root: SUCCEED

Mode: active
OBJ::

Classes include: <Person Name>
Extract: Person Out

Figure 3.3: A concept de�nition that applies to \He succeeds Jack Harper, a
company founder"

CRYSTAL consults a domain-speci�c semantic hierarchy to test the se-
mantic constraints. The semantic constraint on the subject is met by \he"
since the class <Generic Person> is a subclass of <Person>. All the other
constraints are also satis�ed by this instance, so CRYSTAL instantiates a case
frame with Person In �lled by \He" and Person Out �lled by \Jack Harper,
a company founder".

Figure 3.4 shows a second concept de�nition that applies to the same in-
stance. This de�nition looks for Person In in the direct object and Position in
a relative clause attached to the direct object. Semantic constraints require a
<Person Name> in the direct object and a <Corporate O�ce> in the relative
clause. The relative clause must also include the terms \who" and \named".

After applying this concept de�nition to the instance in Figure 3.2, CRYS-
TAL creates a case frame with the Person In slot �lled by the phrase \Jack
Harper, a company founder". The Position slot is �lled by the phrase \who
was named chairman." Each of these phrases include the desired information,
but also have extraneous words that must be trimmed away by later processing
in a full information extraction system.

3.3 Finding the Right Level of Generalization

Each of these concept de�nitions operates properly on the sample instance,
but so would a large range of possible concept de�nitions. The de�nition in
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Concept type: Succession Event
Constraints:

OBJ::
Classes include: <Person Name>
Extract: Person In

REL-OBJ::
Terms include: WHO NAMED

Classes include: <Corporate O�ce>
Extract: Position

Figure 3.4: A concept de�nition that applies to \Jack Harper, a company
founder who was named chairman"

Figure 3.3 has a class constraint requiring <Person> in the subject. A more
restrictive constraint would work just as well on this particular instance. The
constraint on the subject could require the class <Generic Person> and further
requires that there be no modi�er term. Figure 3.5 shows a concept de�nition
with these constraints.

Concept type: Succession Event
Constraints:

SUBJ::
Modi�er terms include: <null>
Head classes include: <Generic Person>
Extract: Person In

VERB::
Root: SUCCEED

Mode: active
OBJ::

Classes include: <Root Class>
Extract: Person Out

Figure 3.5: An alternate concept de�nition for \He succeeds Jack Harper, a
company founder"

The de�nition in Figure 3.5 also drops all constraints on the direct object.
Constraining the direct object to have a <Person> is unnecessary, since a
sentence beginning \He succeeds" can have nothing other than a person in the
direct object in this domain.
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I am not implying that Figure 3.5 is a better concept de�nition than that
in Figure 3.3 or vice versa. This example is merely to point out that a variety
of concept de�nitions can apply to a given instance. Some of the possible
de�nitions may seem foolish, such as one with a term constraint requiring
a \%comma%" in the direct object. The total number of possible concept
de�nitions from this instance is astonishingly large, as will be shown in the
following chapter.

The challenge for CRYSTAL is to derive concept de�nitions from training
examples that are neither too restrictive nor too general. An overly restrictive
de�nition will be unlikely to apply to new instances, for example constraining
the direct object to include \Jack Harper". On the other hand, an overly gen-
eral de�nition will make extraction errors and apply to instances that do not
contain the target concept. The next chapter presents CRYSTAL's strategy
for �nding the appropriate level of generalization.

19



Chapter 4

CRYSTAL's Induction

Algorithm

The goal of CRYSTAL is to �nd a set of concept de�nitions that are general-
ized enough to have good coverage on previously unseen text, yet constrained
tightly enough to operate reliably. CRYSTAL's approach is to begin with
highly speci�c concept de�nitions and gradually relax the constraints. Each
proposed generalization is tested for extraction errors on the training set, which
has been hand-tagged with the desired phrases to be extracted. Generaliza-
tion continues until further relaxation would lead to a de�nition that exceeds
a user-de�ned error tolerance.

CRYSTAL begins by selecting a positive instance of the target concept
as a seed. CRYSTAL then takes the most speci�c de�nition that covers this
instance and generalizes it as far as possible. The generalized de�nition is
added to the rule base and another seed is selected from positive instances not
yet covered by the rules. This is repeated until all positive instances have been
covered or have been selected as seed instances. This methodology in machine
learning is called a covering algorithm (see Chapter 8).

4.1 Deriving Initial Concept De�nitions

The �rst step of CRYSTAL is to create a set of initial concept de�nitions from
each positive instance of the concept being learned. These initial de�nitions
are the most restrictive de�nition that covers the instance, requiring every term
and every semantic class to be identical to the motivating instance. CRYSTAL
includes all words and classes, since it does not know in advance which of these
features are essential to the concept and which will later be dropped during
generalization.

In a multi-slot concept such as Succession Event, each subset of slots is
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treated as a separate concept to be learned. Any instance that contains that
subset of slots is considered a positive instance of the target concept.

For example, one target concept is succession events that have a Person In

and a Person Out slot. Instances that contains at least these two slots are
positive. All other instances are considered negative instances for this concept,
even though they may be positive for other concepts.

Figure 4.1 shows an initial concept de�nition from the input \He succeeds
Jack Harper, a company founder who was named chairman." This sentence
has been hand-tagged with a succession event containing \He" as Person In

and \Jack Harper" as Person Out. See Figure 2.4 for the tagged sentence
and Figure 3.2 for the syntactic analysis that forms the basis for a training
instance..

This initial concept de�nition will correctly extract Person In and Per-

son Out from this sentence, but is so restrictive that it will never be satis�ed
by a sentence in any other text. In machine learning terminology, it is the
maximally speci�c concept description that covers this instance. CRYSTAL's
task is to learn which of these constraints to relax.

Term constraints can be relaxed by dropping terms. The direct object
constraint requiring \Jack Harper %comma% a company founder" has �ve
terms (Jack Harper is treated as a single word, as is %comma%). There are
32 possible ways to relax this constraint by dropping a subset of the terms.
The total number of combinations that drop subsets of terms, head terms, and
modi�er terms is even greater.

Class constraints may be relaxed by moving up in the semantic hierar-
chy. For example <Generic Person> may be relaxed to <Person>, then to
<Entity>, then to <Root Class>, which is equivalent to no constraint. The
head class, modi�er class, and class constraints for the direct object of this
instance may be relaxed in over one hundred distinct ways.

With over one thousand possible ways to relax constraints on the direct
object, over one thousand for the REL-OBJ, and over one hundred each for
the subject and the verb, there are more than one billion ways to generalize
the initial concept de�nition in Figure 4.1.

CRYSTAL must search among this enormous space of possible concept
de�nitions for an acceptable level of generalization. CRYSTAL needs a search
control strategy that allows it to quickly drop constraints that are merely
accidental features of the motivating instance and to retain those constraints
that are essential to the target concept.
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Concept type: Succession Event
Constraints:

SUBJ::
Terms include: HE

Head terms include: HE

Modi�er terms include: <null>
Classes include: <Generic Person>
Head classes include: <Generic Person>
Mode: a�rmative
Extract: Person In

VERB::
Terms include: SUCCEEDS

Head terms include: SUCCEEDS

Modi�er terms include: <null>
Root: SUCCEED

Mode: active, a�rmative
OBJ::

Terms include: JACK HARPER %COMMA% A COMPANY FOUNDER

Head terms include: JACK HARPER FOUNDER

Modi�er terms include: %COMMA% A COMPANY

Classes include: <Person Name>, <Generic Organization>,
<Generic Person>

Head classes include: <Person Name>, <Generic Person>
Modi�er classes include: <Generic Organization>
Mode: a�rmative
Extract: Person Out

REL-OBJ::
Terms include: WHO WAS NAMED CHAIRMAN %PERIOD%

Head terms include: CHAIRMAN

Modi�er terms include: WHO WAS NAMED %PERIOD%

Classes include: <Past>, <Event>, <Corporate O�ce>
Head classes include: <Corporate O�ce>
Modi�er classes include: <Past>, <Event>
Mode: a�rmative

Figure 4.1: The initial concept de�nition for \He succeeds Jack Harper, a
company founder ..."
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4.2 Generalizing the Initial De�nitions

CRYSTAL gradually relaxes constraints on the initial concept de�nition, which
typically covers only a single positive instance. Each generalization step re-
laxes constraints enough to increase the number of positive training instances
covered. Each proposed generalization is then tested on the entire training set
to ensure that it does not cover an excessive proportion of negative training
instances.

The key insight of CRYSTAL is to guide this relaxation by unifying the
current de�nition with the most similar initial de�nition. This is equivalent
to relaxing constraints just enough to cover the most similar positive instance.
Since each initial concept de�nition corresponds to a positive training instance,
I will use the terms \instance" and \initial concept de�nition" interchangeably.

CRYSTAL uni�es a concept de�nition with a similar initial de�nition by
dropping constraints that are not shared by the two de�nitions. Unifying the
term constraint \Harold Archer %comma% former chairman of Atlas" with
\Mr. Green %comma% chairman since 1982" results in dropping all terms
from the constraint but \%comma%" and \chairman".

In the case of class constraints, uni�cation means moving up in a semantic
hierarchy to a common ancestor. For example, unifying <Person Name>
with <Generic Person> results in a class constraint with <Person>. Unifying
<Person Name> with <Event> results in <Root Class>.

This strategy has several bene�cial results. Features that are merely ac-
cidental properties of a particular instance will be quickly dropped. Features
that are shared with a similar positive instance are retained. These tend to
include essential characteristics of the target concept. The intractable problem
of �nding an optimal generalization is thus reduced to the simpler problem of
�nding a similar initial de�nition.

Figure 4.2 shows CRYSTAL's generalization mechanism graphically. The
actual instance space has an extremely large number of dimensions, but this
two dimensional �gure can give some insight into how CRYSTAL operates.

The plus signs are positive instances and the minus signs are negative
instances of a target concept in instance space. A concept de�nition de�nes a
region in instance space, and is shown as an oval that initially covers only a
single seed instance, as shown in part A of the diagram.

Part B of the diagram shows the �rst proposed generalization of this ini-
tial de�nition, which covers two training instances with no errors. The next
proposed generalization in part C covers four instances with no errors. In
part D of Figure 4.2, relaxing constraints enough to cover the nearest positive
instance will also cover two negative instances.
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Generalizing from a Seed Instance

Figure 4.2: Each generalization step relaxes constraints just enough to cover
the nearest positive instance.

What CRYSTAL does at this point depends on the error tolerance param-
eter. The proposed concept de�nition covers seven training instances with
two errors. At error tolerance 0.30, this would be an acceptable de�nition,
and generalization would continue as before. At an error tolerance of 0.20,
CRYSTAL would halt generalization, and add the current de�nition (which
covers four instances) to the rule base.

4.3 Finding Similar Concept De�nitions

The distance metric used by CRYSTAL counts the number of relaxations of
the current de�nition that would be needed to unify it with a similar de�nition.
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Dropping one word from a term constraint counts as a single relaxation, as
does dropping a mode or root constraint. Moving up in the semantic hierarchy
counts as one relaxation for each level of the hierarchy. Entirely dropping a
class constraint is equivalent to moving up to the root class, then dropping
the class constraint.

Only concept de�nitions that extract the same slot values from the same
constituents are candidates for similar de�nition. Thus, if CRYSTAL is gen-
eralizing a de�nition that extracts Person In from the subject and Position

from a prepositional phrase, it will only look for similar de�nitions that extract
these slots from the same constituents.

All constraints on a syntactic constituent are dropped if no corresponding
constituent is found in the other de�nition. Suppose that one de�nition has two
prepositional phrases \as president" and \in 1983" and the other de�nition has
one prepositional phrase \as chairman". CRYSTAL matches the most similar
prepositional phrases, and leaves \in 1983" unmatched.

When CRYSTAL looks for a most similar de�nition, it considers all initial
de�nitions that are not covered by the current de�nition. Although initial
de�nitions covered by existing rules are not used as seed de�nitions, they are
still available to guide generalization.

CRYSTAL includes a mechanism for biasing the distance function to give
a greater weight to certain constraints and to certain syntactic constituents
than to others. The settings used in these experiments count relaxation of verb
constraints as 1.5 times the weight of other constituents. This weight factor
is based on an intuition that verbs tend to be a somewhat more important
part of the context than other constituents. This is discussed more fully in
Appendix B.

Similarly, the preposition seems to be more important than other words
in a prepositional phrase, so it has been given a weight of four times that of
other words. No attempt has been made to tune these settings for particular
domains, although this could be done. As I will discuss later, the exact distance
function is not critical to CRYSTAL's performance.

4.4 The CRYSTAL Algorithm

Let us now turn to a more formal statement of the CRYSTAL algorithm.
CRYSTAL starts with an empty rule base, selects as a seed an initial de�nition
not covered by the rules, and then �nds a generalized de�nition based on that
seed. This is repeated until all initial de�nitions have either been selected as
seeds or are covered by the rules.

The main loop that generalizes a de�nition D, relaxes the constraints on
D by �nding a similar initial de�nition D' and creating the uni�cation U of
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The CRYSTAL Algorithm:

Rules = NULL
Derive an initial concept de�nition from each positive instance
Do for each initial de�nition D not covered by Rules

Loop:
D' = the most similar de�nition to D
If D' = NULL, exit loop
U = the uni�cation of D and D'
Test U on the training set
If the error rate of U > error tolerance

Exit loop
Set D = U

Add D to the Rules
Return the Rules

D and D'. This process of generalization is repeated until one of two things
happens. If no D' can be found, this means that D already covers all possible
candidates for similar de�nition and will not pro�t from further relaxation.

The more likely situation is that some essential constraint has been relaxed
too far in creating the proposed de�nition U. If the error rate of U exceeds
a user-de�ned error tolerance, then U is discarded. CRYSTAL backs up one
generalization and adds the de�nition D to the rule base. This is the most
general de�nition found that was within tolerance.

The error rate of a proposed de�nition is computed by applying the de�-
nition to each instance in the training set. These instances have been created
from hand-annotated training texts and indicate which constituents, if any,
contain slot values of the target concept. If all the constraints of a de�nition
are satis�ed, but the appropriate slot values are not found, this is counted as
an extraction error.

4.5 Robustness of CRYSTAL

Why does CRYSTAL include an error tolerance parameter? This gives CRYS-
TAL robustness with respect to \noisy" training data and prevents an other-
wise good de�nition from being blocked by an occasional negative instance.
A certain amount of noise tolerance is desirable when processing unrestricted
text.
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One source of noise is the human annotators, who may overlook a phrase
that should have been marked as a positive instance. This will be considered
a negative instance by CRYSTAL. Other sources of noise are parsing mistakes
by the sentence analyzer, or semantic tagging that is too coarse to distinguish
a negative instance from positive instances.

One unavoidable source of noise comes from the local nature of CRYSTAL
instances. Local evidence may not be su�cient to distinguish a relevant from
an irrelevant reference. In such cases it may be best to generate rules that
sometimes extract negative instances (i.e. irrelevant information). Later pro-
cessing in an information extraction system can often make use of evidence
beyond the local sentence to �lter out irrelevant extractions.

CRYSTAL is robust in another way also. There is a built-in redundancy
in the concept de�nitions induced by CRYSTAL that tend to overcome sub-
optimal choices made during the induction. Once a choice has been made,
CRYSTAL never backtracks to try alternate choices. Unifying with the \most
similar" initial de�nition is not guaranteed to lead to an optimal generalized
de�nition.

It turns out that this is not a serious problem. When CRYSTAL generates
a sub-optimal rule, the positive instances that are not covered are available
as later seed instances. CRYSTAL continues to add rules until the training
instances that were missed earlier have been covered.

Suppose that CRYSTAL is generalizing from a seed instance, and a def-
inition exists that covers 100 positive instances including that seed. What
happens if CRYSTAL takes a wrong turn and arrives instead at a de�nition
that covers only 5 of these instances? The other 95 positive instances remain
to be chosen as seed. With any reasonable distance metric, one of these re-
maining seeds is likely to result in the high coverage de�nition. In that case
the sub-optimal de�nition becomes redundant and causes no harm.

Even if CRYSTAL never �nds a single de�nition to cover all 100 instances,
this region in instance space will be covered by several overlapping de�nitions.
These smaller coverage de�nitions, when taken together, may actually give
better performance than a single high-coverage de�nition. Experiments re-
ported in Section 5.4 show the result of increasing the amount of search for
optimal de�nitions. This produces more a more compact set of high-coverage
rules, but does not necessarily improve performance.

4.6 Time and Space Complexity of CRYSTAL

One of CRYSTAL's main contributions is a search control strategy that nav-
igates a huge search space e�ciently. Not only does CRYSTAL avoid back-
tracking, but its time and space requirements are independent of the size of
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the feature sets. This is important in natural language processing, where the
number of word-based features can be extremely large.

Let n be the total number of training instances, p be the number of posi-
tive instances. Finding a similar de�nition requires inspecting up to p initial
de�nitions. The proposed generalization is then tested on n instances. This
gives computation time of O(p + n) = O(n) for each generalization step.

Let k be the average number of generalizations per seed, which turns out
to be small enough that it can be treated as a constant (k � 3 for the Hos-
pital Discharge training sets). The number of times CRYSTAL selects a seed
to generalize is equal to r, the number of rules generated. This gives time
complexity of O(rn).

Ideally r depends only on the underlying concept being learned and is
independent of n and p. With noisy data, however, a seed is selected O(p)
times. This gives time complexity of O(pn).

Note that the size of the feature set does not enter into the time or space
requirements of CRYSTAL. The space required is proportionate to the number
of instances. Each instance is represented only in terms of the words and classes
that actually appear in the instance. There may be thousands of words and
hundreds of semantic classes that do not appear in the subject, thousands of
words that do not appear in the direct object, thousands that do not appear
as the object of the preposition \with", and so forth. This gives CRYSTAL
an important time and space advantage over algorithms that must consider
features exhaustively.

4.7 A Walk-through Example

This section presents a trace in which CRYSTAL generalizes from a seed in-
stance that has a management succession event with a Person In slot and a
Person Out slot. The training set used in this example was from 359 Man-
agement Succession texts (60% of the total corpus, selected randomly), which
produced 10,570 training instances. Of these 112 were positive instances of a
succession event including a Person In and a Person Out.

Let us begin with the initial de�nition, already presented in Figure 4.1,
which is derived from the \seed" shown in Figure 4.3. This de�nition extracts
Person In from the subject and Person Out from the direct object of the
sentence.

Both the seed and the most similar instance have an identical subject and
verb. The direct objects of each include a<Person Name> and<Organization>.
The direct object has an appositive in both cases. Each sentence ends in a rel-
ative clause attached to the direct object that contains the class <Corporate
O�ce> and <Past>.

28



Seed:
He succeeds Jack Harper, a company founder who
was named chairman.

Most similar:
He succeeds Delbert W. Yocam, a longtime Apple
executive who has held many posts at Apple,
including chief operating o�cer.

Figure 4.3: A seed and the most similar instance found (The motivating sen-
tence is shown rather than the entire initial de�nition.)

Unifying the seed with this instance produces the generalized concept def-
inition shown in Figure 4.4. CRYSTAL tests this new de�nition on the entire
training set and �nds that it covers two instances with no errors. This may not
seem to be much progress, but actually it represents 16 individual relaxations.
Words have been dropped from term constraints, head term constraints, and
modi�er term constraints. Class constraints requiring <Generic Person> and
<Generic Organization> have been relaxed.

If any fewer than these 16 relaxations had been made, the de�nition would
still cover only the seed instance. A search control mechanism that considered
all combinations of single relaxations, then pairs of relaxations, and so forth,
would founder before it made enough relaxations to observe any progress.

Since the de�nition in Figure 4.4 has error rate 0.00, CRYSTAL continues
the generalization. After unifying with \He succeeds William F. Murdoch, 58,
who takes the title of vice chairman." CRYSTAL arrives at the de�nition in
Figure 4.5. This has dropped the constraint requiring an <Organization> in
the direct object and <Past> in the relative clause. There are no changes
to constraints on the subject and verb. This de�nition covers four training
instances with no errors.

Note that this de�nition still requires the class <Corporate O�ce> in the
relative clause. This class has been engineered to include only job titles that
are considered relevant to the Management Succession domain. The next re-
laxation uni�es with \He succeeds Mark Stephens, 48, who resigned in May."
This no longer includes the class <Corporate O�ce>, and lacks any reliable
cues that distinguish it from irrelevant instances such as succeeding to a gov-
ernment post or on a board of directors.

After dropping the <Corporate O�ce> constraint, the de�nition covers
six training instances with one error, giving it an error rate of 0.167 on the
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Concept type: Succession Event
Constraints:

SUBJ::
Terms include: HE

Head terms include: HE

Modi�er terms include: <null>
Classes include: <Generic Person>
Head classes include: <Generic Person>
Mode: a�rmative
Extract: Person In

VERB::
Terms include: SUCCEEDS

Head terms include: SUCCEEDS

Modi�er terms include: <null>
Root: SUCCEED

Mode: active, a�rmative
OBJ::

Terms include: %COMMA% A

Modi�er terms include: %COMMA% A

Classes include: <Person Name>, <Organization>
Head classes include: <Person Name>
Modi�er classes include: <Organization>
Mode: a�rmative
Extract: Person Out

REL-OBJ::
Terms include: WHO %PERIOD%

Modi�er terms include: WHO %PERIOD%

Classes include: <Past>, <Corporate O�ce>
Head classes include: <Corporate O�ce>
Modi�er classes include: <Past>
Mode: a�rmative

Covers 2 training instances with 0 errors

Figure 4.4: Uni�cation of \He succeeds Jack Harper, a company founder" and
\He succeeds Delbert W. Yocam, a longtime Apple executive who has held
many posts at Apple, including chief operating o�cer"
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Concept type: Succession Event
Constraints:

SUBJ::
Terms include: HE

Head terms include: HE

Modi�er terms include: <null>
Classes include: <Generic Person>
Head classes include: <Generic Person>
Mode: a�rmative
Extract: Person In

VERB::
Terms include: SUCCEEDS

Head terms include: SUCCEEDS

Modi�er terms include: <null>
Root: SUCCEED

Mode: active, a�rmative
OBJ::

Terms include: %COMMA%

Modi�er terms include: %COMMA%

Classes include: <Person Name>
Head classes include: <Person Name>
Mode: a�rmative
Extract: Person Out

REL-OBJ::
Terms include: WHO %PERIOD%

Modi�er terms include: WHO %PERIOD%

Classes include: <Corporate O�ce>
Head classes include: <Corporate O�ce>
Mode: a�rmative

Covers 4 training instances with 0 errors

Figure 4.5: Class constraints for <Organization> in OBJ and <Past> in REL-
OBJ have been dropped after unifying with \He succeeds William F. Murdoch,
58, who takes the title of vice chairman"
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training data. If the error tolerance has been set at 0.00 CRYSTAL halts and
adds the de�nition in Figure 4.5 with coverage 4 and no errors to the rule base.

At an error tolerance of 0.25, CRYSTAL will continue generalizing and
eventually arrive at the de�nition in Figure 4.6. This covers 72 training in-
stances with 14 errors for an error rate of 0.194. The de�nition no longer
requires a relative clause, has dropped all term constraints, and has even
dropped the requirement of a <Person> in the direct object and dropped
the requirement that <Person> be the head term of the subject.

Concept type: Succession Event
Constraints:

SUBJ::
Classes include: <Person>
Head classes include: <Entity>
Mode: a�rmative
Extract: Person In

VERB::
Root: SUCCEED

Mode: active, a�rmative
OBJ::

Classes include: <Entity>
Head classes include: <Entity>
Mode: a�rmative
Extract: Person Out

Covers 72 training instances with 14 errors

Figure 4.6: CRYSTAL �nally reaches a high coverage de�nition

If the error tolerance is set at 0.20, CRYSTAL will still �nd this gener-
alization, but not directly from the �rst seed. Generalization from this seed
halts at a lower-coverage de�nition with error rate 0.214. One of the positive
instances not covered by this sub-optimal de�nition is later chosen as a seed
and produces the de�nition in Figure 4.6 after all.

Which error tolerance gives the best performance on unseen texts? Rule
sets created at tolerance 0.00, 0.10, 0.20, and 0.25 were tested on a blind set
of 240 texts that consisted of 6,106 instances. Even with error tolerance 0.00,
CRYSTAL generates rules that are able to identify more than half of the test
instances of this concept.
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As the error tolerance is raised, the number of rules generated decreases
since the average coverage of each rule is greater. At tolerance 0.25, CRYSTAL
produces 15 rules that �nd nearly 80% of the positive test instances, with some
decrease in precision.

Tolerance # Rules Recall Precision
0.00 41 53.7 87.8
0.10 34 61.2 87.2
0.20 24 77.6 75.4
0.25 15 79.1 74.6

Table 4.1: Recall and precision for Person In,Person Out rules at various error
tolerance settings

Performance is measured in terms of recall and precision, where recall is the
percentage of positive instances that were found by the rule base. Precision
measures the percent correct of instances extracted by the rule base.

The following chapter gives more empirical results for CRYSTAL in both
the Management Succession domain and the Hospital Discharge domain.
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Chapter 5

Empirical Results in Two

Domains

5.1 Methodology and Performance Metrics

Experiments in both the Management Succession domain and the Hospital
Discharge domain were conducted by partitioning the hand-annotated corpus
into a training set and a blind test set. The Management Succession corpus
has 599 texts with 16,325 instances. The Hospital Discharge domain has 502
texts with 17,500 instances. Except as noted, the results are averages of ten
random partitions of the texts.

CRYSTAL used the training set to induce a set of concept de�nitions,
which were then applied to the blind test set. The case frames produced by
the concept de�nitions were compared to the hand annotations in the test
instances. If every slot contained the desired information, the extraction was
counted as correct, otherwise as an error.

Performance is measured in terms of recall and precision. Recall is the
percentage of instances of the target concept that were correctly identi�ed.
Precision is the percentage of extractions made that were correct. Suppose for
example that there are 500 instances of the target concept in the test set and
that rules induced by CRYSTAL found 300 of them. This gives recall of 60%.
Further suppose that the rules made 100 false extractions in addition to the
300 correct ones. This gives precision of 75%.

For most of the experiments the error tolerance parameter is set at 0.20,
which tends to give roughly balanced recall and precision on these data sets.
Concept de�nitions that cover only one training instance have been discarded,
since they are too tightly constrained to cover test instances and have a neg-
ligible e�ect on performance.
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When statistical signi�cance is mentioned, a two-tailed, paired t-test is
used with p<0.05.

5.2 Empirical Results and Learning Curves

Results will be shown for the Management Succession domain and for two
versions of input for the Hospital Discharge domain. The second version is
after semantic class assignment of individual words has been customized for
the information extraction task.

5.2.1 Management Succession Performance

The Succession Event case frame has four slots, Person In, Person Out, Posi-
tion, and Organization (abbreviated in performance graphs as In, Out, Post,
and Org). Since not all instances have all possible slots, CRYSTAL learns each
of the �fteen possible combinations of one, two, three, or four slot concepts.

The graph in Figure 5.1 show recall and precision for each of these concepts.
The number of positive training instances is shown for each concept.

CRYSTAL is able to achieve recall and precision in the 60's and 70's for
the single-slot concept Person In, for Person Out, for Position, and for two-
slot concepts that combine these slots. Performance was a little lower for
Organization and for multi-slot concepts that include an Organization.

Multi-slot concepts have a smaller number of positive training instances
than single slot concepts. For example, there are 505 training instances of
Person In, but only 52 of them are part of a Succession Event that has Per-

son In together with Person Out and Organization.
Was the amount of training adequate for these concepts? Would CRYS-

TAL's performance increase if more texts were annotated? The learning curves
shown in Figure 5.2 give an indication that CRYSTAL was not saturated by
this level of training.

Recall and precision are shown for four representative Management Suc-
cession concepts1 as training size is increased from 20% of the texts to 40%
of the texts to 80% of the texts. The number of positive training instances is
shown below each set of recall and precision.

Recall increases with each doubling of the training size while there is no
signi�cant di�erence in precision2. This has the biggest impact on the multi-

1A table with results for all �fteen combinations of slots at 20%, 40%, and 80% training
is given in Appendix A.

2The di�erence in recall from 40% training to 80% was statistically signi�cant in ev-
ery case. The recall had wider variance at lower training levels, which made some of the
di�erence from 20% training to 40% only marginally signi�cant. [None of the di�erences
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Figure 5.1: Management Succession performance: averages of 10 random par-
titions into 80% training, 20% test set
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Figure 5.2: Management Succession learning curves at 20% training, 40%
training, and 80% training
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slot concepts, which seem to be under-trained. Precision remains fairly level
as an artifact of the error tolerance parameter. The error tolerance was kept
at 0.20, which would result in precision of about 80 if error rates on the test
set exactly mirrored error rates on the training.

Table 5.1 shows the number of concept de�nitions generated from 479 train-
ing texts (80% of the Management Succession corpus). These are broken down
by how many training instances they cover. Note that the concepts with the
highest performance are also the concepts with high coverage de�nitions (cov-
ering 50 or more training instances).

                           

              

In    

Out 

Post

Org

In,Out

In,Post

In,Org

Out,Post

Out,Org

Post,Org

In,Out,Post

In,Out,Org

In,Post,Org

Out,Post,Org

In,Out,Post,Org

10-49

   26

   31

   43

   30

   12

   18

   16

   18

   12

   35

     4

     1

   10

   11

     1

50+

 8

 2

 8

 0

 1

 4

 0

 0

 0

 0

 0

 0

 0

 0

 0

Definitions with coverage:

2-4

 62

 75

 62

 99

   6

 49

 52

 66

 55

 66

   7

   9

 49

 40

   6

5-9

 29

 37

 62

 59

 10

 12

 16

 30

 28

 56

   2

   5

 16

 22

   3

Total

 125

 145

 175

 198

   29

   83

   84

 114

   95

 157

   13

   15

   75

   73

   10

Concept

Table 5.1: Number of concept nodes for Management Succession, broken down
by coverage

5.2.2 Hospital Discharge Performance

Experiments were also run on the Hospital Discharge domain, which has
four single-slot concepts: Symptom,Present and Symptom,Absent; Diagno-

sis,Con�rmed and Diagnosis,Ruled Out. Figure 5.3 shows results for each of
these concepts at three di�erent training sizes. This �rst set of results uses
semantic class assignment of individual words based on a medical thesaurus
that was not customized to make distinctions needed for this domain3. Results
with �ne-tuned semantic tagging will be presented later in this section.

in precision is signi�cant. Only the uctuation in precision of In,Out,Org is signi�cant ac-
cording to the t-test, but even this should be ignored due to the low sample size for this
concept.]

3The Uni�ed Medical Language System thesaurus of the National Library of Medicine
[Lindberg et al. 1993].
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Figure 5.3: Hospital Discharge learning curves: averages of ten random parti-
tions at 10% training, at 30% training, at 70% training

As in the Management Succession domain, recall increases with further
training, while precision stays fairly at4. It appears than recall for Symp-

tom,Absent may be starting to level o� at three thousand training instances
and Diagnosis,Ruled Out at three hundred.

The number of concept de�nitions generated from 351 Hospital Discharge
texts (70% training) is shown in Table 5.2.

                           

              

Symptom,Present    

Symptom,Absent 

Diagnosis,Confirmed

Diagnosis,Ruled_Out

10-49

    83

  133

    81

    11

50-99

     6

   23

   14

     6

Definitions with coverage:

2-4

643

263

254

  26

5-9

206

128

  71

    8

Total

 942

 562

 425

   51

Concept
100+

   4

 15

   5

   0

Table 5.2: Number of concept nodes for Hospital Discharge, broken down by
coverage

A large proportion of the de�nitions cover less than �ve training instances,
but these low coverage de�nitions contribute little to performance. Rules for
Symptom,Present generated from these 351 texts were tested on the remaining
151 texts. When all rules with coverage � 2 are used, recall is 44.1 at precision
65.0. Using only rules with coverage � 5 gives recall 42.2 at precision 69.5.
The low coverage de�nitions contribute little to recall that is not also covered
by higher coverage de�nitions. They also contribute more errors than correct
extractions from the test set, thus lowering precision.

4All di�erences in recall are statistically signi�cant. The di�erences in precision for
Symptom,Present and Symptom,Absent are signi�cant, but not for the other two concepts.
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As the amount of training increases, a larger proportion of the recall comes
from higher coverage de�nitions. Figure 5.4 shows performance for Hospital
discharge rules when rules that cover less than ten training instances are dis-
carded.
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Figure 5.4: Only rules that cover ten or more training instances have been
used in this Hospital Discharge learning curve.

With the low coverage de�nitions removed, precision is closer to the ideal
of 80 that would be expected at error tolerance 0.205. A comparison with
Figure 5.3 shows that a growing proportion of the recall comes from de�ni-
tions that cover at least ten training instances. When over 90% of the recall
comes from higher coverage de�nitions, as is the case for Symptom,Absent and
Diagnosis,Ruled Out, this is another indication that the level of training is
approaching saturation. More training will increase performance only slightly.

5.2.3 Fine-tuned Semantic Tagging for Hospital Dis-

charge

It should be pointed out that CRYSTAL is faced with considerable \noise"
in the data for this domain. This gave CRYSTAL (or hand-coded rules, as
will be discussed in the following section) a di�cult job �nding features that
reliably characterize the target concepts. Noisy data is inevitable when dealing
with automatic analysis of unrestricted text. The syntactic analysis or the
semantic classes may be too coarse to make the necessary distinctions. Human
annotators are liable to make errors or to di�er among each other in creating
the training.

5All of the di�erences in recall and none of the di�erences in precision are statistically
signi�cant
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One source of noise that I was able to partially control was the coarse �t
between the semantic tagging of individual words and the information extrac-
tion task. A generic medical thesaurus, the Uni�ed Medical Language System
(UMLS) [Lindberg et al. 1993] had been used with only minor customization.

Unfortunately, class assignment based on UMLS did not correlate closely
with annotations of the target concepts. In particular, the class <Sign or
Symptom> was a poor predictor of the concept Symptom,Present. Only 27%
of the phrases annotated as Symptom,Present contained a word with class
<Sign or Symptom>, and only 71% of the a�rmative phrases with that class
were annotated as Symptom,Present. This is equivalent to recall of 27 and
precision of 71.

For the experiment with \�ne-tuned" semantic tagging, I modi�ed the
semantic hierarchy to make distinctions useful for the Hospital Discharge do-
main. I set aside half of the corpus as a blind test set and used the remaining
251 texts as a training set. I then tabulated how often each term in the training
was associated with annotations for each of the target concepts.

The semantic class assignments were modi�ed according to a term's cor-
relation with Symptom,Present or Symptom,Absent or with Diagnosis. The
same modi�cations were also made on the blind test set.

After �ne-tuning the semantic tagging, performance increases as shown in
Figure 5.5. Recall and precision are now in the 60's to 80's for all four concepts,
with Symptom,Present still lagging behind the others.
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Figure 5.5: Hospital Discharge results with �ne-tuned semantic tagging, at
50% training

These results are for a single partition of the corpus into 251 training texts
and 251 test texts that were kept blind with respect to changes to the semantic
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tagging. Note that 50% of the corpus is used as training, rather than the 70%
training shown in Figure 5.3.

With less noise in the training instances, CRYSTAL was able to achieve
this increase in performance with a more compact set of rules, as shown in
Table 5.3. Each concept has less than half as many concept de�nitions as in
Table 5.2, and the proportion of high-coverage de�nitions is also greater when
noise in the training has been reduced.

                           

              

Symptom,Present    

Symptom,Absent 

Diagnosis,Confirmed

Diagnosis,Ruled_Out

10-49

    79

    67

    27

      4

50-99

   11

   18

     6

     6

Definitions with coverage:

2-4

203

  90

  65

    9

5-9

 83

 66

 24

  4

Total

 389

 257

 135

   23

Concept
100+

  13

  16

  13

    0

Table 5.3: Number of concept nodes for Management Succession after semantic
tagging has been �ne-tuned

A question remains for each of these domains. How close to optimal are
CRYSTAL's results given the training set? One way to assess this is to compare
the results with that of hand-coded rules.

5.3 Comparison with Hand-coded Rules

To �nd out how close CRYSTAL comes to optimal rules given the training
set, I created rules by hand for the Hospital Discharge domain, one set of rules
for input with the original semantic tagging and another set of rules based on
�ne-tuned semantic tagging. Each set of rules took two weeks, and was done
after I had been working with this domain for one and a half years. I also
created rules by hand for three of the Management Succession concepts.

5.3.1 Methodology

Fifty percent of the Hospital Discharge texts were set aside as a blind test set
and rules were developed without consulting these texts. For the Management
Succession domain, forty percent of the texts were used as a blind test set,
and rules were developed from the remaining sixty percent.

Representation for the hand-crafted rules was the same as that of CRYS-
TAL's rules. The concept de�nitions for the Hospital Discharge domain were
augmented to include exceptions, which explicitly list classes and terms to
be excluded. This is described more fully in Section 6.1. Rules for Manage-
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ment Succession were created without exceptions, both for CRYSTAL and
hand-coded rules.

The methodology for creating rules by hand was was similar to CRYS-
TAL's. I worked through the training texts, a portion at a time, to �nd
positive instances not covered by existing rules. New rules were created to
cover these instances and each new rule was tested on the entire training set.
Constraints were relaxed as far as possible while keeping the error rate low.

Functions from CRYSTAL assisted by creating an initial concept de�nition
for each positive instances missed by the rules. I edited these initial de�ni-
tions to remove constraints that did not seem essential to the target concept.
Functions from CRYSTAL then tested these hand-crafted de�nitions against
the entire training set, listing the correct extractions and extraction errors for
each de�nition.

After several rounds of re�nement, the new rules were added to the rule
base and this process was repeated for another portion of the training texts.
High-coverage concept de�nitions were discovered early on. As development
continued, the additional de�nitions tended to have either low coverage or high
error rate, until no further useful rules could be found.

5.3.2 The Nature of the Instance Space

This diminishing rate of learning useful rules comes from an inherent charac-
teristic of the training data. Only a portion of the positive instances could
be identi�ed by high coverage de�nitions. Before semantic �ne-tuning, de�ni-
tions that cover 20 or more training instances accounted for only 25% of the
Symptom,Present instances, 51% of the Symptom,Absent, 61% of the Diagno-
sis,Con�rmed, and 42% of the Diagnosis,Ruled Out. After �ne-tuning, these
percentages are raised to 59%, 71%, 72%, and 60%, respectively.

The remaining positive instances are what I will call the \hard" instances.
Many of these have semantic classes that are usually not associated with the
target concept and must be identi�ed by more restrictive constraints. The
evidence that distinguished these instances as positive was often the occurrence
of a low-frequency term or combination of terms.

An example of this is a training instance in which the phrase \under sig-
ni�cant family stress" was marked as a Symptom,Present. The semantic class
assigned to \stress" is <Pathologic Function>, which was associated with di-
agnoses more often than with symptoms. This was the the only occurrence of
\under stress" in the training data, and it was not found at all in the test set.

A example of a hard instance from Management Succession is \... at Riggs
National Bank, which brought in Paul Homan as its president and CEO in
June." This was the only instance in the training set with an Organization

42



in a PP (prepositional phrase) and a Person In in a REL-PP (relative clause
attached to a PP). Many of the hard instances for Management Succession
were due to syntactic complexity such as extraction from relative clauses.

When such idiosyncratic positive instances occur only in the blind test
set, they will be missed by the rules, whether hand-coded or generated by
CRYSTAL. This places a ceiling on the performance possible given a limited
training set. As training size increases, the problems due to low-frequency
terms is somewhat abated. A region with only �ve positive instances may
have ten when training is doubled, and a region with only two may have four.

5.3.3 Results

Table 5.4 compares the performance of CRYSTAL with hand-coded rules both
before and after semantic �ne-tuning. CRYSTAL used an error tolerance of
0.20 for these induction. The last column in the table uses the average of recall
and precision to compute the ratio of CRYSTAL's performance to that of the
hand-coded rules.

                           

              

Symptom,Present    

Symptom,Absent 

Diagnosis,Confirmed

Diagnosis,Ruled_Out

  R

51.4

74.7

69.5

71.8

  P

81.6

93.3

78.5

86.6

  R

41.2

73.8

59.4

59.8

  P

58.5

74.7

64.0

80.0

Concept

75.0

88.4

83.4

88.3

CRYSTAL Hand-coded Ratio of

Avg. R,PAvg

49.8

74.2

61.7

69.9

Avg

66.5

84.0

74.0

79.2

  R

64.9

79.6

76.8

81.2

  P

79.3

91.9

77.5

87.2

  R

61.9

80.0

74.8

73.5

  P

65.6

78.9

69.1

83.1

88.4

92.6

93.3

93.0

                           

              

Symptom,Present    

Symptom,Absent 

Diagnosis,Confirmed

Diagnosis,Ruled_Out

Concept
CRYSTAL Hand-coded Ratio of

Avg. R,PAvg

63.8

79.4

72.0

78.3

Avg

72.1

85.8

77.2

84.2

Before semantic fine-tuning:

After semantic fine-tuning:

Table 5.4: A comparison of CRYSTAL to hand-coded rules for Hospital Dis-
charge

CRYSTAL achieves 93% the performance of hand-coded rules for three
of the concepts and 88% as well for the fourth after semantic �ne-tuning.
Performance is lower for both CRYSTAL and for hand-coded rules in the
noisier situation in which semantic tags have not been customized for the
information extraction task. CRYSTAL's performance ranges from 75% to
88% that of hand-coded rules. CRYSTAL is able to compensate for noisy
training to a certain degree, but is more likely than a human developer to be
misled by spurious regularities.

43



Table 5.5 compares CRYSTAL to hand-coded rules in the Management
Succession domain. CRYSTAL achieves over 90% of the performance of hand-
coded rules for these three concepts, with performance equal to hand-coded
for Person In,Organization.

                           

              

Person_In

Person_In,Person_Out

Person_In,Organization

  R

70.6

79.1

47.9

  P

75.0

80.3

72.0

  R

67.2

77.6

52.1

  P

66.9

75.4

69.5

Concept

  92.0

  96.0

101.3

CRYSTAL Hand-coded Ratio of

Avg. R,PAvg

67.0

76.5

60.8

Avg

72.8

79.7

60.0

Table 5.5: A comparison of CRYSTAL to hand-coded rules for Management
Succession

One of the primary advantages a human coder has over CRYSTAL is bring-
ing in outside knowledge to �nd rules for the hard instances. When the feature
that makes an instance positive is a feature shared by only a few other train-
ing instances, CRYSTAL may �nd instead an irrelevant feature also shared by
positive instances. With sparse training data, there is no margin of error if
CRYSTAL relaxes the wrong constraint.

In Table 5.6, rules based on less than twenty training instances have been
eliminated. CRYSTAL comes closer to human performance in the regions of
instance space containing at least twenty positive training instances than it
does for the more sparsely represented regions.

                           

              

Symptom,Present    

Symptom,Absent 

Diagnosis,Confirmed

Diagnosis,Ruled_Out

  R

25.1

51.2

61.4

41.9

  P

92.5

96.1

81.7

85.2

  R

23.9

64.9

47.6

44.9

  P

78.9

80.4

70.4

87.5

Concept

  87.4

  98.6

  82.5

104.3

CRYSTAL Hand-coded Ratio of

Avg. R,PAvg

51.4

72.7

59.0

66.2

Avg

58.8

73.7

71.5

63.5

  R

58.8

71.0

72.2

59.8

  P

83.3

93.9

77.9

89.7

  R

57.3

75.7

72.2

67.5

  P

74.2

83.0

73.9

86.3

  92.7

  96.1

  97.3

102.8

                           

              

Symptom,Present    

Symptom,Absent 

Diagnosis,Confirmed

Diagnosis,Ruled_Out

Concept
CRYSTAL Hand-coded Ratio of

Avg. R,PAvg

65.8

79.3

73.1

76.9

Avg

71.0

82.5

75.1

74.8

Before semantic fine-tuning:

After semantic fine-tuning:

Table 5.6: Using only rules that cover twenty or more training instances for
CRYSTAL-generated and hand-coded rules

Another way to assess how close CRYSTAL comes to optimal performance
is considered in the next chapter. If CRYSTAL expends more e�ort search-
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ing for an optimal generalization from each seed, will this raise the over-all
performance of the rule set?

5.4 Beam Search

CRYSTAL is able to navigate so e�ciently through a large space of possible
concept de�nitions because of the \greedy" nature of the algorithm. At ev-
ery step in generalizing a concept de�nition, CRYSTAL is faced with several
choices of constraints to relax. CRYSTAL makes the choice that seem to be
the best at the time, even though a di�erent choice may turn out later to have
been better.

I tried an alternate approach that is more computationally expensive, but
has a greater chance of making optimal choices. A beam search tries several
paths in a search space in parallel. The amount of search e�ort is controlled
by two parameters, the beam size b and branching size k. When CRYSTAL
generalizes from a seed instance, a beam set of size b is maintained. These are
the best b generalized de�nitions found so far.

For each de�nition in the beam set, CRYSTAL �nds k distinct relaxations
by unifying with the most similar initial de�nition, the next most similar, and
so forth. This produces a list of kb generalized de�nitions, which is sorted
to keep the best b distinct de�nitions. The metric used to choose the best
de�nitions is to count the number of positive training instances covered. If
two de�nitions cover the same number of positive instances, the de�nition
that covers fewer negative is considered better.

The CRYSTAL algorithm as described in Section 4.4 is equivalent to a
beam search with b = 1. I ran experiments for the Management Succession
domain and the Hospital Discharge domain at a range of beam sizes. Beam
size was set to 1, 2, 5, and 10, with branching size equal to the beam size.

Figure 5.6 shows results at beam size 1, 2, 5, and 10 for four representative
Management Succession concepts. These results are averages of ten random
partitions with 40% of the corpus as training. The shaded dot indicates the
average of recall and precision.

Figure 5.7 shows results of a similar beam search experiment for the Hospi-
tal Discharge domain. These are averages of ten random partitions with 50%
of the corpus as training, no �ne-tuning of the semantic tagging.

The total computation time6 for all four Management Succession concepts
averaged 14 minutes at b = 1, 18 minutes at b = 2, 36 minutes at b = 5, and
82 minutes at b = 10. Computation for the Hospital Discharge concepts took
longer, since there were ten times as many positive instances, but a similar

6on a DEC ALPHA AXP 3000
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Figure 5.6: Management Succession results at beam size 1, 2, 5, and 10
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Figure 5.7: Hospital Discharge results at beam size 1, 2, 5, and 10

ratio held: 1.7 hours at b = 1, 2.8 hours at b = 2, 7.1 hours at b = 5, and 17.3
hours at b = 10.

Increasing the beam size results in a gain in recall that is almost exactly
o�set by a drop in precision. The greatest change in recall and precision comes
in moving from beam size 1 to beam size 2. There is little e�ect from moving
from beam size 5 to 10. This holds for nearly all concepts in both domains.
Most of the changes in recall and precision are statistically signi�cant, and
hardly any changes in average recall and precision as shown in Figure 5.8.

The increase in recall is easy to understand. CRYSTAL was searching for
reliable generalizations that had the largest coverage possible. More search
e�ort results in rules of greater coverage on the training that are likely to
cover more test instances as well.
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Figure 5.8: Statistical signi�cance of changes in beam size

Why should precision go down? This is a case of a well known phenomenon
in machine learning called over�tting. A machine learning algorithm may
create a concept description that �ts accidental characteristics of the training
as well as �nding features that truly represent the target concept. Over�tting
will appear to increase accuracy when measured on the training, but will
actually reduce accuracy on the test set.

Quinlan and Cameron-Jones [95] point out a type of over�tting that results
from expending too much e�ort searching for optimal rules. Among a very
large set of possible concept descriptions will be a few \ukes" with high
coverage that seem to be highly reliable on the training data, but perform
poorly on the test set. A modest amount of search will capture the most
salient regularities in the data, but more extensive search is likely to discover
a uke concept description.

Another reason that an increase in recall is o�set by a decrease in precision
comes from an inherent trade-o� between recall and precision. CRYSTAL
without beam search is able to �nd all the positive instances that can be
identi�ed reliably. The remaining positive instances are in contexts that are
di�cult to distinguish from negative instances. Rules that are generalized
enough to cover some of these positive instances will also erroneously cover
some negative instances. Thus recall is raised at the expense of precision.

5.5 Manipulating a Recall-Precision Trade-o�

A graphic illustration of the trade-o� between recall and precision is shown
in Figure 5.9. In this instance space many of the positive instances (+) are
surrounded by negative instances (-). A set of concept de�nitions can avoid
these regions of instance space and maintain high precision at the expense of
recall. An alternate set of concept de�nitions could gain high recall at the
expense of precision.
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concept definition

Generalizing at Error Tolerance = 0.0:    Recall=52, Precision=85
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Figure 5.9: An instance space in which high recall or high precision is possible,
but not both
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If error tolerance is set at 0.0, CRYSTAL will �nd concept de�nitions that
avoid covering any negative training instances, as shown in the upper part of
the diagram. This will tend to produce an overlapping set of low coverage
de�nitions.

With a higher error tolerance of 0.30, CRYSTAL will tend to �nd concept
de�nitions with high coverage, as shown in the lower half of the diagram. There
are still a few isolated positive instances that cannot be generalized without
covering the adjacent negative instances.

The right side of Figure 5.9 shows the blind test instances associated with
the training instances on the left. The test instances are similar, but not
identical to the training set.

The de�nitions generated at error tolerance 0.0 cover 52% of the positive
test instances with precision of 85. At error tolerance 0.30, the de�nitions
cover 82% of the positive test instances with precision of 66.

The behavior on test instances illustrated here is typical of a real instance
space. Concept de�nitions that cover a single training instance are so tightly
constrained that they are useless on the test set. Low coverage de�nitions are
poor at predicting behavior on blind test instances. A de�nition that covers
four training instances with no errors will frequently cover fewer test instances
and will often cover negative as well as positive instances.

In an instance space such as the one in Figure 5.9, the trade-o� between
recall and precision is inherent to the geometry of the instance space. Many
of the positive instances can only be covered at the expense of covering neigh-
boring negative instances.

In a real instance space these positive instances that are surrounded by neg-
ative instances may be an artifact of the features used to represent instances.
Suppose that the semantic class assignment for Management Succession makes
an error and fails to recognize a company name and gives it the class <Person
Name>. A positive instance of Succession Organization with that semantic
tag will be indistinguishable from negative instances.

The inability to distinguish positive from negative instances may also be
due to limitations in syntactic analysis or in the expressive power of CRYS-
TAL's concept de�nitions. A concept de�nition in the Hospital Discharge
domain that correctly identi�es \history of cancer" as a Diagnosis,Con�rmed

will also cover \history of cancer in father", which is a negative instance.
CRYSTAL includes two parameters than can be used as knobs to deliber-

ately manipulate the trade-o� between recall and precision. One of these is
the error tolerance parameter. Increasing the error tolerance allows concept
de�nitions of greater generality, even if they have a greater tendency to cover
some negative instances as well as positive. This has the e�ect of increasing
recall at the expense of precision.
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Figure 5.10: Management Succession results at error tolerance 0.0 to 0.40
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Figure 5.11: Hospital Discharge results at varying error tolerance

Figures 5.10 and 5.11 show the e�ects of varying the error tolerance in the
Management Succession and Hospital Discharge domains. Recall increases and
precision decreases for every concept in these two domains as error tolerance
goes from 0.0 to 0.40. The gain in one metric is almost exactly compensated by
a loss in the other, leaving the average of recall and precision fairly at. Each
of the di�erences in recall and in precision shown in both �gures is statistically
signi�cant7.

Another parameter operates on the completed rule base after induction.
The min-coverage parameter allows rules to be discarded that do not cover
at least a minimum number of training instances. Low coverage de�nitions
tend to be unreliable predictors of performance on the test set. Raising the

7The one exception to this is the change in precision from tolerance 0.0 to 0.1 in Per-

son In,Organization. The di�erences in average recall and precision are small and only a
few are signi�cant.
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min-coverage has the e�ect of increasing precision at the expense of lowering
recall. This may produce a small increase or small decrease in the average of
recall and precision, depending on the concept.

Figure 5.12 shows the interaction of error tolerance and min-coverage8. At
error tolerance 0.0, precision approaches 100 as min-cover is raised. At error
tolerance 0.20, precision approaches 80 or a little above as min-cover is raised.
This behavior is true for all concepts in both domains.
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Figure 5.12: E�ect of minimum coverage parameter at error tolerance 0.0 and
0.20

The combination of error tolerance and min-cover allow a user to control
for the relative importance of recall and precision. For some applications,
precision is critical and recall of 36 at precision 97 is better than recall of 72
at precision 76. For other applications the reverse may be true.

5.6 Run-time E�ciency

The time complexity of CRYSTAL is given in Section 4.6 as O(pn), where p is
the number of positive training instances and n is the total number of training
instances. Actual computation time seems to be consistent with this analysis.

Table 5.7 show the CPU time required to generate rules for two represen-
tative concepts at di�erent levels of training. This was run on a DEC ALPHA
AXP 3000 with 64 Mb of memory. The last column shows the rate of growth
of the CPU time. The CPU time shown includes the time required to read the

8All of the changes in recall, precision are statistically signi�cant. All changes of average
recall and precision are signi�cant except for Symptom,Present from min-coverage 10 to 20
at tolerance 0.20.
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training instances and semantic hierarchy into memory and to write the rules
generated to disk.

In    

 

In,Out,Org

Total

Insts.

Positive

  Insts.

   CPU

Seconds

  3,525

  6,910

10,570

13,548

  3,525

  6,910

10,570

13,548

123

243

376

505

  12

  25

  40

  52

  30.1

116.2

250.4

435.7

    3.7

  11.9

  25.2

  43.3

Concept

  1.00

  3.86

  8.32

14.51

  1.00

  3.25

  6.87

11.80

 Ratio

CPU sec

Table 5.7: Growth of computation time as training size increases

The training size in this chart is growing at roughly a ratio of 1:2:3:4, which
gives a predicted ratio of 1:4:9:16 for computation time. The actual CPU times
for training sizes used in these experiments show a growth rate a bit slower
than pn. The concept In has about ten times as many positive instances as
In,Out,Org, and has the predicted ten-fold increase in computation time.

As long as the entire set of training instances �ts into memory (as is the
case for the training sizes reported in this chapter), clock time closely matches
CPU time. If resident memory is exceeded, frequent memory swapping can
greatly reduce CPU e�ciency unless care is taken with memory allocation.

5.7 Discussion of Results

What conclusions about CRYSTAL's performance can be drawn from the em-
pirical results presented in this chapter? In particular, how close does CRYS-
TAL come to generating an optimal set of rules from a training set?

CRYSTAL is able to learn rules from noisy training data that approach the
performance of hand-coded rules. Noise can come from several sources when
dealing with unrestricted text: inadequate syntactic analysis, inadequate se-
mantic tagging, and inconsistent hand-annotation of the training texts. These
sources of noise were reduced, but not eliminated, in the Management Succes-
sion data and the �ne-tuned Hospital Discharge data.

CRYSTAL achieved an average of recall and precision that was over 90%
as high as hand-coded rules for Management Succession, equalling that of the
hand-coded rules for one concept. For the �ne-tuned Hospital Discharge data,
CRYSTAL did 93% as well as hand-coded rules for three concepts and 88%
as high for a fourth concept. In a noisier version of the Hospital Discharge
data, performance was lower both for CRYSTAL and for hand-coded rules,
with CRYSTAL's performance from 75% to 88% that of hand-coded rules.
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CRYSTAL's covering algorithm approach gives it robustness in the face of
noisy data and hard-to-classify instances. Some regions of instance space may
contain such a mix of positive and negative instances, that no single rule will
cover only the positive. CRYSTAL will �nd a set of tightly constrained rules,
each rule covering a portion of the positive instances. Taken together, this set
of rules covers all but the most di�cult to distinguish positive instances.

CRYSTAL has two parameters that give a user control over how CRYSTAL
compensates for noise and and sparse data. Raising the error tolerance param-
eter increases recall at the expense of precision, while raising the min-coverage
parameter has the opposite e�ect.

Another way to assess CRYSTAL's optimality is to increase the amount
of search for an optimal generalization from each seed instance. This turns
out to merely raise recall at the expense of precision. Even though CRYSTAL
makes sub-optimal choices in generalizing from a particular seed, the positive
instances it thus misses become seeds for later generalizations. The aggregate
set of rules cannot be improved upon by more extensive search. The limit
to CRYSTAL's performance comes rather from noise in the data, inadequate
features to represent the instances, or insu�cient training data.

How much training is enough? Performance increases monotonically with
more training for the range of training sizes used in these experiments, with
diminishing returns eventually setting in. The amount of training required
depends on the di�culty of the concept being learned.

Diagnosis,Ruled Out reached recall 60 at precision 73 from only 134 positive
training instances. Symptom,Present needed 2,741 positive training instances
to reach recall 44 at precision 64. A similar disparity held between Manage-
ment Succession concepts. Person In,Person Out had recall 65 at precision 80
from only 69 positive instances, while 617 positive instances of Organization
gave recall of 54 at precision 63.

Creating an annotated training is moderately labor intensive. The Hospital
Discharge texts were annotated at a rate of about �ve per hour, and the
Management Succession texts at about twenty per hour. This can be done
by an end user with no background in linguistics or computer science. The
annotated corpus is not an additional cost over a hand-coded approach. For
all but the simplest concepts, an annotated training set is also needed to guide
hand-coded rule development.

If high performance is at a premium, the most e�ective strategy is to cus-
tomize the semantic tagging of individual words to the information extraction
task. This has a greater impact than increasing training size. The modest
training sizes required by CRYSTAL is due to the power of semantic class
representation of the input instances. This allows single rules to cover a large
number of instances, and to generalize to words not found in the training set.
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CRYSTAL's robustness comes from its rich representation that combines
both semantic classes and lexical terms. The following chapter explores the
impact of CRYSTAL's rule representation.
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Chapter 6

Impact of Rule Representation

How much of CRYSTAL's performance and robustness comes from the exi-
bility and expressiveness of its rules? This chapter �rst explores the impact
of an enhancement to CRYSTAL's rule representation, then the impact of
restricting CRYSTAL's representation in various ways.

6.1 Learning Exceptions to Rules

CRYSTAL's concept de�nitions are expressed solely in terms of positive con-
straints: specifying semantic classes or terms that must be found in the in-
stance. There is no provision for a concept de�nition to specify a word or class
that must not occur. This can be remedied by adding explicit exceptions to
CRYSTAL's representation.

The lack of negative constraints appeared to be a serious limitation, par-
ticularly in an earlier version of Hospital Discharge that did not label phrases
as a�rmative or negative. CRYSTAL had no mechanism to express a concept
de�nition for Symptom,Present that excluded instances containing words such
as \no" or \not".

The concept de�nition shown in Figure 6.1 looks for the pattern \revealed
<Sign or Symptom>" to identify Symptom,Present. It operates correctly on
instances such as \Her lungs revealed bibasilar rales" or \A CT revealed a
large intra-abdominal mass".

Unfortunately, this concept de�nition does not exclude instances in which
the <Sign or Symptom> is negated. About half the time the de�nition erro-
neously applies to negative instances such as \Examination revealed no masses
and no axillary lymphadenopathy".

There is less need for exceptions when each phrase in the input has been
labeled as a�rmative or negative. This allows a concept node to exclude
negative phrases by adding a constraint that requires the a�rmative mode.
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Concept type: Symptom,Present
Constraints:

VERB::
Terms include: REVEALED

Mode: active
OBJ::

Classes include: <Sign or Symptom>
Extract: Symptom,Present

Figure 6.1: An under-constrained de�nition for Symptom,Present

Even then, cases still remain in which exceptions to a rule could lower the
error rate of a concept de�nition.

In the Hospital Discharge domain, a de�nition that looks for \history of
<Disease or Syndrome>" is fairly reliable at identifying instances of Diagno-
sis,Con�rmed. This de�nition makes extraction errors, however, when it is a
history of disease in a family member rather than in the patient.

Figure 6.2 shows how exceptions can be added to a concept de�nition
to exclude these errors. This de�nition covers \history of coronary artery
disease", but does not cover \family history of coronary artery disease" or
\history of coronary artery disease in father".

An exception can use any of the constraints used in a concept de�nition:
terms, head terms, modi�er terms, root, preposition, classes, head classes,
modi�er classes, mode. A de�nition with exceptions applies to an instance if
all of the positive constraints and none of the exceptions are satis�ed.

Examples in which exceptions are useful can be found in any domain. Sec-
tion 4.7 presented a de�nition for Person In,Person Out in the Management
Succession domain that looks for the pattern \<Person> succeeds <Person>".
This de�nition has an error rate of nearly 20%, which could be reduced by ex-
ceptions that exclude \succeeds to the board", \succeeds as <Government
Position>" and so forth.

In many regions of instance space there will be a predominance of positive
instances, but pockets of negative instances. Two approaches are possible to
identify the positive instances. CRYSTAL can create several concept de�ni-
tions without exceptions, each of which covers a relatively small region that
avoids the pockets of negative instances. This approach is likely to miss some
of the positive instances that are hard to separate from the negative ones.

The alternative is for CRYSTAL to create a single over-generalized de�ni-
tion that covers the entire region, including the negative sub-regions. Excep-
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Concept type: Diagnosis,Con�rmed
Constraints:

SUBJ::
Terms include: HISTORY

Classes include: <Disease or Syndrome>
Mode: a�rmative
Extract: Diagnosis,Con�rmed

Exceptions:
Exception:

SUBJ::
Terms include: FAMILY

Extract: Diagnosis,Con�rmed
Exception:

PP::
Classes include: <Family Group>

Figure 6.2: A concept de�nition with two exceptions

tions are then added to exclude as many of the negative instances as possible.
This approach will tend to have higher recall than the �rst, but may have
lower precision if exceptions fail to exclude all of the negative instances.

6.1.1 An Algorithm for Learning Exceptions

The usefulness of adding exceptions to concept de�nitions depends on an algo-
rithm for automatically learning exceptions. CRYSTAL with exception learn-
ing follows the basic algorithm up to the point at which a proposed general-
ization is found to exceed error tolerance.

At that point, the basic CRYSTAL algorithm halts generalization and dis-
cards the over-generalized de�nition. The previous version of the de�nition,
which was within error tolerance, is added to the rules.

CRYSTAL with exception learning does not halt when it reaches a de�ni-
tion with excessive errors. Instead it identi�es features that characterize the
negative instances but not the positive instances covered by the de�nition. If
the instances covered by the de�nition include sub-regions in which negative
instances are clustered together, an exception can be added to exclude each
of these negative sub-regions. After adding exceptions, CRYSTAL tests the
error rate again and continues generalizing if the de�nition is now below error
tolerance.
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Adding exceptions will not always reduce the error rate of the de�nition
su�ciently. The proposed de�nition covers a region of instance space that
includes an excessive proportion of negative instances. If these negative in-
stances are randomly scattered throughout the region covered, CRYSTAL will
be unable to �nd exceptions that exclude the negative instances without also
excluding the positive. In such a case, CRYSTAL will halt and discard the
over-generalized de�nition.

There is a more subtle situation in which CRYSTAL should abandon a
de�nition rather than add exceptions. It might be possible to �nd exceptions
that are so speci�c to the training examples that they fail to exclude any
negative instances in the test set. In this case the error rate will appear
to have been reduced, but will still exceed the error tolerance on previously
unseen test instances, which is what really matters.

The region of instances covered by a de�nition will generally contain a
relatively small number of training instances compared to the entire training
set. In this small sample of instances, nearly every negative instance will
include some words or even semantic classes that are unique to that instance.

It may be the only instance with the prepositional phrase \since last April".
Even though this phrase has nothing to do with making this a negative in-
stance, an exception that excludes instances with \since last April" will reduce
the error rate on the training. Such an exception will probably not apply to
any test instances covered by the de�nition and is just as likely to exclude a
positive as negative instances if it does.

To avoid such spurious exceptions, CRYSTAL only considers features found
in at least two extraction errors as a candidate for an exception. The feature
is tested on all instances covered by the de�nition. If it is found primarily
in negative instances and not positive, it is added as an exception to the
de�nition. A new parameter, the exception tolerance (XTol), may be set
greater than 0.00 to allow an exception to exclude a percentage of positive
instances as well as negative.

Exclusion of negative instances may have brought the error rate within er-
ror tolerance. If so, generalization continues. A second, possibly more restric-
tive, error tolerance (Tol2) is used for a rule with exceptions. If the exceptions
do not reduce errors su�ciently, CRYSTAL halts, discards the de�nition, and
adds the previous version to its rules.

Note that this method of learning exceptions is quite di�erent from simply
applying CRYSTAL recursively. I will refer to this method as \single-feature"
exception learning to emphasize the di�erence.

The basic CRYSTAL algorithm begins with the most speci�c de�nition that
covers a seed instance and generalizes as far as the training allows. When the
training set is sparse, the de�nitions it learns tend to be too tightly constrained
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The CRYSTAL algorithm with exceptions:
Rules = NULL
Derive an initial concept de�nition from each positive instance
Do for each initial de�nition D not covered by Rules

Loop:
D' = the most similar de�nition to D
If D' = NULL, exit loop
U = the uni�cation of D and D'
Test U on the training set
If the error rate of U > Tolerance

Call Add Exceptions(U)
If the error rate of U > Tol2

Exit loop
Set D = U

Add D to the Rules
Return the Rules

Add Exceptions(U)
Covered = instances covered by de�nition U
If no more than half the covered instances are negative

Do for each negative instance N in Covered
Add each feature of N to list of possible exceptions

Do for each feature F in possible exceptions
If F is found in at least two negative instances

Excluded = instances in Covered with feature F
If percentage of positive instances in Excluded � XTol

Add F to Exceptions of U
Update the error rate of U

Return U

Figure 6.3: The CRYSTAL algorithm with exception learning
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to have good coverage on the test set.
In contrast to this, exception learning begins with highly generalized ex-

ceptions. All but a single feature of the negative instance have been dropped.
This increases the likelihood that the exceptions will apply to test instances as
well as training instances. This is an important consideration since exceptions
are learned from a limited training sample.

Where the basic CRYSTAL algorithm uses the entire training set to gen-
erate a de�nition, an exception must be learned in the context of the region
of instance space covered by a single de�nition. This tends to be two or three
orders of magnitude smaller than the entire instance space. In such a small
training set, over�tting becomes a serious problem.

CRYSTAL does not even try to learn exceptions when a de�nition is so
overgeneralized that it covers more negative instances than positive. In such
cases it is unlikely that exceptions can bring the error rate back within toler-
ance, but considerable computation time will be expended.

Learning exceptions increases CRYSTAL's time complexity, particularly
when e, the number of extraction errors, becomes large. Computation time of
the basic CRYSTAL algorithm is proportional to n for each proposed general-
ization, where n is the number of training instances. Learning exceptions adds
O(e2) computations to assemble the list of features found in at least two errors
and another O(e2) computations to test the candidate exceptions on instances
covered by the de�nition.

This brings the amount of computation for each generalization to O(n+e2)
when exceptions are being learned and O(n) otherwise. The overall compu-
tation time with exceptions is O(pn + pe2), as compared to O(pn) without
exceptions.

For the training sets used in these experiments, e2 was generally less than
n. The actual computation time with exceptions was typically about one and
a half times as long as without exceptions.

How much does this increase in computation time buy in terms of precision
and recall? It depends on the characteristics of the instance space, as shown
in the next section.

6.1.2 Empirical Results

In the following experiments CRYSTAL was run with and without exception
learning at error tolerance 0.20. Error tolerance of de�nitions with exceptions
(Tol2) was set at 0.10 and exception tolerance (XTol) at 0.20. Ten random
partitions with 40% training and 60% blind test set were used for Management
Succession, and 50% training 50% testing for Hospital Discharge.
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Figure 6.4: Comparison of Management Succession results with no exceptions
and with exception

Figure 6.4 shows results from the Management Succession domain and
Figure 6.5 from the Hospital Discharge domain.

Learning exceptions with the parameter settings used here has little e�ect
in the Management Succession domain, and causes a small increase of recall
at the expense of precision in the Hospital Discharge domain.

Of the Management Succession concepts shown here, only In,Out has a
statistically signi�cant di�erence from learning exceptions1. Even that is only
a tiny drop in performance.

Each Hospital Discharge concept gets a small, but statistically signi�cant
boost in recall from exceptions. The gain in recall is slightly more than the
loss in precision. The gain in average recall and precision is signi�cant for all
but Diagnosis,Ruled Out.

There is an intuitive appeal to including negative as well as positive con-
straints in a concept de�nition. It is possible that another strategy for learning
exceptions would allow CRYSTAL to boost precision without sacri�cing re-
call. The methods I have tried so far, have not succeeded in showing this to
be possible.

An attempt to enhance the expressiveness of CRYSTAL's rule representa-
tion has failed to improve performance. The next section presents experiments
that restrict CRYSTAL's representation.

1The signi�cance test used here and elsewhere is a two-tailed, paired t-test with p<0.05.
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Figure 6.5: Comparison of Hospital Discharge results with no exceptions and
with exception

6.2 Restricting CRYSTAL's Representation

CRYSTAL was designed with the assumption that a rich and exible repre-
sentation was needed to express the variability of unrestricted text. Semantic
class constraints and the ability to drop all but one or two constraints allow
CRYSTAL to learn highly general rules that give broad coverage on previously
unseen instances. On the other hand CRYSTAL needs the ability to use a wide
variety of evidence to �nd reliable rules when semantic class constraints alone
are not adequate for the extraction task.

This section presents a series of experiments that test these assumptions. It
is not certain that increasing the complexity of the rule representation will help
performance. Overly complex rules increase the dimensionality of the search
space and may tend to make learning more di�cult. With more possible ways
to relax constraints, CRYSTAL will have more ways to make wrong choices.

I selected four aspects of CRYSTAL's representation to be crippled. The
�rst is CRYSTAL's ability to either keep or drop verb constraints. This ability
is lacking or quite limited in other systems that learn text extraction rules
(see Chapter 7). How much does CRYSTAL gain from its ability to drop verb
constraints? The results labeled with a \V" are from a version of CRYSTAL
that never generalizes away the verb of the seed instance.

This was accomplished by restricting the candidates for most similar de�ni-
tion to those with the same verb root. All generalizations from a seed instance
included a verb constraint with at least the same root form. Seed instances
from sentence fragments with no verb were only uni�ed with instances with
no verb and produced de�nitions that require a null verb.
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A second aspect is the distinction between head terms and modi�ers for the
term constraints and class constraints. This distinction is unique to CRYS-
TAL. The version labeled \M" has term constraints and class constraints, but
omits the head and modi�er constraints on terms and classes from the initial
de�nitions. The generalized de�nitions lack these constraints as well.

A third aspect is the inclusion of all syntactic constituents as possible con-
straints in the concept de�nition. Other systems that learn text extraction
rules include only certain constituents, such as the verb plus those contain-
ing extracted information. The version of CRYSTAL labeled \X" omits all
constraints from initial de�nitions but those on the verb and on extracted
constituents.

A fourth aspect is the ability to use either term constraints or semantic
constraints on any syntactic constituent. Other systems allow term constraints
only on a \trigger" word, typically the verb or verb root. The version labeled
\T" retains the root constraint on verbs, but does not include any term con-
straints.

Results also include the baseline CRYSTAL system with none of these re-
strictions and a version labeled \4" that has all four restrictions. The number
of possible features for this last version is much smaller than for the baseline
system. If the features remaining are su�cient to describe the target concept,
it may be an advantage to eliminate the unnecessary features. If these re-
strictions have removed features that are essential to distinguish the positive
instances, performance should drop drastically.
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Figure 6.6: The e�ects of restricting CRYSTAL's representation in the Hospi-
tal Discharge domain
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Figure 6.6 shows results for two of the Hospital Discharge concepts. These
are representative of all four concepts in this domain.

Single restrictions tend cause a moderate drop in recall and rise in precision2.
Of the single restrictions, dropping terms hurt recall the worst. Applying all
four restrictions invariably caused a large drop in recall.

Figure 6.7 shows results of these restrictions in two of the Management
Succession concepts. The single-slot concept Person In and the multi-slot
concept Person In,Organization are representative of results for this domain.
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Figure 6.7: The e�ects of restricting CRYSTAL's representation in the Man-
agement Succession domain

The behavior of Person In is characteristic of most of the Management
Succession concepts. Any single restriction had a minor e�ect on performance.
Precision tends to be a little higher and recall a little lower for each of the
restrictions3. The average of recall and precision drops only slightly from the
baseline system to any of single restriction.

This suggests that CRYSTAL's representation o�ers enough alternate ways
to describe the positive instances that CRYSTAL can compensate for mild
crippling of its representation. When all four restrictions are applied, recall

2All the di�erences from the baseline system for Symptom,Present are statistically signif-
icant but the increase in recall for \X", and the di�erence in precision and average precision
and recall for \M". For Symptom,Absent all di�erences are signi�cant but the di�erence in
precision for \V".

3The drop in recall from the baseline system is statistically signi�cant only for versions
\X", \T" and \4". The increase in precision is signi�cant for all but \T". The change in
average recall and precision is signi�cant only for \V", \T", and \4".
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plummets. The severely crippled representation is insu�cient to distinguish
many of the positive instances.

For some of the multi-slot concepts, the severely restricted representa-
tion was more nearly adequate. For three of the multi-slot concepts, in-
cluding Person In,Organization, applying all four restrictions increased pre-
cision more than it hurt recall. No single restriction a�ected recall for Per-

son In,Organization and only \V" and \T" raised precision signi�cantly4

6.3 Discussion of Results

The results in this chapter indicate that representation can have a major im-
pact on performance and on the ability to learn text analysis rules. The
instance representation and the rules must be expressive enough to represent
the essential characteristics of the concept being learned. If this minimum
expressiveness has been met, adding unnecessary features will only hinder a
machine learning algorithm.

For the concept Person In,Organization in the Management Succession
domain, a simple rule representation was su�cient. Adding exceptions to the
rules only lowered precision with no gain in recall. Each of the restrictions
to CRYSTAL either had no impact on this concept or raised precision with
no change to recall. Applying all the restrictions lowered recall slightly, but
produced a larger gain in precision.

One way to look at this behavior is in terms of the nature of the instance
space for Person In,Organization. Simple rules are su�cient to describe one
third of the positive instances reliably. The remainder are the \hard" instances
(as discussed in Section 5.3.2). Increasing the expressive power of CRYSTAL
has two conicting e�ects. It allows rules that identify more of the hard
instances, but at the same time increases the potential for CRYSTAL to relax
the wrong constraint while generalizing a de�nition.

For most of the other other concepts in these two domains, a simple repre-
sentation is inadequate to identify more than a small fraction of the positive
instances. An example of this is the concept Symptom,Present in the Hospi-
tal Discharge domain. This was the most di�cult concept of either domain,
particularly before semantic �ne-tuning. Most of the positive instances were
\hard" instances. CRYSTAL needed all its expressiveness including excep-
tions to gain recall for this concept. Nearly all the restrictions to CRYSTAL
lowered the average recall and precision.

4The only signi�cant change in recall from the baseline system was for version \4". The
increase in precision and in the average of recall and precision was signi�cant only for \V",
\T", and \4".
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The only aspect of CRYSTAL's representation that did not help for this
concept was constraints on non-extracted constituents. The verb and the
phrase containing the Symptom,Present are generally enough to identify a
reference to this concept.

No aspect of CRYSTAL's representation is either essential for all concepts
in all domains or unnecessary for all concepts. Any restriction that hurt per-
formance for one concept turn out to help for another concept. Each of these
possible restrictions have been left as options for the CRYSTAL system, with
the default being the full representation.
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Chapter 7

Related Work in Natural

Language Processing

Most research in applying machine learning to natural language processing has
been primarily at the level of lexical or semantic disambiguation of individual
words [Brill 1994, Cardie 1993, Yarowsky 1992, Church 1988] and in learning
heuristics to guide probabilistic parsing [Charniak 1995, Magerman 1995]. Lit-
tle work has been done, however, in using corpus-based techniques for a higher
level of inferencing that goes beyond the meaning of individual words.

The work most closely related to CRYSTAL has come from participants
in recent Message Understanding Conferences [MUC-4 1992, MUC-5 1993,
MUC-6 1995]. Nearly all systems use some form of pattern matching rules
or �nite state automata to identify references to concepts of interest.

Although most MUC participants build these rules by hand, the methodol-
ogy looks uncannily like a hand-simulation of CRYSTAL. Actually it is CRYS-
TAL that automates the iterative development cycle a human uses. A knowl-
edge engineer applies an existing rule base to a set of annotated training texts,
selects a phrase not covered by the rules, and adds a new rule or generalizes
an existing rule to cover it. The modi�ed rules are tested on the training set
to ensure that new rules do not create excessive errors.

Both the human developer and CRYSTAL rely heavily on examples from
a representative set of texts. The human has the advantage of outside knowl-
edge that helps predict which features are important to include in a rule and
how far a rule may be safely generalized. The quality of semantic tagging of
individual words and the expressiveness of the rules themselves play a critical
role, whether the rules are learned or hand-crafted.

Three of the MUC participants have developed systems that learn text
analysis rules. The remainder of this section will compare CRYSTAL with
these other systems, plus another system based on a MUC domain. The �rst is
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the AutoSlog dictionary construction tool [Rilo� 1996] used by the University
of Massachusetts in MUC-4 and MUC-5. AutoSlog combines machine learning
with a \human in the loop" who edits the proposed rules.

The second system is PALKA [Kim and Moldovan 1992], developed by the
University of Southern California for their MUC-5 system. A third trainable
system appeared in MUC-6, the HASTEN system from SRA [Krupka 1995].
The fourth system described in this chapter is LIEP [Hu�man 1996] that was
developed on the MUC-6 domain. By the time of the MUC-6 conference, the
University of Massachusetts had moved from AutoSlog to CRYSTAL.

7.1 AutoSlog

The AutoSlog dictionary construction tool was developed by Ellen Rilo� at
the University of Massachusetts [Rilo� 1996]. AutoSlog passes through the
training texts a single time and proposes concept de�nitions from instances of
the concepts to be extracted.

AutoSlog uses \one shot" learning with no generalization phase and no
testing of proposed rules on the training data. Instead, it uses heuristics to
craft the best concept de�nition it can from a single motivating example. An
AutoSlog concept de�nition assigns a �xed level of semantic constraint to
the extracted phrase. A more recent version of AutoSlog [Rilo� 1996] has no
semantic constraints at all on the extracted phrase. This version assumes that
later processing in an information extraction system will �lter out extraction
errors by overgeneralized AutoSlog rules.

Each AutoSlog de�nition also has an exact word constraint on a \trigger"
word, which is determined by a set of rules. When extracting a concept from
the subject, AutoSlog selects the verb as trigger, in some cases including the
direct object or in�nitive complement as well. Extraction from a direct object
is likewise triggered by the verb. Extraction from a prepositional phrase may
be triggered either by the preceding noun or by the preceding verb.

One major di�erence between CRYSTAL and AutoSlog is AutoSlog's rela-
tively limited representation. The phrase being extracted must always have a
�xed level semantic constraint, speci�ed in advance by the user, and never has
an exact word constraint. No other phrase in the instance may have a seman-
tic constraint. Every concept de�nition must have an exact word constraint
on a trigger word. No other phrases may be included in the de�nition.

Another di�erence is AutoSlog's lack of a mechanism for automatically
testing its proposed concept de�nitions on the training corpus. AutoSlog relies
on human review before the concept de�nitions are �nally accepted. This
human review requires only a few hours and typically retains about 30% of
the proposed concept de�nitions as reasonable.
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AutoSlog does remarkably well despite its limitations, when supported by
carefully engineered semantic tagging and subsequent discourse processing that
�lters out extracted phrases that are irrelevant to the extraction task. An Au-
toSlog dictionary achieved 98% of the performance of a hand-crafted concept
dictionary that took an estimated 1500 hours of e�ort to create for the MUC-3
evaluation.

The system presented in the next section uses a covering algorithm ap-
proach that resembles CRYSTAL more closely than AutoSlog does.

7.2 PALKA

The PALKA [Kim and Moldovan 1992] system was developed by Jun-Tae Kim
and Dan Moldovan for the University of Southern California MUC-5 system.
PALKA (Parallel Automatic Linguistic Knowledge Acquisition) uses a method
similar to the version space algorithm (See Section 8.1.3) to generate text ex-
traction rules from training instances. As PALKA considers each new instance,
it generalizes rules to include positive instances not yet covered and specializes
rules to avoid covering negative instances.

PALKA represents its rules as FP-structures (Frame-Phrasal pattern struc-
tures), which have a constraint on the verb root and semantic constraints on
each extracted phrase. An FP-structure may be generalized by moving a se-
mantic constraint upwards in a semantic hierarchy or by adding a disjunctive
term to the semantic constraint.

If an FP-structure has a constraint on class A but a negative instance
has class A' (a subclass of A), PALKA will specialize by moving lower in
the semantic hierarchy and enumerating all classes except A'. PALKA lacks
CRYSTAL's error tolerance mechanism and will specialize a FP-pattern based
on a single negative instance even if this excludes several positive instances as
well.

PALKA maintains a single rule for each phrasal pattern, which may have
several disjunctive terms in each semantic class constraint. Here is an example
of a possible FP-pattern for a Bombing case frame, with Instrument and Target

slots. The subject must have class dynamite or grenade; the verb must have
roots \be" and \hurl"; the object of the preposition \at" must be of class
physical object. This would cover an instance such as \Dynamite sticks were
hurled at U.S. Embassy facilities."

Like AutoSlog, PALKA has a more restrictive representation than CRYS-
TAL. Each FP-structure requires a constraint on the root form of a verb, but
can have no other exact word constraints. The subject, direct object, and
each extracted phrase have semantic constraints, but PALKA does not allow
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Bombing
(Instrument: dynamite _ grenade)
BE HURL
AT
(Target: physical object)

constraints on prepositional phrases other than those containing information
to extract.

In some ways, PALKA's representation is even more limited than Au-
toSlog's. FP-structures cannot express exact word constraints on a noun in-
stead of a verb, and hence cannot represent the rule: \ATTACK ON (Target:
physical object)" where \attack" is a noun.

7.3 HASTEN

The next trainable text analysis system, HASTEN, uses a form of instance
based learning similar to PEBLS, which will be introduced in Section 8.2.
George Krupka developed HASTEN [Krupka 1995] for the SRA Corporation's
MUC-6 text analysis system.

HASTEN stores each training instances as an Egraph, which associates
structural elements of the sentence with semantic classes and also with case
frame slots of an extracted concept. A new instance is classi�ed by computing
its similarity to each stored Egraph. If the similarity to the nearest Egraph
is above a threshold, HASTEN extracts information from the new instance
based on the Egraph case frame.

The following example is an Egraph for the input \Armco also named John
C. Haley, 64 years old, chairman." This example contains a Management
Succession event with Organization, Person In, and Position. An Egraph also
has an Anchor, which is the main element of the instance, generally a verb
phrase. This is similar to the \trigger" in AutoSlog.

HASTEN uses a similarity metric to �nd the most similar Egraph to a new
input sentence. This metric considers how many structural elements match,
how well the semantic contents match, and whether relative ordering and
adjacency of elements are maintained. A number of tuneable parameters are
used in the similarity metric.

Some Egraphs will do a more reliable job of identifying concepts than oth-
ers. HASTEN evaluates the classi�cation performance of each Egraph on the
other training instances and assigns it an extraction bias. HASTEN multiplies
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Succession
Organization: NP sem=not-govt
Anchor: VP root=name
Person In: NP sem=person
(irrelevant): AGE
Position: LIST sem=post

the similarity measure by this extraction bias to reduce the e�ective similarity
to Egraphs with poor classi�cation performance.

HASTEN also has a user-de�ned threshold that manipulates a trade-o�
between recall and precision just as CRYSTAL's error tolerance does. If the
computed similarity between an input sentence and the most similar Egraph
falls below the threshold, nothing is extracted. A high threshold makes HAS-
TEN more cautious and increases precision, while a low threshold increases
recall.

CRYSTAL's representation of rules is in some ways more exible than
HASTEN's representation. CRYSTAL can set constraints on certain struc-
tural elements of a sentence and not others, depending on the particular con-
cept de�nition. HASTEN's similarity metric uses the same weight for a given
structural element for all Egraphs.

If HASTEN's similarity metric gives a high weight to the \anchor", then
in e�ect HASTEN cannot drop constraints on the verb from its implicit rules.
CRYSTAL rules can also be selective about including semantic class con-
straints on some elements and exact word constraints on others, but HASTEN
has no such exibility.

The examples of Egraphs in the published account had only semantic con-
straints and not word constraints on the sentence elements used as slot �llers.
The Egraph anchor had a constraint on the verb root, and the irrelevant sen-
tence element had no constraints.

7.4 LIEP

The last system to be discussed in this chapter is Scott Hu�man's LIEP
(Learning Information Extraction Patterns) [Hu�man 1996]. LIEP uses a set
of heuristics to create rules, called extraction patterns, from single training in-
stances. There is also a mechanism to generalize extraction patterns slightly.

LIEP learns patterns for multi-slot concept extraction, such as Manage-
ment Succession events. Unlike AutoSlog's heuristics that operate on single
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slots, LIEP's heuristics operate only on multiple slots. In many ways, LIEP
functions as a multi-slot version of AutoSlog.

A key word �lter is applied to input sentences before presenting instances
to LIEP's extraction rules. This gives LIEP a training corpus that consists
almost entirely of positive instances, although not all phrases of the instances
will be relevant and particular extraction patterns will apply to only a fraction
of the entire training.

Extraction rules have syntactic constraints on pair-wise syntactic relation-
ships between sentence elements. LIEP �nds relationships that link the ex-
tracted phrases in an instance, and includes non-extracted sentence elements
only if needed to form a path between extracted elements. These additional
sentence elements are typically verbs and prepositions.

For example, a pattern from the instance \Bob was named CEO of Foo
Inc." has the following syntactic constraints. The verb \named" and the
preposition \of" are included to link the extracted constituents \Bob", \CEO",
and \Foo Inc.".

subject(Bob,named)
object(named,CEO)
post nominal prep(CEO,of)
prep object(of,Foo Inc)

Extraction patterns also have semantic constraints on the extracted phrases.
LIEP uses whatever semantic class it �nds in the motivating instance and does
not generalize the semantic constraints. Non-extracted elements have exact
word constraints, and in the case of verbs a constraint on active or passive
voice.

LIEP proposes up to three rules from each example and then tests each
one on the training set. Of the alternatives proposed, LIEP keeps the best one
according to a metric that combines recall and precision1.

A limited amount of generalization of extraction patterns is done. When
two patterns are identical except for word constraints, LIEP builds a synonym
list from those words. For example, \named", \appointed", and \elected" are
synonyms in Management Succession patterns. Any pattern that includes a
word in a synonym list has the word constraint generalized to a constraint on
the synonym list.

This will not help LIEP generalize to words not found in training. Hu�man
suggested use of a knowledge source such as WordNet to replace or augment

1The \F-measure" used in MUC evaluations to combine recall and precision
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the learned synonym lists.
There does not seem to be a mechanism to discard unreliable extraction

patterns. Perhaps the key word �lter eliminates enough of the negative in-
stances before they are presented to LIEP that overgeneralized extraction
patterns are not a major problem.

7.5 Contrast of CRYSTAL and Other NLP

Algorithms

The four systems described in this chapter have a wide range of strategies
for learning text extraction rules. At one extreme, AutoSlog and LIEP rely
on heuristics to derive an extraction rule from a single positive instance. At
the other extreme, PALKA uses a computationally expensive learning method
that generalizes a rule to include other positive instances and specializes to
avoid negative instances. HASTEN takes an instance based learning approach
and bases its classi�cation on comparing a new instance to stored training
instances. What HASTEN learns is weights that indicate the classi�cation
accuracy of each stored instance.

One thing in common to all four is a much more limited rule represen-
tation than CRYSTAL's. CRYSTAL's concept de�nitions may have either
term constraints or semantic constraints on any syntactic constituent in the
instance. No distinction is made in advance between sentence elements that
contain extracted information and those that do not.

The other systems allow only semantic constraints on extracted sentence
elements. Only certain non-extracted elements (e.g. the verb, \trigger", or
\anchor") are included, and these have term constraints, but not semantic
constraints.

These restrictions in representation can be viewed as a strong bias in the
learning algorithms. Very little search is needed for an appropriate rule if
certain decisions are made in advance. In the case of AutoSlog the restrictions
are so strong that no search is done at all, and hardly any search in the case
of LIEP.

HASTEN uses the same distance function for all its stored examples, rather
than learning what features of an instance are essential for classi�cation. The
essential features are decided in advance by the way HASTEN represents its
stored instances.

PALKA does extensive search, but with a learning algorithm that cannot
navigate large search spaces e�ciently. PALKA restricts the search space to a
manageable size by considering only semantic restraints for extracted sentence
elements.
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CRYSTAL's expressive representation is made possible by its e�cient search
strategy. CRYSTAL can include any feature in its representation that might
possibly be useful. Features that are irrelevant to a particular instance are
quickly dropped when generalizing a concept de�nition.

In most cases, the essential features turn out to be those included in the
representation of the other systems. The semantic class of extracted phrases
together with the verb root is often su�cient context for a text extraction rule.
However, as experiments in Section 6.2 show, this is often not enough. Includ-
ing a wide array of features in CRYSTAL's representation allows CRYSTAL
to learn rules that could not be otherwise expressed.
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Chapter 8

Related Work in Machine

Learning

This Chapter compares CRYSTAL with related machine learning algorithms.
First are the covering algorithms, the family of machine learning algorithms
to which CRYSTAL belongs. Next, CRYSTAL's use of a distance function
is contrasted to instance based learning, or \k-nearest neighbor" algorithms.
Lastly, CRYSTAL is compared to the well-known family of decision tree and
decision list algorithms. The chapter concludes with some observations on the
contrast between CRYSTAL and these other machine learning algorithms.

A reasonable question to ask, in view of the vast array of existing machine
learning algorithms, is why invent CRYSTAL in the �rst place? The moti-
vation for CRYSTAL came from demands of applying machine learning to
natural language processing. The number of features used to describe natural
language instances can become extremely large, particularly when some of the
features are based on exact words.

Machine learning algorithms that use explicit feature vectors or have a ba-
sic step that considers all possible attributes can become impractical when the
feature set becomes extremely large. I had an unsatisfactory experience us-
ing decision trees in a system called WRAP-UP [Soderland and Lehnert 1994]
that learned to make inferences during discourse processing in information
extraction. An excessive amount of memory and computation time was re-
quired to induce a decision tree when there were thousands of instances with
thousands of features.

I wanted a representation that could easily combine syntactic, semantic,
and lexical information. I also preferred an induction mechanism that mimics
the process used in creating hand-coded text analysis rules, since this would
help to make the resulting rules accessible to a human knowledge engineer.
The covering algorithm methodology seemed the most natural approach.
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8.1 Covering Algorithms

CRYSTAL falls into a class of machine learning algorithms known as covering
algorithms. Covering algorithms build a set of concept descriptions that cover
the positive training instances while avoiding negative instances. Concept
descriptions may either be generalized to include additional positive instances
or specialized to exclude negative instances. As each new concept description
is generated, the instances covered by the new description are eliminated from
consideration in generating further concept descriptions.

This general methodology is not new, and goes back at least to John Stuart
Mill in 1843. Each covering algorithm has a di�erent strategy for making the
problem computationally feasible. The covering algorithms described here will
be Michalski's Aq algorithm, Clark and Niblett's CN2, and �nally Mitchell's
candidate elimination algorithm.

8.1.1 Aq

Ryszard Michalski and his students have published several versions of the
Aq covering algorithm [Michalski 1983] and the INDUCE inductive learning
program. Peter Clark and Tim Niblett [89] also o�er a readable explanation
of Aq.

The basic methodology of Aq has much in common with CRYSTAL. Aq

begins with a set of labeled training instances and builds a disjunctive set
of concept descriptions, which taken together cover all the positive instances
and none of the negative. This set of concept descriptions, called the cover,
is analogous to CRYSTAL's set of concept de�nitions. Like CRYSTAL, each
step of Aq selects a positive instance not yet covered and derives a general
concept description from this seed.

Aq generates this description by �rst building a star of all maximally general
descriptions that cover the seed and do not cover any negative instances. Aq

appears to have an implicit error tolerance of 0.0, although the algorithm could
be modi�ed to be more noise tolerant.

Aq selects the best description from the star according to a goodness metric
that favors high-coverage, compact descriptions. This description is added to
the cover and Aq continues its induction with a new seed instance.

Since actually �nding all such maximally general descriptions would be
computationally prohibitive, Aq approximates this with a beam search. A star
begins with single-attribute descriptions that cover the seed. Aq maintains a
set of the best s concept descriptions, those that cover the most positive and
fewest negative instances. At each stage in the search, Aq considers specializa-
tions that add a single attribute to each of the s best descriptions. The door
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is left open as well for domain-speci�c heuristics that create new attributes.
Each proposed description is tested on the training set to determine the

number of positive and negative instances covered. The best s of these new
descriptions are retained in the star. A number of parameters are used to guide
the generation of a star, including one that halts generation when a desired
number of descriptions have been found that cover no negative instances.

Building a star is computationally expensive, particularly when the feature
set is extremely large. Each step of specializing a concept description considers
O(a) specializations, where a is the number of attributes in the feature set.
Each of these specializations is then tested on all n training instances. This is
done for each of the s concept de�nitions in the star.

The average number of steps in building a star is bounded by k, the max-
imum number of attributes per description. Treating k as a constant, this
gives O(asn) computations to build each star. Let r be the number of stars
built. Ideally, r depends only on the underlying concept and is independent of
n. An upper bound for r is O(p), where p is the number of positive training
instances. (Note the parallel between k and r in the analysis of CRYSTAL's
time complexity in Section 4.6.)

This gives Aq a total computational time of O(asrn) or O(aspn), as op-
posed to CRYSTAL's time complexity of O(rn) or O(pn). The dependency
on the star size s, makes Aq resemble the beam search version of CRYSTAL.
It seems that Aq performs best with a fairly large star size. Clark and Niblett
[89] report using s = 15 for experiments with medical data sets1.

The more signi�cant di�erence in time complexity is that Aq takes time
proportional to the number of attributes a. Each time a concept description
is specialized, Aq considers all possible attributes in the feature set. This is
not a big issue for data sets with at most a few dozen attributes that are often
used as bench marks for machine learning algorithms2. In a natural language
application with thousands of word-based attributes, this has a serious impact
on e�ciency.

An implementation of Aq could be written that considers only the at-
tributes found in the seed instance rather than considering all attributes the
feature set. This would limit Aq's concept de�nitions to positive attributes,
but would give Aq a time complexity similar to a beam search version of
CRYSTAL.

The next covering algorithm presented is CN2, which has time complexity
similar to Aq and a similar top down approach.

1Lymphomography, breast cancer, and primary tumor data sets from the University
Medical Center in Ljubljana, Yugoslavia

2The UC Irvine collection of machine learning data sets
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8.1.2 CN2

CN2 [Clark and Niblett 1989], developed by Peter Clark and Tim Niblett,
combines aspects of Aq with those of decision trees and decision lists. Each
step of the CN2 algorithm adds a new concept description to a list of rules
and then removes instances covered by the description from the training set.
This is repeated until all instances are covered. Unlike Aq and CRYSTAL,
which build an unordered set of concept descriptions, CN2 builds a decision
list [Rivest 1987] of rules that are applied in order. This handles exceptions
naturally. An earlier rule can remove instances that would otherwise be errors
to a later rule.

Like Aq, CN2 builds concept descriptions in a top down fashion, succes-
sively adding attributes to specialize a description. CN2 does not begin from
a seed instance, but starts by considering all possible descriptions with a sin-
gle attribute. CN2 uses a beam search similar to that of Aq and successively
specializes the best s concept descriptions.

The metric CN2 uses to select the best descriptions is the information-
theoretic measure, Shannon entropy. Entropy is de�ned as follows, where
(p1; :::pk) is a probability distribution among k classes for the instances covered
by a concept description.

Entropy = �
X

i

pilog2(pi)

Entropy forms the basis of metrics used in many decision tree algorithms.
Minimizing entropy favors adding an attribute that comes closest to perfectly
separating the classes into di�erent partitions. CN2 uses dynamic pruning to
halt specialization of a concept description when no additional attribute makes
a statistically signi�cantly reduction in entropy.

Building a star in CN2 is as computationally expensive as it was for Aq.
Each of the s concept descriptions in a star is specialized by adding any of
O(a) attributes, then each specialization is tested on all n training instances.
Unlike Aq, there is no way to re-implement CN2 to avoid considering attributes
exhaustively. If we treat the average number of attributes added to each
description as a constant, each CN2 rule requires O(asn) computations.

The entire decision list requires O(asrn) computations, where r is the
number of rules. The number of rules is bound by the n, giving a worst-case
time complexity of O(asn2).

The next section describes the version space algorithm, which resembles
covering algorithms, but has an even more exhaustive method of generating
concept descriptions.
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8.1.3 Version Space

The version space algorithm (or candidate elimination algorithm) of Tom
Mitchell [82] identi�es the space of all concept descriptions consistent with
the training, de�ning this space with two sets. The set S lists the most spe-
ci�c concept descriptions consistent with the observed training instances, and
the set G lists the most general descriptions. The version space algorithm
updates each of these sets after each new training instance.

Mitchell analyzes the time complexity as O(sg(p + n) + s2p+ g2n), where
s is the length of S, g is the length of G, and p and n are the number of
positive and negative training instances. If concept descriptions can have any
combination of a attributes, s and g have a worst case length of O(a!).

This makes the version space algorithm impractical for any but small prob-
lems. An equally serious limitation is the version space algorithm's noise in-
tolerance. Even a small amount of noise in the training data or insu�cient
attributes for classi�cation causes the space of consistent descriptions to col-
lapse to the empty set. While Aq or CN2 may be excessively slow for real-world
problems involving large feature sets, version space is totally infeasible for such
problems.

8.2 Instance Based Learning

Both CRYSTAL and instance based learning (IBL) use a distance metric in a
critical step in the algorithm, although the distance metric plays a fundamen-
tally di�erent role. IBL uses this metric directly in classifying new instances
by �nding the most similar training instances or exemplars. Some systems look
for a single most similar exemplar, while others let the \k nearest neighbors"
vote on a classi�cation.

The distance metric in CRYSTAL is used as a search heuristic, and not
used to classify instances. The class (the concept being learned) is already
known and CRYSTAL applies the similarity metric only to instances of that
class.

Two IBL algorithms with di�erent strategies for handling noisy training
instances are David Aha's IB3 [Aha et al. 1991] and Scott Cost and Steven
Salzberg's PEBLS [Cost and Salzberg 1993]. Each of these algorithms tabu-
lates classi�cation performance statistics on each exemplar to reduce the e�ect
of noisy training instances.

IB3 bases its classi�cation of new instances only on instances that pass a
statistical signi�cance test as reliable classi�ers. Those with performance sig-
ni�cantly worse than chance are discarded. IB3 uses the con�dence thresholds
of its signi�cance tests to control the rate of acceptable classi�cation errors in
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somewhat the same way that CRYSTAL uses its error tolerance parameter.
IB3 also saves space by only keeping misclassi�ed instances, which are the
most likely to be useful in re�ning a concept boundary.

PEBLS keeps the entire training set as exemplars and assigns to each a
weight based on its performance in classifying the rest of the training instances.
PEBLS classi�es a new instance by computing its distance to each of the
exemplars and then multiplying this similarity measure by the weight assigned
to the exemplar. This increases the e�ective distance to unreliable exemplars
and limits their inuence in classi�cation.

Both CRYSTAL and instance based learning use a bottom up approach to
de�ne local regions in instance space. CRYSTAL explicitly describes a region
boundary by the constraints in a concept de�nition. The region expands from
a seed instance until further growth is inhibited by negative instances. In-
stance based learning implicitly de�nes a region surrounding a stored training
instance. The region contracts when a nearby instance is added to the exem-
plars and expands when an exemplar is discarded. In PEBLS a large weight
causes the region a�ected by an exemplar to shrink.

Training IB3 or PEBLS is less computationally expensive than it was for
the covering algorithms. Compiling performance statistics on each exemplar
requires computing the distance between it and each of the n training in-
stances. The published versions of IB3 and PEBLS apparently consider all
possible attributes a when computing the distance. This gives O(an) compu-
tations for each of O(n) potential exemplars, for an over all time complexity
of O(an2).

If an instance representation and distance function such as CRYSTAL's
were used, the only attributes considered would be those actually found in the
two instances being compared. This would eliminate the dependency on a and
give IB3 and PEBLS a time complexity of O(n2).

The memory required for instance based learning during training is pro-
portional to n, as it is for CRYSTAL. After training, however, CRYSTAL can
discard the training instances and use the set of learned rules, which will be
much smaller in general than the full set of instances. IB3 discards much of
the training set, but PEBLS retains all training instances, which can become
expensive in terms of memory.

8.3 Decision Tree Algorithms

A well known family of machine learning algorithms is decision tree induction.
I will use Ross Quinlan's C4.5 [Quinlan 1993] as a representative of decision
tree algorithms and use Giulia Pagallo and David Haussler's GREEDY3 algo-
rithm [Pagallo and Haussler 1990] to represent decision lists.
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8.3.1 C4.5

Decision tree algorithms have something in common with covering algorithms:
top down processing and exhaustive consideration of attributes. Decision tree
induction begins with an empty tree and recursively adds tests at each tree
node to partition the instance space. The key step in building a decision
tree is to select a feature at each node whose values best separate di�erent
classes into di�erent partitions. Some decision tree algorithms such as OC1
[Murthy et al. 1994] also allow the test at a node to be a linear combination
of features. This makes the selection of a test even more expensive.

Many decision tree algorithms, including C4.5, base the feature selection
metric on the information-theoretic measure, Shannon entropy.

Entropy = �
X

i

pilog2(pi)

where (p1; :::pk) is a probability distribution among k classes at a given node.
Another basis for a \goodness of split" metric is the Gini diversity index
[Breiman et al. 1984].

Gini index =
X

j 6=i

pipj

Experiments by John Mingers suggest that the particular feature selection
metric used is not critical to performance [Mingers 1989].

With its recursive partitioning, decision tree algorithms tend to fragment
the instance space. Nodes near the leaves of the tree are often based on a small
number of training examples and have low predictive accuracy. Decision tree
algorithms have a mechanism that serves much the same function as CRYS-
TAL's error tolerance parameter. Pruning away branches of a decision tree
will often improve classi�cation accuracy, although no distinction is generally
made between optimizing recall and optimizing precision.

How well can decision trees handle extremely large number of attributes?
The C4.5 algorithm must tabulate statistics on how often each of a attributes
is found in instances of each class (e.g. positive or negative). Each level of
the tree has up to n training instances, giving computation time of O(an) for
each level of the tree and a total of O(adn) computations, where d is the tree
depth.

The O(adn) computations required by C4.5 are much simpler operations
than CRYSTAL's O(rn) operations. C4.5's basic operation is to increment a
table based on a value found in a feature vector. CRYSTAL's basic operation
is to test a proposed concept de�nition against a training instance. This can
be much more expensive than C4.5's basic operation.
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In an ideal, noise-free instance space the tree depth d would depend only
on the underlying concept being learned. In the worst case, there could be
a leaf for each training instance in a badly skewed tree with depth n. This
would make the time complexity O(an2). This is a pessimistic analysis, since
in practice d tends to grow more slowly than n. Growth of tree depth as n
increases is analogous to the growth of the number of rules in CRYSTAL and
other covering algorithms.

C4.5 represents training instances as a feature vector with length O(a). All
n instances must be repeatedly consulted while building a decision tree, which
gives a space requirement of O(an).

8.3.2 GREEDY3

A variant of decision trees is the decision list, introduced by Ronald Rivest
[87]. Each node of a decision list has a test that splits the instance space
into exactly two partitions, at least one of which must be a leaf node. Thus
each node separates o� a set of training instances from the remaining instances.
This has been characterized as \separate and conquer" as opposed to a decision
tree's \divide and conquer" strategy.

Decision lists are able to reach a leaf node at every node by using a multi-
variate test, a test that evaluates multiple features. This makes the decision
list equivalent to a list of rules, each rule having several constraints.

GREEDY3 builds a decision list with a conjunct of Boolean literals as the
test at each node. I will refer to these Boolean conjuncts as rules. Each time
GREEDY3 adds a literal to the rule, it tabulates how often each possible
literal is associated with a positive instance. The literal is chosen that has the
highest probability of being found in a positive instance.

When enough literals have been added to the rule that it covers only posi-
tive instances, GREEDY3 adds the rule to the decision list. Instances covered
by existing rules are removed from training set and GREEDY3 continues creat-
ing additional rules. When rules in the decision list cover all positive instances,
GREEDY3 terminates the decision list with a leaf node for \negative".

Like decision tree algorithms, GREEDY3 includes a pruning step to im-
prove performance. Pruning can remove the last literal of a rule or remove
the rule entirely if it does not improve performance on an independent set of
instances.

GREEDY3 has much in common with C4.5 and other decision tree al-
gorithms. It operates in a top down fashion, considers all Boolean literals
exhaustively when selecting a literal to add to a node, and uses a selection
metric based on how each literal performs on the training instances.

The computation required to select a new literal to add to a rule is O(an),

82



where a is the number of literals (attributes) and n is the number to training
instances. Let r be the number of rules in the decision list and k be the
number of literals in each rule. Time complexity to build the entire decision
list is O(arn), if k is treated as a constant.

In an extremely pessimistic worst case, r = O(n) and k = O(a), giving time
complexity of O(a2n2). In practice, the r in GREEDY3's time complexity is
likely to have a growth rate similar to the r in CRYSTAL's time complexity
of O(rn).

8.3.3 An Experiment with C4.5

I conducted some preliminary experiments in applying C4.5 to learn text analy-
sis rules. These experiments were abandoned due to the excessive computation
time taken when even 30% of the Hospital Discharge are used as training. I
built C4.5 trees for the concept Symptom,Present.

Each C4.5 instance contained features representing the same syntactic-
lexical or syntactic-semantic constraints as a CRYSTAL instance. A separate
C4.5 instance was created for each syntactic constituent of the CRYSTAL
instance. These instances were presented to separate trees for each constituent:
SUBJ, VERB, OBJ1, OBJ2, and PP3.

If, for example, a CRYSTAL instance had a subject, verb, direct object,
and two prepositional phrases, it was turned into �ve C4.5 instances. The �rst
instance had a positive classi�cation if the subject contained Symptom,Present.
The second instance was positive if the verb contained Symptom,Present, and
so forth. The C4.5 instance included features that identi�ed one of the syntac-
tic constituents as the phrase to be classi�ed. This encoding strategy works
for single-slot extraction. Some other scheme would be needed for multi-slot
concepts.

Boolean features were created for C4.5 from each constraint of each syn-
tactic constituent of the CRYSTAL instance. The feature name began with
the name of the constituent, followed by the name of the constraint and the
actual term or class name.

For example an instance with \Chest x-ray" in the subject would include
the features:

SUBJ-Terms-CHEST
SUBJ-Terms-X-RAY
SUBJ-Mod Terms-CHEST
SUBJ-Head Terms-X-RAY
SUBJ-Classes-Body Location

3Subject, verb, direct object, indirect object, and prepositional phrase, respectively.
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SUBJ-Classes-Diagnostic Procedure
SUBJ-Mod Classes-Body Location
SUBJ-Head Classes-Diagnostic Procedure

The set of possible features was pruned by discarding any feature not found
in at least ten training texts. Only these high frequency features were used in
the C4.5 feature vectors. Even after eliminating the low frequency features,
each tree still had extremely large feature vectors. OBJ1 had 2,356 instances
with 2,268 features; PP had 3,389 instances with 4,308 instances; and so forth.

The main di�culty in running C4.5 with such large feature vectors turned
out to be the space requirement. The instances for OBJ1 took 27Mb of memory
on an DEC ALPHA 3000 workstation. This �t into resident memory and the
OBJ1 decision tree was induced in 18 minutes. The instances for the PP tree
took 67Mb with only half of that as resident memory. The computer ran so
ine�ciently from continual swapping that C4.5 was still selecting a test for the
second tree node after 41 hours.

The trees were �nally completed on a di�erent machine that handled the
memory swapping more e�ciently. Recall and precision was comparable to
CRYSTAL's on this data set. C4.5 had recall 34 at precision 66, while CRYS-
TAL had recall 36 at precision 614.

Not too much can be made of comparing this single data point. Average
recall and precision were two points higher for C4.5 for this concept. C4.5
was also run for two concepts trained on the Management Succession data.
Average recall and precision for C4.5 was 6 points lower than CRYSTAL for
one concept and 10 points higher for the other5.

The trees learned by C4.5 show a strong bias toward single-feature rules.
The trees were so badly skewed that they were essentially decision lists. The
root node of the OBJ1 tree was a test for \gravida" as a modi�er term in the
direct object. This identi�ed 26 out of the 2,356 training instances as positive.
The next node tested for the term \mass" in the direct object, which identi�ed
another 15 instances as positive.

The PP tree showed the same behavior. The root node identi�ed 12 pos-
itive instances out of the 3,389 training instances. The test was for the term
\shortness of breath" in the prepositional phrase.

A re-implementation of C4.5 could reduce its memory footprint by using
a sparse vector representation that explicitly records only the true-valued fea-
tures. This would allow C4.5 to handle larger training sets. In fairness to C4.5,

4This was run on with older version of syntactic analysis that did not label phrases as
a�rmative or negative. CRYSTAL was run with exception learning at error tolerance 0.20
and min-coverage 5.

5These were concepts from an earlier set of experiments, Person Name and Organization

Name.
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CRYSTAL would faced the same problem of exceeding memory capacity if the
Hospital Discharge corpus grew much larger.

8.4 Contrast of CRYSTAL and Other ML Al-

gorithms

Some of the di�erences between CRYSTAL and the other algorithms described
in this chapter are super�cial. CRYSTAL's instance representation is a nat-
ural way to encode the syntactic, semantic, and lexical features of a clause.
However, much the same information can be expressed in terms of Boolean
features or predicate calculus, depending on the input requirements of the ma-
chine learning algorithm. Paths in a decision tree are functionally equivalent
to rules in a decision tree or to concept descriptions in CRYSTAL and other
covering algorithms.

Other di�erences are more fundamental to how the algorithm operates.
Decision trees, decision lists, and the other covering algorithms all operate in
a top down fashion. They start from very general rules with a single constraint
and then specialize the rule by adding further constraints. CRYSTAL works
from the opposite direction, beginning with maximally speci�c descriptions
and generalizing by relaxing constraints.

This gives CRYSTAL a di�erent \learning bias" than the top down algo-
rithms. CRYSTAL tends to relax constraints just enough to cover a group of
positive training instances, even if some of the constraints could be dropped
without covering any additional negative instances. Top down algorithms add
just enough constraints to avoid negative instances, even if further constraints
could be added without excluding any positive instances.

Instance based learning operates from the bottom up, but has a radically
di�erent way to classify instances. IBL does not create anything analogous to
rules. For this reason, it is hard to characterize the di�erence in learning bias
between CRYSTAL and IBL. IBL keeps both positive and negative instances
as exemplars that de�ne positive or negative regions of instance space by prox-
imity. CRYSTAL de�ne a region of instance space by constraints in a concept
de�nition. Portion of instance space not covered by a concept de�nition are
negative by default.

It is not clear that one learning bias is more appropriate than another in
general. A bias that gives high performance on one data set will not necessarily
be the best on another data set. The di�erence in bias will be most noticeable
when the training data is insu�cient.

The greatest contrast between CRYSTAL and the other machine learning
algorithms described here is in time complexity. CRYSTAL requires O(rn)
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computations where r is the number of rules learned and n is the total number
of training instances. This is bounded by O(pn), where p is the number of
positive training instances.

The covering algorithms Aq and CN2 require O(asrn) computations, where
a is the number of attributes and s is the \star" size used in a beam search.
GREEDY3 requires O(arn) computations. The r in these time complexity
analyses, the number of \rules", has a slightly di�erent meaning for each al-
gorithm.

Inducing a C4.5 decision tree requires O(adn) computations, where d is
the decision tree depth, somewhat analogous to r in the above time complexi-
ties. Training the instance based learning algorithms IB3 and PEBLS require
O(an2) computations. Computation time for the version space algorithm is
proportional to the square of the space requirement, which is O(a!).

Some of these algorithms could be re-implemented to avoid considering
possible attributes exhaustively. This is the case for Aq and for the IBL al-
gorithms, but not for CN2, C4.5, GREEDY3, or version space. This would
eliminate the a from time complexity and allow the algorithm to process much
larger feature sets.

A re-implemented Aq would have time complexity similar to a beam search
version of CRYSTAL. A re-implemented IBL algorithm would have time com-
plexity of O(n2), only slightly greater than CRYSTAL's O(rn).

Although C4.5 cannot avoid computation time proportional to a, its basic
operation is quite cheap: incrementing a counter based on a feature vector
value. This allows it to handle fairly large feature sizes before it becomes
overwhelmed. CRYSTAL's time and space requirements are independent of a,
allowing it to handle extremely large feature sets easily.
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Chapter 9

Conclusions

9.1 Combining Expressive Representation with

an E�cient Learning Algorithm

CRYSTAL's richly expressive representation language and its e�cient algo-
rithm for navigating extremely large feature spaces are two sides of the same
coin. Formulating text analysis rules for unrestricted natural language requires
exibly combining syntactic, semantic, and lexical evidence. An expressive
representation can pose problems for a learning algorithm, however, and re-
quires an e�cient search strategy that is not misled by irrelevant features.

The few existing systems that learn text analysis rules from training exam-
ples, all have limited rule representation. Rules may have semantic constraints,
but not lexical constraints, on phrases to be extracted. Certain sentence ele-
ments are always included in the rules and others never included.

CRYSTAL's approach is to include any lexical or semantic constraints on
any syntactic constituent of the instance. A corpus of several hundred texts
may contain enough distinct words that this leads to thousands of features1.

CRYSTAL's learning algorithm can handle such a large feature set because
of space and time requirements that do not depend on the size of the feature
set. CRYSTAL has a bottom up strategy that begins with a seed instance and
guides generalization by �nding the most similar positive instance. Features
not found in the seed instance or in the similar instance are not considered.

Relaxing constraints to unify with a similar positive instance has the result
of quickly dropping features that are simply accidental to the seed instance,
while tending to retain essential features. CRYSTAL is not slowed down by

1When instances from a training set of 150 Hospital Discharge texts were converted into
Boolean features, there were over 4,000 such features. This was after discarding any feature
not found in at least ten texts.
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irrelevant features. Including as many features as possible that might be useful
increases CRYSTAL's performance and robustness.

CRYSTAL is also e�cient because of its \greedy" control strategy. At
each step in generalizing a concept de�nition, CRYSTAL �nds the relaxation
that appears best and never goes back to considers alternate possibilities.
Experiments were conducted that use a beam search version of CRYSTAL.

Rather than commit to a single possible generalized de�nition, a beam
search maintains the best b de�nitions found so far, where b is the beam size.
A large beam size increases the amount of search e�ort and increases the
likelihood that CRYSTAL will �nd the \best" generalized concept de�nition
from a given seed instance.

A large beam size produces compact rule sets, but generally produces no
improvement in average recall and precision on a blind test set. Increasing
the beam size raises recall but lowers precision. The more extensive search
results in concept de�nitions that seem reliable on the training set, but are
overgeneralized on the test set.

Other covering algorithms, Aq and CN2, rely on a beam search approach.
CRYSTAL is unique among covering algorithms in attaining high performance
from beam size of one.

9.2 Achieving High Performance with Modest

Training Size

CRYSTAL's performance approaches that of hand-coded rules. CRYSTAL
achieved over 90% the average recall and precision of hand-coded rules on
input that had high quality semantic tagging. On a more di�cult version of
the same data set with coarser semantic tagging, CRYSTAL had over 80% the
performance of hand-coded rules.

One aspect of CRYSTAL that allows it to compensate for noisy training
data is CRYSTAL's expressive representation. When one source of evidence,
such as semantic class assignment is unreliable, CRYSTAL falls back on other
evidence. Experiments were done that compared input with �ne-tuned se-
mantic tagging to input with semantic tagging based on a generic thesaurus.
CRYSTAL relied more on exact word constraints with the lower quality se-
mantic tagging and generated twice as many rules.

CRYSTAL has an error tolerance parameter that allows it to accommodate
noise in the data. Together with a minimum coverage parameter this gives the
user a knob to manipulate a trade-o� between recall and precision.

The amount of training data required is a concern for a supervised learning
algorithm such as CRYSTAL. A domain expert must select a corpus of rep-
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resentative texts and then label each reference to the concepts of interest for
the domain. CRYSTAL's job is to learn rules that will imitate these human
annotations on previously unseen texts.

The Management Succession corpus used in this thesis took about one
week of human e�ort to annotate and the Hospital Discharge corpus took
about three weeks. While this is not an insigni�cant investment of time,
I feel that I can call this a modest amount of training. The training cor-
pus for Hospital Discharge consisted of less than 150,000 words. Statistical
corpus-based techniques typically require tens of millions of words of training
[Church et al. 1991].

It is a combination of the limited domain and the use of semantic class
information that allow CRYSTAL to work with such a comparatively small
amount of training. David Fisher and Ellen Rilo� have shown that statistically
signi�cant co-occurrence frequencies can be derived from a small corpus in a
limited domain [Fisher and Rilo� 1992].

The amount of training can be viewed as modest from another point of
view. Developing a set of rules by hand will also require a set of annotated
examples to guide development for all but the simplest of information extrac-
tion tasks. This means that CRYSTAL's training corpus is not an additional
expense over a manual engineering approach.

9.3 Future Work

I will outline two areas of future exploration. The �rst includes modi�cations
to CRYSTAL itself. The second suggests ways to improve CRYSTAL's utility
as an information extraction module.

9.3.1 Enhancements to CRYSTAL

CRYSTAL is a fairly mature system, as software goes, having been tested
on several domains over the course of a year and a half. The most obvious
attempts to enhance the basic CRYSTAL algorithm have already been tried:
learning exceptions to rules and increasing the search e�ort with a beam search.
Several minor changes to the system remain to be explored that each promise
small improvements in performance.

CRYSTAL currently selects seed instances in an arbitrary order and often
makes a few false starts on the way to learning a high coverage concept de�ni-
tion. There would be fewer irrelevant features to lead CRYSTAL astray if the
seed instances were sorted so that those with fewest features are selected �rst.
This may result in a smaller set of rules with somewhat higher performance.
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The current method of learning exceptions is also not satisfactory. When
adding exceptions to a proposed de�nition brings it back within error tolerance,
CRYSTAL tries to relax constraints further. This tends to result in concept
de�nitions that are badly overgeneralized before exceptions are added. The
net e�ect is to raise recall and lower precision.

I plan to experiment with alternative methods of adding exceptions to rules.
CRYSTAL could add exceptions in a separate step after it has generalized
a concept de�nition. Generalization would halt as in the basic algorithm
and return a de�nition that is within error tolerance without exceptions. At
that point CRYSTAL would learn a set of exceptions su�cient to exclude the
training errors covered by the de�nition. Even if some of the exceptions did not
apply to test instances, this would raise precision somewhat without lowering
recall.

Hardly any experimentation has been done on the distance function used
to �nd the most similar instance. My assumption has been that getting ex-
actly the right distance function is not critical, but this has not been tested.
Several parameters have been built into the distance function and others could
be devised to bias which instance is selected as most similar. Should CRYS-
TAL have a tendency to consider semantic similarity as more important than
words in common? Are similarities in extracted phrases more important than
similarities in other phrases? Is the verb more important than other sentence
elements?

While doing experiments in which I built rules by hand, I noticed that
I had a strong bias towards rules with only a few constraints. CRYSTAL's
bottom up approach has a strong tendency to produce rules with many more
constraints. It would be interesting to change CRYSTAL's bias by adopting a
top down version of CRYSTAL.

CRYSTAL would begin with a seed instance and consider all possible
single-constraint rules derived from features of the seed instance. If all of
these covered too many negative instances, CRYSTAL would add additional
constraints, one at a time. This would probably require a beam search like
that of the Aq covering algorithm for best results.

The advantage of a top down CRYSTAL is that its learning bias might give
better performance in terms of recall and precision on some data sets. The dis-
advantage is more certain than the possible advantage. Performance in terms
of computation time would be one or two orders of magnitude greater than
the current CRYSTAL. For some information extraction tasks it is worthwhile
to spend hours rather than minutes of CPU time if this produces better rules.

A last area for improvement is in e�ciency of implementation. In particu-
lar, space e�ciency of representing an instance becomes vital if CRYSTAL is
to hold large training sets resident in memory.
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9.3.2 Versatility as an Information Extraction Module

CRYSTAL does not function in a vacuum. Its performance in an information
extraction (IE) system depends on the syntactic and semantic analysis of its
input. Its contribution to the IE system also depends on the granularity of its
input and output.

It is vital to design a level of syntactic analysis that gives CRYSTAL the
most useful input possible. The at structure of CRYSTAL's instance repre-
sentation make this a challenge. The input text in Figure 9.1 illustrates this
problem.

Nicholas Mihalas, SmartCard's 51-year-old president and chief
executive o�cer, was named to the additional post of chairman,
succeeding Mr. Lessin, whose resignation was e�ective last Monday.

Figure 9.1: A text with appositives and relative clauses

This sentence has a syntactic complexity that poses a severe challenge to
the at structure of CRYSTAL's instance representation. Nicholas Mihalas
is separated from \was named" by a lengthy appositive. The relationship
between Mihalas and Mr. Lessin is indicated by a reduced relative clause
\Nicholas Mihalas ... succeeding Mr. Lessin". Additional evidence that Lessin
is a Person Out comes from a relative clause \whose resignation ...".

CRYSTAL needs the entire sentence presented as a single instance if it is to
�nd the relationship between Mihalas and Lessin. Figure 9.2 shows the style
of syntactic analysis used for experiments in this thesis.

SUBJ: Nicholas Mihalas, SmartCard 's 51-year-old president
and chief executive o�cer

VERB: was named
PP: to the additional post of chairman
REL-VERB: succeeding Mr. Lessin, whose resignation was

e�ective last Monday.

Figure 9.2: Syntactic analysis that lumps an appositive with the subject and
lumps together words in relative clauses

This analysis lumps together a person name, a company name, and two
positions in the subject. Even if CRYSTAL learns a concept de�nition that
correctly extracts a Person In from the subject, it does not specify which part
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of the subject contains the relevant information. This is left to later processing
in an IE system.

The REL-VERB in this instance (relative clause attached to the verb) is
also presented as a bag of undi�erentiated words. Relative clauses may be
long and contain embedded clauses, as this one does.

Given instances at the proper level of granularity, CRYSTAL could learn
rules that identify exactly which simple noun phrase to extract. The most
promising approach is to present CRYSTAL with multiple views of the input
text. The high level view of the sentence is given in Figure 9.2. An additional
instance would break apart the relative clause as shown in Figure 9.3.

SUBJ: Nicholas Mihalas, SmartCard 's 51-year-old president
and chief executive o�cer

VERB: succeeding
OBJ: Mr. Lessin
REL-OBJ: whose resignation was e�ective last Monday.

Figure 9.3: A second view of the sentence that breaks apart the REL-VERB

This second view of the input shows the syntactic relationship between
\succeeding" as a verb and \Mr. Lessin" as a direct object. Heuristics are
needed to allow a relative clause to inherit its subject from the main clause.
This second instance not only provides better syntactic information, but allows
a concept de�nition to pinpoint \Mr. Lessin" as the Person Out. A third
instance would also be created to break apart the relative clause \Mr. Lessin,
whose resignation ...".

A di�erent approach is needed for appositives and lists such as that found
in the subject \Nicholas Mihalas, SmartCard 's 51-year-old president and chief
executive o�cer". A second pass of CRYSTAL could learn extraction at the
level of noun phrase analysis. For this, the complex noun phrase would be
presented as a list of simple noun phrases separated by delimiters as shown in
Figure 9.4.

To make best use of CRYSTAL for noun phrase analysis, the concept def-
initions would need to include an ordering constraint. Order of constituents
is implicit in the names SUBJ, VERB, and OBJ, but CRYSTAL would need
explicit constraints to distinguish the NP that immediately precedes the de-
limiter \'s" from the NP that follows the delimiter.

Multiple constituents with the same name also raise problems for the low-
level CRYSTAL functions that compute distance. There will be many possible
mappings between two instances with several NP's. Some of these mappings
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NP: Nicholas Mihalas
DELIM: %COMMA%

NP: SmartCard
DELIM: 's
NP: president
DELIM: and
NP: chief executive o�cer

Figure 9.4: An instance for noun phrase analysis to identify relevant informa-
tion within a complex noun phrase

will preserve ordering of the NP's and others will not. The distance between
the two instances is presumably based on the best mapping.

This complication exists in the current CRYSTAL with multiple PP's
(prepositional phrases) and has been solved e�ciently as a bipartite matching
problem. It is not clear that this solution will extend to a system with ordering
constraints between the syntactic constituents.

9.4 Implications for System Development

At the heart of this research lies the problem of knowledge acquisition for
domain-speci�c text analysis. Each new domain or information need requires
learning a new set of text analysis rules to identify references to concepts
important to that domain.

These rules depend critically on the quality of the supporting knowledge
sources, such as the semantic tagging of individual words. At one extreme,
there may be a semantic tag that corresponds perfectly with a target concept.
In this case the text analysis rules can be expressed simply in terms of the
corresponding semantic tag and are trivially easy to learn. Suppose our target
concept is Person,Name and every person name in the input has the semantic
tag <Person Name>.

At the other extreme, there may be no semantic tags at all for a new
domain, or an extremely weak correlation between semantic tags and the target
concepts. In this case, much more complicated text analysis rules are needed.
A large set of rules will be needed to account for the many contexts in which
a concept occurs, often expressed as exact word constraints. Generating a
set of text analysis rules is di�cult whether done manually or using machine
learning techniques, when the semantic tagging has not been tailored to the
target concepts.

93



The starting point in developing an information extraction system for a
new domain is typically between these two extremes. A generic semantic
lexicon and semantic hierarchy may be available, but one that only roughly
�ts the target concepts. The semantic hierarchy may fail to make necessary
discriminations and the semantic lexicon may lack coverage of important terms
for the target concepts. Tailoring a semantic lexicon and semantic hierarchy
to a particular information need is a time consuming manual task.

In many cases the target concepts are not clearly known in advance. Early
development will be based on a set of concepts that are assumed to be use-
ful and easy to extract automatically. The exact boundaries of these target
concepts may be re�ned later. The �rst pass of text annotation is bound
to contain inconsistencies as the annotators come to grip with what exactly
should count as a positive example of each concept.

All of this creates a noisy situation when adapting a system to a new
information extraction task. Text analysis rules must operate robustly in the
face of limited coverage by a semantic lexicon, poor �t of a semantic hierarchy,
imperfect syntactic analysis, and inconsistent training annotations.

CRYSTAL demonstrates that text analysis rules can be learned automati-
cally, even when faced with all these di�culties. A robust, fully automatic tool
such as CRYSTAL allows good system performance from the beginning. Later,
when semantic tagging and syntactic analysis have been customized to the in-
formation need and inconsistent annotations have been minimized, CRYSTAL
will take advantage of these re�nements to boost system performance.
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