
A Framework for Recovering A�ne Transforms Using Points, Linesor Image BrightnessesR. Manmatha�Computer Science DepartmentUniversity of Massachusetts at Amherst, Amherst, MA-01002manmatha@cs.umass.eduAbstractImage deformations due to relative motion betweenan observer and an object may be used to infer 3-Dstructure. Up to �rst order these deformations can bewritten in terms of an a�ne transform. Here, a newframework for measuring a�ne transforms which cor-rectly handles the problem of corresponding deformedpatches is presented. In this framework, points, linesor image brightnesses may be used to derive the a�netransform between image patches. No correspondenceis required. The patches are �ltered using gaussiansand derivatives of gaussians and the �lters deformedaccording to the a�ne transform. The problem of �nd-ing the a�ne transform is therefore reduced to that of�nding the appropriate deformed �lter to use. Themethod is local and can handle large a�ne deforma-tions.Experiments demonstrate that this technique can�nd scale changes and optical ow in situations whereother methods fail.1 IntroductionChanges in the relative orientation of a surface withrespect to a camera cause deformations in the imageof the surface. Deformations can be used to infer lo-cal surface geometry and depth from motion. Since arepeating texture pattern can be thought of as a pat-tern in motion, shape from texture can also be derivedfrom deformations [8].To �rst order, this image translation together withthe deformation can be described using a six parame-ter a�ne transformation (t , A ) wherer0 = t+Ar (1)r' and r are the image coordinates related by an a�netransform, t is a 2 by 1 vector representing the transla-tion and A the 2 by 2 a�ne deformation matrix. The�This research was supported by NSF grants CDA-8922572and IRI-9113690. The author also thanks IBM Almaden Re-search Center which hosted him for 6 months.

a�ne transform is useful because the the image projec-tions of a small planar patch from di�erent viewpointsare well approximated by it.In Figure (1) the image on the right is scaled 1.4times the image on the left. Even is the centroidsof the two images are matched accurately, measuringthe a�ne transform is di�cult since the sizes of ev-ery portion of the two images di�er. This problemarises because traditional matching uses �xed correla-tion windows or �lters. The correct way to approachthis problem is to deform the correlation window or�lter according to the image deformation.This paper derives a computational scheme wheregaussian and derivative of gaussian �lters are used andthe �lters deformed according to the a�ne transforma-tion. The resulting equations are solved by lineariz-ing with respect to the a�ne parameters rather thanthe image coordinates. This allows the linearizationpoint to be moved so that arbitrary a�ne transformscan be solved unlike traditional methods restricted tosmall a�nes. The method is local, applicable to arbi-trary dimensions and can measure a�ne transforms insituations where other algorithms fail. For example,Werkhoven and Koenderink's algorithm [11] when runon the images in Figure (1) returns a scale factor of1.16 while our algorithm does the matching correctlyand therefore returns a scale factor of 1.41.
Figure 1: Dollar Bill scaled 1.4 timesIt is also shown that points and lines can be treatedas part of the same framework. For points and lines,explicit correspondence need not be established. Fur-ther, the method works for both closed and open con-



tours and even for collections of line segments.1.1 Previous WorkA�ne transforms between image patches have beenrecovered in three di�erent ways (for more details see[8]):1. By linearizing the image intensities or the �l-ter outputs with respect to the image coordi-nates. Linearization limits these algorithms tocases when the a�ne transforms are small. Thislinearization does not account for the deformationdue to the a�ne transform. [1, 2, 10, 11] (Notethat [10] essentially re-discovered the method dueto [1]).2. Matching image intensities by searching throughthe space of all a�ne parameters. This approachadopts a brute force search strategy which is po-tentially slow [4].3. Line based methods which match the closedboundaries of corresponding regions [3, 9].Of these approaches, only the third deals with theproblem of corresponding deformed patches. However,it is limited to homogenous regions with closed bound-aries.Patches deformed under similarity transforms mayalso be matched using the Mellin-Fourier Transform([5]). Although possible, recovery of the similaritytransform has not been demonstrated. The maindrawback to these techniques is that they are inher-ently global and they are not applicable to generala�ne transforms.2 Deformation of FiltersThe initial discussion will assume zero image trans-lation; translation can be recovered as suggested insection 3.2. It is also assumed that shading and illu-mination e�ects can be ignored.Notation Vectors will be represented by lowercaseletters in boldface while matrices will be representedby uppercase letters in boldface.Consider two Riemann-integrable functions F1 andF2 related by an a�ne transform i.e.F1(r) = F2(Ar) (2)De�ne a generalized gaussian asG(r;M) = 1(2�)n=2det(M)1=2 exp(�rTM�1r2 ) (3)where M is a symmetric positive semi-de�nite matrix.Then it may be shown that the output of F1 �lteredwith a gaussian is equal to the output of F2 �ltered

with a gaussian deformed by the a�ne transform (see[8] for details) i.e.Z F1(r)G(r; �2I)dr = Z F2(Ar)G(Ar;R�RT )d(Ar)(4)where the integrals are taken from �1 to 1. R is arotation matrix and � a diagonal matrix with entries(s1�)2; (s2�)2:::(sn�)2 (si � 0) andR�RT = �2AAT(this follows from the fact that AAT is a symmetric,positive semi-de�nite matrix).Intuitively, equation (6) expresses the notion thatthe gaussian weighted average brightnesses must beequal, provided the gaussian is a�ne-transformed inthe same manner as the function. The problem ofrecovering the a�ne parameters has been reduced to�nding the deformation of a known function, the gaus-sian, rather than the unknown brightness functions.The equation is exact and is valid for arbitrary di-mensions.The level contours of the generalized gaussian areellipsoids rather than spheres. The tilt of the ellipsoidis given by the rotation matrix while its eccentricity isgiven by the matrix �, which is actually a function ofthe scales along each dimension. The equation clearlyshows that to recover a�ne transforms by �ltering, onemust deform the �lter appropriately; a point ignoredin previous work [1, 2, 11, 4]. The equation is localbecause the gaussians rapidly decay.The integral may be interpreted as the result ofconvolving the function with a gaussian at the origin.It may also be interpreted as the result of a �lteringoperation with a gaussian. To emphasize these simi-larities, it may be written asF1 �G(r; �2I) = F2 �G(r1;R�RT ) (5)where r1 = Ar.In the special case where the a�ne transform canbe written as A = sR i.e. a scale and a rotation, theabove equation reduces to,F1 �G(r; �2) = F2 �G(r1; (s�)2) (6)Note that this equation is valid for an arbitrary rota-tion..Similar equations may be written using derivativeof gaussian �lters (for details see [8]).3 Solution for the Case of SimilarityTransformsTo solve equation(6) requires �nding a gaussian ofthe appropriate scale s� given �. A brute force searchthrough the space of scale changes is not desirable. In-stead a more elegant solution is to linearize the gaus-sians with respect to �. This gives an equation linearin the unknown �F1 �G(:; (s�)2)



� F2 �G(:; �2) + ��F2 � @G(:; �2)@� (7)= F2 �G(:; �2) + ��2r2F2 �G(:; �2) (8)where s = 1 + �. The last equality follows from thedi�usion equation @G@� = �r2G. The key notion hereis that the linearization is done with respect to � andnot the image coordinates.Equation (8) is not very stable if solved at a singlescale. By using gaussians of several di�erent scales �ithe following linear least squares problem is obtained:�ikF1 �G(:; �2i )�F2 �G(:; �2i )+��2iF2 �r2G(:; �2i )k2(9)and solved using Singular Value Decomposition(SVD).The following �i (1.25,1.7677,2.5,3.5355,5.0) -spaced apart by half an octave (a factor of 1.4) - werefound to work well. The corresponding �lter widthswere approximately 8 * �i (3,5,7,11,15,21,29,41)3.1 Choosing a Di�erent OperatingPoint:For large scale changes (say scale change � 1:2)the recovered scale tends to be poor. This is becausethe Taylor series approximation is good only for smallvalues of �. The advantage of linearizing the gaussianequations with respect to � is that the linearizationpoint can be shifted i.e. the right-hand side of (6) canbe linearized with respect to a � di�erent from theone on the left-hand side (other methods linearize thefunction F or the gaussian with respect to r and aretherefore constrained to measuring small a�ne trans-forms). Let the right-hand side of (8) be linearizedaround �j to give the following equationF1�G(:; �2i ) � F2�G(:; �2j)+�0�2jF2�r2G(:; �2j) (10)where s = �j=�i(1 + �0). The strategy therefore is topick di�erent values of �j and solve (10) ( or actuallyan overconstrained version of it). Each of these �jwill result in a value of �0. The correct value of �0 isthat which is most consistent with the equations. Bychoosing the �j appropriately, it can be ensured thatno new convolutions are required.In principle, arbitrary scale changes can be recov-ered using this technique. In practice, most scalechanges in motion and texture are � 2.5 and thereforethree operating points (�; 1:4�; 2:0�) should su�ce.3.2 Finding Image Translation:Image translation, i.e. optic ow can be recoveredin the following manner. Let F1 and F2 be similaritytransformed versions of each other (i.e. they di�er bya scale change, a rotation and a translation). Assumethat an estimate of the translation t0 is available. Lin-earizing with respect to r and � givesF1(r+t0) �G(r; �2)� �tTF1(r+ t0) �G(r; �2)� F2 �G(:; �2) + ��2F2 � r2G(:; �2) (11)

which is again linear in both the scale and the residualtranslation �t. As before an overconstrained versionof this equation using multiple scales is obtained andsolved for the unknown parameters. Large scales arehandled as before.t0 is obtained either by a local search or from acoarser level in a pyramid scheme, while �t is esti-mated from the equation (see [6] for details).Note that since the gaussians are rotation invariant,the translation can be recovered for arbitrary rotationsabout an axis perpendicular to the image. No otherscheme is able to do this.
Figure 2: Random Dot Sequence3.3 Experimental ResultsExperiments on synthetic images show that thea�ne transform can be recovered to within a few per-cent (see [8]).Figure (2) illustrates the power of this algorithm.A random dot image is scaled by a factor of 1.1 androtated around an axis perpendicular to the image by30 deg. On the left is the ow produced by an SSDbased pyramid scheme. Note that the algorithm failsquite dramatically because of the large rotation. Thisoccurs because for correct matching the template alsoneeds to be rotated by the same angle. For small an-gles, the template rotation can be ignored but thiscannot be done for large rotations. On the other handthe results of running the algorithm described hereare shown on the right-hand side. The ow shown isclearly rotational. Note that the ow has been com-puted at every point without �tting a global model. Tothe best of our knowledge no other existing algorithm



can compute the ow correctly in this situation A his-togram of the of the recovered scale values peaks at1.1 which is the correct value.Fig (1) shows a dollar bill scaled by 1.4. The algo-rithm correctly recovers the scale as 1.41. Other ex-periments with scaled and rotated versions of the dol-lar bill consistently show good recovery of scale withina few percent.For other experimental results see [8, 6, 7].4 Solving for the General A�neThere are two factors which need to be taken intoaccount in the general case. First note that in thesimilarity case all the �ltering was done at one point(the origin). The results can be further improved by�ltering at many points rather than just one point.However, the rotation invariance will then be lost. Inthe general a�ne case, because of the larger numberof parameters that have to be recovered, the �lteringmust be done at many points.The deformation must also be accounted for andthis can be done by linearizing the generalized gaus-sian. This can be done either by linearizing with re-spect to the 3 parameters of an elliptical gaussian, ie.the orientation and the scale changes along the majorand minor axes ([6, 7]) or by linearizing directly withrespect to the a�ne parameters.Filtering at a point li modi�es the generalized gaus-sian equation 4 as follows: Given a point with coordi-nates li,Z F1(r)G(r� li; �2I)dr= Z F2(Ar)G(A(r� li));R�RT )d(Ar) (12)Thus if the image is �ltered at point li in the �rstimage patch, it must be �ltered at point Ali in thesecond image patch. Note that this is similar to mov-ing the translation point. Therefore, di�erentiatingwith respect to the image coordinates gives,Z F1(r)G(r� li; �2I)dr� Z F2(Ar)G(Ar� li);R�RT )d(Ar)� [(A� I)li]T Z F2(Ar)G0(Ar� li);R�RT )d(Ar)(13)where G' is the derivative of G with respect to the im-age coordinates. The next step is to approximate thedeformed gaussian. Now G(:;R�R) = G(:; �2AAT ).andG(:; �2AAT ) = 1(2�)n=2det(A)�exp(�rT1 (AAT )�1r12�2 )(14)

If B = A� I is small, the A inverses inside the expo-nential may be linearly approximated to giveG(:; �2AAT )� 1(2�)n=2det(A)�exp(�rT1 (B � I)(B � I)T r12�2 )(15)This may now be linearized with respect to the ele-ments of B to giveG(:; �2AAT ) � G(:; �) + b11Gxx(:; �) + b12Gxy(:; �)+ b21Gxy(:; �) + b22Gyy(:; �) (16)where the bij are elements of B. Upto linear terms inB equation (13) can therefore be written as as:F1 �G(r� li; �)� F2 �G(r1 � li; �)� (Bli)TF2 �G0(r1 � li; �)+ b11F2 �Gxx(r1 � li; �) + b22F2 �Gyy(r1 � li; �)+ (b12 + b21)F2 �Gxy(r1 � li; �) (17)Note that this is linear in the a�ne parameters bij. Anumber of methods incorporate the idea of �ltering atmany points [1, 2, 10]. However, none of these com-pensate for the deformation terms (in essence the dif-ference between the traditional linearization methodsand the technique presented here are the additionalsecond derivative terms).Translation may be incorporated as before. Theequation may be turned into an overconstrained lin-ear system by choosing a number of scales �i and anumber of points li. 5 scales are chosen as before.The points li are picked as follows: An n by n windowis chosen. In addition to the origin (0,0), all pointswhose coordinates are of the form (k x,k y) (x,y in-tegers) within this window are chosen. The followingpairs of values (n,k) were tried (5,2),(9,2),(13,2) (thetotal number of points chosen in each case is respec-tively 9,25 and 49). Note that smaller windows canbe used to solve for larger a�ne transforms. On theother hand, while larger windows can produce more ofan averaging e�ect, the linearization can give rise toa larger error. Experimentally the (9,2) pair seemedto work best, leading to faster convergence, while the(5,2) window worked with large a�ne transforms. Ingeneral this means that the windows used to recovera�ne transforms are fairly small compared to thoseused with other methods.The solution was done iteratively. At each step, thea�ne transformation was solved for. The image wasthen warped according to the a�ne and the residuala�ne solved for. Convergence is very rapid.4.1 Experiment ResultsThe algorithm performs really well on sine-wave im-ages. A test image was constructed using the followingsine-wave function F1(x; y) = 128sin(0:2(x+ y)) and



a second image was produced by a�ne transforming itabout the center of the image. Results after the �rstiteration will be reported to indicate the rapid conver-gence of the method. All the sine wave experimentswere done with an (n,k) pair of (9,2). Convergenceis somewhat slower with (n,k) = (5,2). � 2:0 0:20:2 2:0 �After the �rst iteration, the recovered a�ne transformwas � 2:08 0:240:24 2:08 �. This shows that convergence isvery rapid. The following a�ne transform was alsotried. � 1:4095 �0:34200:3420 0:5638 �. This converged in 5 it-erations (compare [10] where they took 19 iterations tosolve it). The experiments were repeated using largeamounts of noise (roughly 15% of the magnitude ofthe sine wave) and performance was still good.Behaviour on sine wave images is excellent partlybecause the sine wave images are well behaved func-tions - thus the derivative approximations hold well.Therefore, it is important to check with images whichhave discontinuities. This was done using random dotimages.A random dot image was generated and a secondimage was obtained by warping the �rst image aboutthe center of the image using the following a�ne trans-form � 1:21 �0:70:7 1:21 � (this is a scale change of 1:4 fol-lowed by a rotation of 30 degrees). With (n,k) = (5,2)after the �rst iteration, the a�ne transform was foundto be � 1:18 �0:400:31 1:22 �The method seems to handle fairly large scalechanges without any need for a change in operatingpoints. However, it is expected that beyond a cer-tain scale change, the operating point will need to bemoved. This can be done by �ltering with ellipticalgaussians. A more serious problem is the need forhandling large orientation changes. In experiments sofar, The method seems to handle rotations upto about� = 30 degrees. Rotations which are 90 + phi or 90- phi can be handled very easily by changing corre-sponding points in the two images. This can be donewithout the need for any new convolutions. Similarremarks apply to cases where the rotations are 180+ phi and 180 - phi, as well as 270 - phi and 270 +phi. Rotations between 30 and 60 degrees can also behandled with some complications.5 PointsThe above framework may be extended to points.That is, given a set of points in one image and an a�netransformed version in the second, the a�ne transformmay be recovered. The main advantage of this tech-nique is that explicit point-wise correspondence is notrequired; this is automatically obtained while measur-ing the a�ne transform. Since a set of points does

not represent a continuous function, the actual equa-tions and expressions will be slightly di�erent than forbrightnesses. For this method to work satisfactorily,a large number of points must be available otherwiseincorrect solutions will be obtained. Further, no oc-clusion may occur (this may be relaxed by picking thelargest subset of non-occluded points).A set of points may be represented using delta func-tions. i.e F1(r) =Xi �(r� bi) (18)The a�ne transformed version will therefore beF2(r) =Xi �(Ar + t� bi) (19)Again, translation can be assumed to be zero. It canbe recovered as discussed before. For points, transla-tion can also be recovered by matching the centroidsof the set of points de�ning F1 and F2.As discussed before it is desirable to �lter F1 andF2. Since F1 and F2 are discrete functions, they arenot Riemann integrable. Instead the integrals mustbe interpreted as Stieltjes integrals. Then it may beshown that if un-normalized gaussians H(r; �2I) areused, equality is again obtained between the �lter out-puts of F1 and F2. i.e.Z F1(r)H(r; �2I)dr = Z F2(Ar)H(Ar;R�RT )d(Ar)(20)where H is a an un-normalized generalized (elliptical)gaussian de�ned by H(r;M) = exp(�rTM�1r=2) andM is a symmetric positive semi-de�nite matrix.5.1 SolutionThe solution of the above equation though slightlydi�erent from the brightness case may be obtained asfor the brightness case. All the considerations that ap-ply to the brightness case - the use of multiple scalesand the use of di�erent operating points - also applyhere. These considerations will therefore not be dis-cussed here. For purposes of illustration, the solutionfor the similarity case is derived below5.1.1 Case A = sR(�)As before, by linearizing with respect to �, the solutionfor the similarity case with known translation may beshown to be:F1 �H(:; �) � F2 �H(:; �)+(s � 1)�2F2 � [r2H(:; �) + nH(:; �)=�2] (21)where n is the number of dimensions. Note the extraterm as compared to the brightness equation (8).



6 LinesMuch more interesting is the case of lines. The ad-vantage of using this framework for lines is that themethod can deal with both closed and open curves aswell as straight and curved lines. The method willalso work on a collection of line segments. No corre-spondence is required, although it is assumed that ifline segments are used, the same segments are used inboth images.In the case of lines, Riemann integration must beperformed along the line and Stieltjes integration per-pendicular to the line. This makes the equations some-what messy for the case of the general a�ne since thelocal line orientation must be factored in. However,for the similarity case, the local line orientation doesnot �gure in the equations. In this case, the gaussian�lter equation may be shown to beF1 �H(:; �)=� = F2 �H(:; s�)=(s�) (22)where it is assumed that F1 and F2 are de�ned in 2-D dimensions (the general case is a straightforwardextension).The point, line and brightness cases may now becontrasted. In the point case (equation (21)), boththe �0s required for normalizing a 2-D gaussian areabsent ; in the line case only one is absent (equation(22)), while in the brightness case both are present.The solution in the similarity case is again obtainedby linearizing with respect to � and is given byF1 �H(:; �) � F2 �H(:; �)+(s � 1)�2F2 � [r2H(:; �) +H(:; �)=�] (23)Experiments indicate that it works. For the methodto work well with lines, it is important to localize lineswith sub-pixel accuracy.The general case may also be derived in similarfashion.6.1 Comments on Points and LinesBoth points and lines are for the most part unaf-fected by illumination changes and shading. So if thisis a signi�cant concern, they can be used. A number ofman-made scenes often consist of homogeneous regionssurrounded by lines. In such situations where there isminimal image texture, methods using image bright-nesses will fail. However, line based methods may stillwork. Note that �lter sizes may need to be changeddepending on the size of the structures present in theimage.6.2 Combining Points,Lines and Bright-nessesOne advantage of this framework is that it pro-vides a natural mechanism to combine points, linesand brightnesses (just put them all in one big matrixand use singular value decomposition). For example,in regions in the images where there are strong bound-aries and corner points they are weighted more heavilyby using this technique.
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