
Indexing Handwriting Using Word Matching

R. Manmatha, Chengfeng Han, E. M. Riseman and W. B. Croft, �
Center for Intelligent Information Retrieval,

Computer Science Department,

University of Massachusetts, Amherst, MA-01003.

manmatha@cs.umass.edu

Abstract
There are many historical manuscripts written in a single

hand which it would be useful to index. Examples include

the W. B. DuBois collection at the University of Massachusetts

and the early Presidential libraries at the Library of Congress.

The standard technique for indexing documents is to scan

them in, convert them to machine readable form (ASCII)

using Optical Character Recognition (OCR) and then index

them using a text retrieval engine. However, OCR does not

work well on handwriting. Here an alternative scheme is

proposed for indexing such texts. Each page of the docu-

ment is segmented into words. The images of the words

are then matched against each other to create equivalence

classes (each equivalence classes contains multiple instances

of the same word). The user then provides ASCII equiva-

lents for say the top 2000 equivalence classes.

The current paper deals with the matching aspects of this

process. Due to variations in even a single person’s hand-

writing, it is expected that the matching will be the most dif-

ficult step in the whole process. A matching technique based

on Euclidean distance mapping is discussed. Experiments

are shown demonstrating the feasibility of the approach.1 Introduction
Text has always been the primary source of information in

conventional, and more recently digital libraries. If the text

is in machine readable form (ASCII), it can be indexed using

standard text retrieval engines. However, much of the text in

both historical and even current collections is contained in

paper documents. One solution is to use Optical Character

Recognition (OCR) to convert scanned paper documents into

ASCII. Existing OCR technology works well with standard�This research was supported by the NSF Center for Intelligent Information Re-
trieval and by ARPA grant number N66001-94-D-6054.

To appear in First ACM Intl. Conf. on Digital Libraries

DL’96,March 1996, Bethesda, Maryland.

machine printed fonts against clean backgrounds. It works

poorly if the originals are of poor quality or if the text is

handwritten. We propose an alternative solution for indexing

handwritten text when a large corpus of texts written by a

single person exists.

In the context of digital libraries, the problem being ad-

dressed in this paper is primarily related to the indexing of

historical manuscripts. These manuscripts are largely writ-

ten in a single hand and most of them are unpublished. For

example, the collected works of well-known people like W.

E. B. Du Bois, the African American civil rights leader, and

Margaret Sanger, a pioneer in birth control are mostly un-

published and are stored at archives at the University of Mas-

sachusetts and Smith College respectively. Both left a sub-

stantial amount of their work and correspondence written in

their own hand and it is unlikely that all of this material will

ever be published.1

Such manuscripts are, however, valuable resources for

scholars as well as others who wish to consult the original

manuscripts. It would, therefore, be useful to index them to

allow rapid access to relevant texts. Since conventional OCR

and text retrieval engines cannot be used, this paper proposes

an alternative strategy for indexing such documents.

The indexing scheme proposed here also simplifies read-

ing documents where the handwriting is hard to read. A

scanned page from the correspondence of Erasmus Darwin

Hudson (1809-1880) - an anti-slavery organizer and pioneer

orthopaedic surgeon - is shown in Figure 1. This page is part

of a letter to Erasmus Hudson from James S. Gibbons. The

authors are still unable to decipher some of the words on this

page.

Since the document is written by a single person, the as-

sumption is that the variation in the word images will be

small. The proposed solution will match the actual word im-

ages against each other to create equivalence classes. Each

equivalence class will consist of multiple instances of the1Recently, the Model Editions Partnership organized an effort to produce “His-
torical Editions for the Digital Age”. As part of this effort, a substantial

collection of Margaret Sanger’s work has been recently put on microfilm (see
http://MEP.cla.sc.edu/Sanger/SangBase.HTM) with an item by item index. The in-

dexing schemes proposed herein will help in the creation and production of indices
and concordances for such archives.

1

Figure 1: Manuscript from the collected papers of the Hudson family

2

same word. Each word will have a link to the page it came

from. The number of words in each equivalence class will be

tabulated. Those classes with the largest numbers of words

will probably be stopwords, i.e. conjunctions such as “and”

or articles such as “the”. Classes containing stopwords are

eliminated (since they are not very useful for indexing). A

list is made of the remaining classes. This list is ordered

occuring to the number of words contained in them. The

user provides ASCII equivalents for a representative word

in each of the top m (say m = 2000) classes. The words in

these classes can now be indexed. This technique will be

called “wordspotting” as it is analogous to “wordspotting”

in speech processing [4].

The proposed solution completely avoids machine recog-

nition of handwritten words as this is a difficult task [7].

Robustness is achieved compared to OCR systems for two

reasons:

1. Matching is based on entire words. This is in contrast

to conventional OCR systems which essentially recog-

nize characters rather than words.

2. Recognition is avoided. Instead a human is placed in

the loop when ASCII equivalents of the words must be

provided.

The present paper deals with the first part of the problem

where the scanned document is segmented into word images

and the word images are matched against each other. A fu-

ture paper will deal with the rest of the system. The matching

phase of the problem is expected to be the most difficult part

of the problem. This is because unlike machine fonts, there

is some variation in even a single person’s handwriting. This

variation is difficult to model. Figure (2) shows two exam-

ples of the word “Lloyd” written by the same person. The

last image is produced by XOR’ing these two images. The

white areas in the XOR image indicate where the two ver-

sions of “Lloyd” differ. This result is not unusual. In fact,

the differences are sometimes even larger.
 ��

Figure 2: Two examples of the word “Lloyd” and the XOR

image

In this paper, a matching technique based on Euclidean

distance mapping [2] is discussed and preliminary results are

given.

2 Prior Work
The traditional approach to indexing documents involves first

converting them to ASCII and then using a text based re-

trieval engine [9, 8]. Scanned documents can be converted

into ASCII by first segmenting a page into words and then

running them through an OCR [1]. The OCR segments the

words further into characters and then attempts to recognize

the characters using statistical pattern classification [1]. This

approach has been highly successful with standard machine

fonts against clean backgrounds. It has had much more lim-

ited success when handwriting is used. Primarily, this is be-

cause character segmentation is much more difficult in the

presence of handwriting and also because of the wide vari-

ability in handwriting (not only is there variability between

writers, but a given person’s writing also varies).

An approach similar to ours has been used to recognize

words in documents which use machine fonts [5]. The word

images are compared against each other and divided into

equivalence classes. The words within an equivalence class -

all of which are presumably identical - are used to construct a

noise-free version of the word. This word is then recognized

using an OCR. Recognition rates are much higher than when

the OCR is used directly [5].

Machine fonts have a number of advantages over hand-

writing. Multiple instances of a given word printed in the

same font are identical except for noise. This situation does

not hold for handwriting. Multiple instances of the same

word on the same page by the same writer show variations.

The variations are many - these include scaling of the words

with respect to each other, small changes in orientation, and

changes in the lengths of descenders and ascenders. The

first two pictures in Figure 2 are two identical words from

the same document, written by the same writer. It may thus

be necessary to account for these variations.3 Outline of Algorithm
1. A scanned greylevel image of the document is obtained.

2. The image is first reduced by half by gaussian filtering

and subsampling.

3. The reduced image is then binarized by thresholding

the image (note the thresholding is done in such a way

that the characters are white and the background black).

4. . The binary image is now segmented into words. this

is done by a process of smoothing and thresholding

described later.

5. A given word image (i.e. the image of a word) is used

as a template and matched against all the other word

images. This is repeated for every word in the docu-

ment. The matching is done in two phases. First, the

3

number of words to be matched is pruned using the ar-

eas and aspect ratios of the word images. Next, the ac-

tual matching is done by comparing the minimum dis-

tance of the XOR’ed images. The matching divides the

word images into equivalence classes - each class pre-

sumably containing other instances of the same word.

6. Indexing is done as follows. For each equivalence class,

the number of elements in it is counted. The top n

equivalence classes are then determined from this list.

The equivalence classes with the highest number of

words (elements) are likely to be stopwords (i.e. con-

junctions like ‘and’ , articles like ‘the’, and preposi-

tions like ‘of’) and are therefore eliminated from fur-

ther consideration. Let us assume that of the top n,

m are left after the stopwords have been eliminated.

The user then displays one member of each of these m

equivalence classes and assigns their ASCII interpre-

tation. These m words can now be indexed anywhere

they appear in the document.

We now discuss these techniques in detail.3.1 Word Segmentation
The technique to segment words is simple. It assumes that a

binary image of each page is available and further assumes

that the words are white against a dark background (if it is

otherwise in the original image, the image can be inverted).

Since the spacing between adjacent characters in a word is

smaller than the spacing between adjacent words, a new im-

age is constructed using a smoothing and thresholding oper-

ation. If two white pixels are separated by less than a certain

distance k, the intermediate pixels are made white. This is

done in the horizontal direction khoriz . In the case of hand-

writing, this procedure also needs to be performed in the di-

agonal direction kdiag - mainly to prevent descenders from

breaking up. Note that each of these window operations may

be viewed as a smoothing and thresholding operation or as

a morphological closure operation. Connected components

are now recovered from this image. A minimum bounding

rectangle is then constructed using the connected compo-

nents. The minimum bounding rectangles essentially give

a segmentation of the page into words. Figure 3 shows an

example. Certain errors do occur; for example, the dot over

the i is segmented as a separate word. This is ignored by

requiring that word images have a minimum size. Other er-

rors in segmentation may also occur because the writer left

a large gap between parts of a word in one instance but did

not do so when writing the word again.

A number of algorithms exist in the literature for seg-

menting words from binary images and essentially any of

them can be used [3, 11, 10].

4 Determination of Equivalence Classes
The matching is done in a number of phases. First, the num-

ber of possible words that need to be matched is pruned by

using the areas and aspect ratios of the words. Since the

entire document is written by the same hand, it is expected

that variations in size will be small. Thus the pruning can

be done on the basis of the area of the word images and the

aspect ratios of the word images.4.1 Pruning
It is assumed that 1� � AwordAtemplate � � (1)

where Atemplate is the area of the template and Aword is the

area of the word to be matched. A typical value of � used in

the experiments is 1.2. A similar filtering step is performed

using aspect ratios (ie. the width/height ratio). It is assumed

that � � AspectwordAspecttemplate � � (2)

. The value of � used in the experiments is 1.4. In both the

above equations, the exact factors are not important but it

should not be so large so that valid words are omitted, nor so

small so that too many words are passed onto the matching

phase.4.2 Matching
The template is then matched against the word of each image

in the pruned list. The matching function must satisfy two

criteria:

1. It must produce a low match error for words which are

similar to the template.

2. It must produce a high match error for words which are

dissimilar.

The matching algorithm assumes that no distortions have

occured except for relative translation and is fast. This algo-

rithm usually ranks the matched words in the correct order

(i.e. valid words are first followed by invalid words). and

returns the lowest errors for words which are similar to the

template.

The technique used is similar to that used by [5] to match

machine generated fonts. Consider two images to be matched.

There are three steps in the matching:

1. First the images are roughly aligned. In the vertical di-

rection, this is done by aligning the baselines of the two

images. The baseline is computed as follows. The dif-

ference in the number of white pixels between adjacent

scan lines is computed. The point at which the differ-

ence is maximum is declared to be the baseline. The

4

Figure 3: Segmentation of page

5

baseline computation is performed for both images,

and the images then shifted so that they are aligned.

In the horizontal direction, the images are aligned by

making their left hand sides coincide.

The alignment is, therefore, expected to be accurate in

the vertical direction and not as good in the horizontal

direction. This is borne out in practice.

2. Next the XOR image is computed. This is done by

XOR’ing corresponding pixels. An example of two

images and the corresponding XOR image is shown

Figure 2. A match error EXOR may be computed by

finding the number of white pixels in the XOR image.

However, the XOR image match error is, in general,

not accurate enough for matching. Notice that XOR

images may consist of either isolated pixels or pixels

in a blob. The error measure computed above gives

equal weight to both. However, an isolated pixel in

the XOR image may be due to noise while a blob may

be due to a major mismatch. Therefore, blobs should

be given more weight. This can be done by using an

Euclidean distance mapping.

3. A Euclidean distance mapping [2] is computed from

the XOR image by assigning to each white pixel in the

image, its minimum distance to a black pixel. Thus a

white pixel inside a blob will get a larger distance than

an isolated white pixel. An error measure EED can

now be computed by adding up the distance measures

for each pixel.

4. Although the approximate translation has been com-

puted using step (1), this may not be accurate and may

need to be fine-tuned. Thus steps (2) and (3) are re-

peated while sampling the translation space in both x

and y. A minimum error measure EEDmin is com-

puted over all the translation samples.5 Experiments
The performance of the technique was tested on two hand-

written pages, each written by a different writer. The first

page was obtained from the DIMUND document server on

the internet. This page can be obtained from

http://documents.cfar.umd.edu/resources/database/handwrit-

ing.database.html and was scanned by Andrew Senior (this

page will be referred to as the Senior document). The hand-

writing on this page is fairly neat. The second page is from

an actual archival collection - the Hudson collection from the

library of the University of Massachusetts. The page used

is a letter written by James S. Gibbons to Erasmus Darwin

Hudson. The handwriting on this page is difficult to read and

in fact the indexing technique helped in deciphering some of

the words.

The experiments will show examples of how the match-

ing technique works on a few words. However, at least for

the Senior page experiments done with the other words show

the same general trend i.e. good matching. All rankings

were produced by matching the template with every word

left in the pruned class.

The Senior page was segmented into words with khoriz =9 and kdiag = 3 and the resulting output is shown in Figure

(3). The algorithm was then run on the segmented words. In

the following figures, the first word shown is the template.

After the template, the other words are ranked according to

the match error EED. The area threshold � was chosen to be

1.2 and the aspect ratio threshold � was chosen as 1.4. The

translation values were sampled to within �4 pixels in the

X direction and �1 pixel in the y direction. Experimentally,

this gave the best results.

In Figure (4), the template is the word “Lloyd”. The fig-

ure shows that the four other instances of “Lloyd” present

in the document are ranked before any of the other words.

As Table (1) shows, the match errors for other instances of

“Lloyd” is less than that for any other word. In the table, the

first column is the Token number (this is needed for identifi-

cation purposes), the second column is a transcription of the

word, the third column shows the area in pixels, the fourth

gives the match error and the last two columns specify the

translation in the x and y directions respectively. Note the

significant change in area of the words.
 ��

Figure 4: Ranked matches for template “Lloyd” (the rank-

ings are ordered from left to right and from top to bottom).

Figure (5) and Table (2) display the results when the tem-

plate “the” is used. In this case, there are a few instances

where other words are ranked ahead of two instances of “the”.

Tokens 191,33 and 161 are ranked ahead. Note that two of

these, 191 and 161, are actually instances of “he” which is

shaped fairly close to the correct word. In general it is ex-

pected that small words will have the largest errors. How-

ever, most small words are stopwords and are not useful for

indexing. Therefore, the errors are not necessarily serious.

In English, the first letter in a word is capitalized when

the word begins a sentence and not otherwise (unless it is

6

Token Word Area EEDmin Xshift Yshift

105 Lloyd 1360 0.000 0 0

70 Lloyd 1224 0.174 0 0

165 Lloyd 1230 0.175 -2 0

197 Lloyd 1400 0.194 4 0

239 Lloyd 1320 0.197 -3 0

21 Maybe 1147 0.199 -1 0

180 along 1156 0.200 1 0

215 party 1209 0.202 1 0

245 spurt 1170 0.205 -1 0

121 dreary 1435 0.206 3 0

Table 1: Rankings and match Errors for template “Lloyd”.
 ��

Figure 5: Rankings for template “the” (the rankings are or-

dered from left to right and from top to bottom).

a proper noun). Thus it is desirable that the technique be

relatively insensitive to this capitalization. Figure (6) and

Table (3) shows an example of this. The word “minister” is

the highest ranked word obtained for the template “Minister”

despite the fact that “minister” begins with a lower case letter

while “Minister” starts with an uppercase letter.
 ��

Figure 6: Rankings for template “Minister” (the rankings are

ordered from left to right).

Token Word Area EEDmin Xshift Yshift

62 the 336 0.000 0 0

164 the 304 0.143 -3 0

183 the 380 0.149 -1 0

232 the 396 0.170 1 0

25 the 330 0.193 0 0

11 the 378 0.223 0 0

226 the 380 0.256 0 0

43 the 391 0.259 0 0

191 he 285 0.265 2 0

33 its 286 0.265 2 0

161 he 300 0.271 1 0

15 the 400 0.280 -1 0

216 the 418 0.289 0 0

59 In 357 0.312 3 0

222 his 360 0.315 0 0

9 ten 357 0.333 1 0

Table 2: Rankings and match errors for template “the”.

Token Word Area EEDmin Xshift Yshift

113 Minister 1134 0.000 0 0

147 minister 1078 0.210 -1 0

176 number 1104 0.285 2 0

Table 3: Rankings and match errors for template “Minister”.Comment The overall performance of the technique on

the Senior document is good. This is especially remarkable

considering that there is some variation in the words and this

variation is not modelled by the algorithm.

The performance of the method is expected to correlate

with the quality of the handwriting. This was verified by

running experiments on a page from the Hudson collection

(Figure 1). The handwriting in the Hudson collection is dif-

ficult to read even for humans looking at grey-level images

at 300 dpi The writing shows wide variations in size - for ex-

ample, the area of the word “to” varies by as much as 100% !

However, this large a variation is not expected to occur and is

not seen when the words are larger. Since humans have diffi-

culty reading this material, we do not expect that the method

will perform very well on this document. However, it clearly

shows where the method breaks.

For segmentation into words, khoriz = 8 and kdiag = 2
were used. Figure (7) and Table (4) show the results of

matching the template “to” (The question mark implies that

the word cannot be deciphered). Among the top 14 words

ranked are 8 examples of “to”. There are 13 instances of

“to” in the document - many of the ones not found show

considerable variation from the template. Notice in particu-

lar the second picture from the right in the bottom row. This

word is “to” although it appears to be more like “its”.

Figure (8) and Table (5) show the results of matching the

template “they”. There is only one other instance of “they”

in the document and it is ranked correctly.

7

 ��

Figure 7: Rankings for template “to” (the rankings are or-

dered from left to right and from top to bottom).

Token Word Area EEDmin Xshift Yshift

93 to 289 0.000 0 0

211 to 255 0.121 1 0

197 to 272 0.135 -3 0

160 of 240 0.159 0 0

244 to 315 0.170 -1 0

302 to 336 0.176 1 0

96 of 272 0.201 -1 0

39 0f 238 0.215 0 0

325 if 352 0.225 -2 0

345 ’4 272 0.249 -4 0

354 ? 320 0.249 3 0

103 to 342 0.263 2 0

234 to 288 0.280 1 0

71 to 288 0.280 -1 0

Table 4: Rankings and match errors for template “to”.
 ��

Figure 8: Rankings for template “they” (the rankings are

ordered from left to right).

Token Word Area EEDmin Xshift Yshift

1 they 899 0.000 0 0

43 they 891 0.145 3 0

156 only 775 0.182 0 0

176 if 782 0.192 0 0

Table 5: Rankings and match errors for template “they”.

Finally the word “Standard” is matched. Figure (9) and

Table (6) show the results of this matching. The performance

is not very good. The reason is that the words are written

differently. In the template, there is a gap between the “t”

and the “a”. However, in the second example of “Standard”

there is no gap. This implies that a technique which models

some kind of distortion may be needed.Comment The Hudson document is a good example of

the weaknesses of the technique. However, considering the

poor quality of the handwriting (difficult to read even for

 ��

Figure 9: Rankings for template “Standard” (the rankings

are ordered from left to right and from top to bottom).

Token Word Area EEDmin Xshift Yshift

280 Standard 1530 0.000 0 0

239 comment 1722 0.203 -4 0

94 come to 1241 0.212 1 0

45 whether 1258 0.212 1 0

186 branch 1743 0.218 0 0

56 subscribes 1900 0.228 -4 0

283 substances 1479 0.231 1 0

167 Standard 1440 0.231 1 0

Table 6: Rankings and match errors for template “Standard”.
 ��

Figure 10: Rankings for template “Standard” using an affine

matching algorithm (the rankings are ordered from left to

right and form top to bottom).

humans), the method performs reasonably well. We now

have a more powerful matching algorithm [6] which mod-

els the transformation between words as an affine transform.

This technique has been able to handle most of the match-

ing problems associated with the Euclidean distance tech-

8

nique. An example of the performance of this technique on

the word “Standard” from the Hudson document is shown in

Figure 10. Note the correct rankings.6 Conclusion
The work clearly shows that the idea of indexing a corpus of

written words in a single hand is feasible. Even a simple

matching algorithm which accounts for only translational

shifts is able to match most of the words when the hand-

writing is good. The performance degrades with the quality

of the handwriting, although surprisingly it does reasonably

well on even poor quality handwriting.

Recently, we have used a more powerful matching algo-

rithm which models the transformations between words us-

ing affine transforms. This technique has so far been able to

handle most of the matching problems associated with the

Euclidean distance technique [6].7 Acknowledgements
We would like to thank Gail Giroux and the University of

Massachusetts Library for the scanned page from the Hud-

son collection. We also wish to thank Bob Heller and Jonathan

Lim for systems help.References
[1] M. Bokser. Omnidocument technologies. Proceedings

IEEE, 80(7):1066–1078, 1992.

[2] Per-Erik Danielsson. Euclidean distance mapping.

Computer Graphics and Image Processing, 14:227–

248, 1980.

[3] L. Fletcher and R. Kasturi. A robust algorithm for

text string separation from mixed text/graphics images.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 10:910–918, 1988.

[4] G. J. F. Jones, J. T. Foote, K. Sparck Jones, and S. J.

Young. Video mail retrieval: The effect of word spot-

ting accuracy on precision. In International Conference

on Acoustics, Speech and Signal Processing, volume 1,

pages 309–316, 1995.

[5] Siamak Khoubyari and Jonathan J.Hull. Keyword lo-

cation in noisy document image. In Second Annual

Symposium on Document Analysis and Information Re-

trieval, UNLV, Las Vegas, pages 217–231, 1993.

[6] R. Manmatha, Chengfeng Han, and E. M. Riseman.

Word spotting: A new approach to indexing handwrit-

ing. Technical Report CS-UM-95-105, Computer Sci-

ence Dept, University of Massachusetts at Amherst,

MA, 1995.

[7] S. Mori, C. Y. Suen, and K. Yamamoto. Historical re-

view of ocr research and development. Proceedings of

the IEEE, 80(7):1029–1058, 1992.

[8] G. Salton. Automatic Text Processing. Addison-

Wesley, 1988.

[9] H.R. Turtle and W.B. Croft. A comparison of text

retrieval models. Computer Journal, 35(3):279–290,

1992.

[10] F. Wahl, K. Wong, and R. Casey. Block segmen-

tation and text extraction in mixed text/image docu-

ments. Computer Vision Graphics and Image Process-

ing, 20:375–390, 1982.

[11] D. Wang and S. N. Srihari. Classification of newspaper

image blocks using texture analysis. Computer Vision

Graphics and Image Processing, 47:327–352, 1989.

9

