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Figure 1: Construction of a query begins with a user marking regions ofinterest in an image, shown by the rectangles in (i).The regions of interestand their spatial relationships de�ne a query, shown in (ii).respond to visual queries by retrieving images in a fast and e�ective manner.The application potential is enormous; ranging from database managementin museums and medicine, architectural and interior design, image archiving,to constructing multi-media documents or presentations[3].Simple image retrieval solutions have been proposed, one of which is toannotate images with text and then use a traditional text-based retrievalengine. While this solution is fast, it cannot however be e�ective over largecollections of complex images. The variability and richness of interpreta-tion is quite enormous as is the human e�ort required for annotation. Tobe e�ective an image retrieval system should exploit image attributes suchas color distribution, motion, shape [1], structure, texture or perhaps userdrawn sketches or even abstract token sets (such as points, lines etc.). Imageretrieval can be viewed as an ordering of match scores that are obtained bysearching through the database. The key challenges in building a retrievalsystem are the choice of attributes, their representations, query speci�cationmethods, match metrics and indexing strategies.In this paper a method for retrieving images based on appearance ispresented. Without resorting to token feature extraction or segmentation,images are retrieved in the order of their similarity in appearance to a query.Queries are constructed from raw images, as illustrated in Figure 1. Theregions in Figure 1(ii) along with their spatial relationship are conjunctively2



called as the query1. Images are then retrieved from the database in the orderof their similarity of appearance to the query. Similarity of appearance isde�ned as the similarity of shape under small view variations. The proposedde�nition constrains view variations, but does not constrain scale variations.A measure of similarity of appearance is obtained by correlating �lteredrepresentations of images. In particular a vector representation(VR) of animage is obtained by associating each pixel with a vector of responses toGaussian derivative �lters of several di�erent orders. To retrieve similarlooking images under varying scale a representation over the scale parameteris required and scale-space representations [6] are a natural choice. Lists ofVRs generated using banks of Gaussian derivative �lters at several di�erentscales form a scale-space representation [6] of the object. A match scorefor any pair of images is obtained by correlating their scale-space vectorrepresentations.Thus, the entire process of retrieval can be viewed as the following three-step process. The �rst is an o�-line computation step that generates VRsof database images for matching (described in Section 3). The second isconstruction of queries and their VRs (described in Section 5). The third isan ordering of images ranked by the correlation of their VRs with that of thequery (described in Section 4). In Section 6 experiments with this proceduredemonstrate retrieval of similar looking objects under varying scale.While one is tempted to argue that retrieval and recognition problemshave a lot in common, one should also note the sharp contrasts between thetwo paradigms. First, putting a user in the \loop" , shifts the burden of thedetermination of feature saliency to the user. For example, only regions ofthe car in Figure 1(i) (namely, the wheels, side-view mirror and mid-section)considered salient by the user are highlighted. Second, user interaction canbe used in a retrieval system of su�cient speed to evaluate the ordering ofretrieved images and reformulate queries if necessary. Thus, in the approachpresented in this paper, alternate regions could be marked if the retrieval isnot satisfactory. Third, a hundred percent accuracy of retrieval is desirablebut not at all critical (for comparison the best text-based retrieval engineshave retrieval rates less than 50%). The user ultimately views and evaluatesthe results, allowing for tolerance to the few incorrect retrieval instances.1The retrieved images for this case are shown in Figure 3.3



2 Related WorkA number of researchers have investigated the use of shape for retrieval [1,9, 10]. However, unlike the technique presented in this paper, these methodsall require prior segmentation of the object using knowledge of the contouror binary shape of the object.It has been argued by Koenderink and van Doorn [5] and others thatthe structure of an image may be represented using Gaussian derivatives.Hancock et al [4] have shown that the principal components of a set of imagescontaining natural structures may be modeled as the outputs of a Gaussianand its derivatives at several scales. That is, there is a natural decompositionof an image into Gaussian derivatives at several scales. Gaussians and theirderivatives have, therefore, been successfully used for matching images of thesame object under di�erent viewpoints (see [12] for references). This paperis an extension to matching \similar" objects using Gaussian derivatives.3 Matching Vector RepresentationsThe key processing involves obtaining and matching vector-representationsof a sample gray level image patch S and a candidate image C. The stepsinvolved in doing this will now be described:Consider a Gaussian described by it's coordinate r and scale �G (r; �) = 1p2��e� r22�2 (1)A vector-representation ~I of an image I is obtained by associating each pixelwith a vector of responses to partial derivatives of the Gaussian at that lo-cation. Derivatives up to the second order are considered. More formally, ~Itakes the form hIx; Iy; Ixx; Ixy; Iyyi where Ix, Iy denote the the �lter responseof I to the �rst partial derivative of a Gaussian in direction x and y respec-tively. Ixx,Ixy and Iyy are the appropriate second derivative responses. Thechoice of �rst and second Gaussian derivatives is discussed in [12].The correlation coe�cient � between images ~C and ~S at location (m;n)in ~C is given by: � (m;n) =Xi;j ĈM (i; j) � ŜM (m� i; n� j) (2)4



Figure 2: I1 is half the size of I0. To match points p0 with p1, Image I0 shouldbe �ltered at point p0 by a Gaussian of a scale twice that of the Gaussian usedto �lter image I1 (at p1). To match a template from I0 containing p0 and q0,an additional warping step is required. See text in Section 4.where ŜM (i; j) = ~S (i; j)� SM������~S (i; j)� SM ������and SM is the mean of ~S (i; j) computed over S. ĈM is computed similarlyfrom ~C (i; j). The mean CM is in this case computed at (m,n) over a neigh-borhood in C (the neighborhood is the same size as S).Vector correlation performs well under small view variations. It is ob-served in [12] that typically for the experiments carried out with this method,in-plane rotations of up to 20o, out-of plane rotation of up to 300 and scalechanges of less than 1:2 can be tolerated. Similar results in terms of out-of-plane rotations were reported by [11].4 Matching Across ScalesThe database contains many objects imaged at several di�erent scales.For example, the database used in our experiments has several diesel loco-motives. The actual image size of these locomotives depends on the dis-tance from which they are imaged and shows considerable variability in thedatabase. The vector correlation technique described in Section 3 cannothandle large scale changes, and the matching technique, therefore, needs tobe extended to handle large scale changes.5



In Figure 2 image I1 is half the size of image I0 (otherwise the two imagesare identical). Thus, I0(r) = I1(sr) (3)where r is any point in image I0 and sr the corresponding point in I1 and thescale change s = 0.5. In particular consider two corresponding points p0 andp1 and assume the image is Gaussian �ltered at p0. Then it can be shownthat [7], Z I0(r)G(r� p0; �)dr = Z I1(sr)G(sr� p1); s�)d (sr) (4)In other words, the output of I0 �ltered with a Gaussian of scale � atp0 is equal to the output of I1 �ltered with a Gaussian of scale s� i.e. theGaussian has to be stretched in the same manner as the image if the �lteroutputs are to be equal. This is not a surprising result if the output of aGaussian �lter is viewed as a Gaussian weighted average of the intensity. Amore detailed derivation of this result is provided in [7].The derivation above does not use an explicit value of the scale changes. Thus, equation 4 is valid for any scale change s. The form of equation 4resembles a convolution and in fact it may be rewritten as a convolutionI0(r) ? G(:; �) = I1(sr) ? G(:; s�) (5)Similarly, �ltering with the �rst and second derivatives of a Gaussiangives [8] I0 ?G0(:; �) = I1 ?G0(:; s�) (6)and, I0 ?G"(:; �) = I1 ?G"(:; s�) (7)where the normalized �rst derivative of a Gaussian is given byG0(r; s�) = s� dG(r; s�)=dr (8)and the normalized second derivative of a Gaussian is given byG00(r; s�) = (s�)2 d2G(r; s�)=d(rrT) (9)Note that the �rst derivative of a Gaussian is a vector and the secondderivative of a Gaussian a 2 by 2 matrix.6



The above equations are su�cient to match the �lter outputs (in whatfollows assume only Gaussian �ltering for simplicity) at corresponding points(for example at p0 and p1). A further complication is introduced if more thanone point is to be matched while preserving the relative distances (structure)between the points. Consider for example the pair of corresponding pointsp0;q0 and p1;q1. The �lter outputs at points p0;q0 may be visualized asa template and the task is to match this template with the �lter outputs atpoints p1;q1. That is, the template is correlated with the �ltered version ofthe image I1 and a best match sought. However, since the distances betweenthe points p1;q1 are di�erent from those between p0;q0 the template cannotbe matched correctly unless either the template is rescaled by a factor of 1/2or the image I1 is rescaled by a factor of 2. The matching is, therefore, doneby warping either the template or the image I1 appropriately.Thus, to �nd a match for a template from I0, in I1, the Gaussians must be�ltered at the appropriate scale and then the image I1 or the template shouldbe warped appropriately. Now consider the problem of localizing a templateT , extracted from I0, in I1(see Figure 2). For the purpose of subsequentanalysis, assume two corresponding points (p0,q0) of interest in T and I1(p1;q1) respectively. To localize the template the following three steps areperformed.1. Use appropriate Relative Scale: Filter the template and I1 with Gaus-sians whose scale ratio is 2. That is, �lter T with a Gaussian of scale2� and I1 with �.2. Account for size change: Sub-sample T by half. At this point thespatial and intensity relationship between the warped version (�lteredand sub-sampled) of template points p0 and q0 should be exactly sameas the relationships between �ltered versions of p1 and q1.3. Translational Search: Perform a translational search over I1 to localizethe template.This three step procedure can be easily extended to match VRs of T andI1 using Equations 6 and 7. In step(1) generate VRs of T and I1 using thementioned �lter scale ratios. In step(2) warp the VR of T instead of just theintensity. In step(3) use vector-correlation(Equation 2 at every step of thetranslational search. 7



Without loss of generality any arbitrary template T can be localized inany I1 that contains T scaled by a factor s.4.1 Matching Queries over Unknown ScaleThe aforementioned steps for matching use the assumption that the relativescale between a template and an image is known. However, the relative scalebetween structures in the database that are similar to a query cannot bedetermined a priori. That is, the query could occur in a database image atsome unknown scale. A natural approach would be to search over a rangeof possible relative scales, the extent and step size being user controlledparameters.One way of accomplishing this is as follows. First, VRs are generated foreach image in the database over a range of scales, say 14�, 12p2�,...,4�. Then,a VR for the query is generated using Gaussian derivatives of scale �. Thequery VR is matched with each of the image VRs, thus traversing a relativescale change of 14 ...4, in steps of p2. For each scale pairing the three stepprocedure for matching VRs is applied. In the warping step of this procedureeither the query or the image is warped depending on the relative scale. Ifthe relative scale between the query and a candidate image is less than 1 thecandidate VR is warped and if it is greater than 1 the query VR is warped.After the query is matched with each of the image VRs, the location in theimage which has the best correlation score is returned.It is instructive to note that VR lists over scale are scale-space repre-sentations in the sense described by Lindeberg [6]. By smoothing an imagewith Gaussians at several di�erent scales Lindeberg generates a scale-spacerepresentation. While VR lists are scale-space representations, however, theydi�er from Lindeberg's approach in two fundamental ways. First VRs aregenerated from derivatives of Gaussians and second, an assumption is madethat smoothing is accompanied by changes in size (i.e. the images are scaledversions rather than just smoothed versions of each other). This is the reasonwarping is required during VR matching across scales. VR lists are properscale-space representations unlike pyramidal representations [6, 12]
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5 Constructing Query ImagesThe query construction process begins with the user marking salient re-gions on an object. VRs generated at several scales within these regions arematched with the database in accordance with the description in Section 4.Unselected regions are not used in matching. One way to think about thisis to consider a composite template, such as one shown in Figure 1(ii). Theunselected regions have been masked out. The composite template preservesinter-region spatial relationships and hence, the structure of the object ispreserved. Warping the composite will warp all the components appropri-ately, preserving relative spatial relationships. That is, both the regions aswell as distances between regions are scaled appropriately. Further, there areno constraints imposed on the selection of regions and the regions need notoverlap.Careful design of a query is important. It is interesting to note thatmarking the entire object does not work very well (see [12] for examples).Marking extremely small regions has also not worked with this database.There are too many coincidental structures that can lead to poor retrieval.Many of these problems are, however, simpli�ed by having the user inter-act extensively with the system. Letting the user design queries eliminatesthe need for detecting the saliency of features on an object. Instead, saliencyis speci�ed by the user. In addition, based on the feedback provided bythe results of a query, the user can quickly adapt and modify the query toimprove performance.6 ExperimentsThe choice of images used in the experiments was based on a number ofconsiderations. It is expected that when very dissimilar images are usedthe system should have little di�culty in ranking the images. For example,if a car query is used with a database containing cars and apes, then it isexpected that cars would be ranked ahead of apes. This is borne out bythe experiments done to date. Much poorer discrimination is expected ifthe images are much more 'similar'. For example, man-made vehicles likecars, diesel and steam locomotives should be harder to discriminate. It was,therefore, decided to test the system by primarily using images of cars, diesel9



and steam locomotives as part of the database.The database used in this paper has digitized images of cars, steam loco-motives, diesel locomotives, apes and a small number of other miscellaneousobjects such as houses. Over 300 images were obtained from the internet toconstruct this database. About 215 of these are of cars, diesel locomotivesand steam locomotives. There are about 80 apes and about 12 houses inthe database. These photographs, were taken with several di�erent camerasof unknown parameters, and, under varying but uncontrolled lighting andviewing geometry. The objects of interest are embedded in natural scenessuch as car shows, railroad stations, country-sides and so on.Prior to describing the experiments, it is important to clarify what acorrect retrieval means. A retrieval system is expected to answer questionssuch as '�nd all cars similar in view and shape to this car' or '�nd all steamengines similar in appearance to this steam engine'. To that end one needsto evaluate if a query can be designed such that it captures the appearanceof a generic steam engine or perhaps that of a generic car. Also, one needsto evaluate the performance of VR matching under a speci�ed query. In theexamples presented here the following method of evaluation is applied. First,the objective of the query is stated and then retrieval instances are gaugedagainst the stated objective. In general, objectives of the form 'extract imagessimilar in appearance to the query' will be posed to the retrieval algorithm.Several di�erent queries were constructed to retrieve objects of a partic-ular type. It is observed that under reasonable queries at least 60% of mobjects underlying the query are retrieved in the top m ranks. Best resultsindicate retrieval results of up to 85%. This performance compares very wellwith typical text retrieval systems2. To the best of our knowledge other im-age retrieval systems either need prior segmentation or work on restricteddomains. Therefore, accurate comparisons cannot be made.Several experiments were carried out with the database [12]. The resultsof the experiments carried out with a car query, a diesel query and a steamquery are presented in table 6. The number of retrieved images in intervalsof ten is charted in Table 6. The table shows, for example, that there are16 car images \similar" in view to the car in the query and 14 of these areranked in the top 20. For the steam query there are 12 \similar" images (asdetermined by a person), 9 of which are ranked in the top 20. Finally, for the2The average retrieval rate for text-based systems is 50%10



Figure 3: Retrieval results for Car.
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No. Retrieved ImagesQuery 1-10 11-20 21-30 31-40 41-50Car 8 6 1 0 1Steam 7 2 1 0 2Diesel 7 5 5 6 4Table 1: Correct retrieval instances for the Car, Steam and Diesel queries inintervals of ten. The number of \similar" images in the database as deter-mined by a human are 16 for the Car query, 12 for the Steam query and 30for the Diesel query.diesel query there are 30 \similar" images, 12 of which are found in the top20 retrievals. Due to space limitations only the results of the Car retrievalare displayed (Figure 3) and analyzed in detail (for the others see [12]).The car image used for retrieval is shown in the top left picture of Figure 3.The objective is to 'obtain all similar cars to this picture'. Towards this enda query was marked by the user, highlighting the wheels, side view-mirrorand mid section. The results to be read in text book fashion in Figure 3 arethe ranks of the retrieved images. The white patches indicate the centroidof the composite template at best match. In the database, there are exactly16 cars within a close variation in view to the original picture. Fourteen ofthese cars were retrieved in the top 16, resulting in a 87.5% retrieval. All 16car pictures were picked up in the top 50. The results also show variabilityin the shape of the retrieved instances. The mismatches observed in pictureslabeled 'car05.tif' and 'car09.tif' occur in VR matching when the relativescale between the query VR and the images is 14 .Wrong instances of retrieval are of two types. The �rst is where the VRmatching performs well but the objective of the query is not satis�ed. In thiscase the query will have to be redesigned. The second reason for incorrectretrieval is mismatches due to the search over scale space. Most of the VRmismatches result from matching at the extreme relative scales.Overall the queries designed were also able to distinguish steam enginesand diesel engines from cars precisely because the regions selected are mostsimilarly found in similar classes of objects. As was pointed out in Section 5query selection must faithfully represent the intended retrieval, the burdenof which is on the user. The retrieval system presented here performs well12



under it's stated purpose: that is to extract objects of similar shape and viewto that of a query.7 Conclusions and LimitationsThis paper demonstrates retrieval of similar objects using vector representa-tions over scale-space. There are several factors that a�ect retrieval results,including query selection, and the range of scale-space search. The resultsindicate that this method has su�cient accuracy for image retrieval applica-tions.One of the limitations of our current approach is the inability to handlelarge deformations. The �lter theorems described in this paper hold undera�ne deformations and a current step is to incorporate it in to the vector-correlation routine.While these results execute in a reasonable time they are still far from thehigh speed performance desired of image retrieval systems. Work is on-goingtowards building indices of images based on local shape properties and usingthe indices to reduce the amount of translational search.AcknowledgmentsThe authors thank Prof. Bruce Croft and the Center for Intelligent Infor-mation Retrieval (CIIR) for continued support of this work. We also thankJonathan Lim and Robert Heller for systems support. The pictures of trainswere obtained from http://www.cs.monash.edu.au/image lib/trains/. Thepictures of cars were obtained from ftp.team.net/ktud/pictures/.References[1] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley,Qian Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee,Dragutin Petkovix, David Steele, and Peter Yanker: Query By Image andVideo Content: The QBIC System. IEEE Computer Magazine, Septem-ber 1995, pp.23-30. 13
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