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2 � Image Retrieval by Appearanceentails solving such problems as segmentation, recognition and automatic featureextraction. These are extremely hard problems that are as yet unsolved.An alternative approach to the relevance problem comes from the observationthat, in many cases attributes associated with an image when used together withsome level of user input, correlate well with the kind of semantics that are desirable.For instance, one can provide an example of the Christmas tree and try to �nd otherones by texture. Or a user can provide a picture of Santa and �nd others by color,or shape or both. In simpler situations textual attributes have been associated withimages. In particular, images are annotated with text and then retrieved using atext retrieval engine. This solution is limited because the variability and richness ofimages cannot be e�ectively captured by annotations within any reasonable e�ort.Recent work has focused directly on image content such as color [26; 25; 17], texturefeatures[12; 4; 20; 13], shape[16; 1; 18; 24; 30] and combinations thereof[2; 7; 20].In this paper images are retrieved using a characterization of the visual appear-ance of objects. Intuitively an object's visual appearance in an image is closelyrelated to a description of the shape of its intensity surface. Appearance not onlydepends on the object's three-dimensional geometric shape, but also on its albedo,its surface texture, the view point from which it is imaged and a number of otherfactors. It is non-trivial to separate the di�erent factors constituting an object'sappearance and it is usually not possible to separate an object's three dimensionalshape from the other factors. For example, the face of a person has a uniqueappearance that cannot just be characterized by the geometric shape of the 'com-ponent parts'. Similarly the shape of a car such as the one shown in Figure 1 is notjust a matter of a geometric-shape outline of its 'individual parts'. In this paperwe characterize the shape of the intensity surface of imaged objects and the termappearance will imply the phrase 'shape of the intensity surface'. The experimentsconducted in this paper verify this association. That is, objects that appear to bevisually similar can be retrieved by a characterization of the shape of the intensitysurface.Di�erent representations of appearance have been used in object recognition [19;23] and have been applied to speci�c types of retrieval such as face recognition [8;29]. To the best of our knowledge the system presented here is the �rst attemptto characterize appearance to retrieve similar images and in this paper the de-velopment of Synapse (Syntactic Appearance Search Engine), an image databasesearch engine, is documented. The approach taken here does not rely on imagesegmentation (manual or automatic) or binary feature extraction. Unlike some ofthe aforementioned methods, no training is required and objects can be embeddedin di�erent backgrounds. Using an example image and user interaction to constructqueries Synapse retrieves similar images within small view and size variation in theorder of their similarity in syntactic appearance to a query.The claim is that, up to a certain order, the local appearance of the intensitysurface (around some point) can be represented as responses to a set of scale pa-rameterized Gaussian derivative �lters. This set or vector of responses, called afeature vector, when computed with �lters at a certain scale, and up to order N,completely and uniquely characterize the local jet[10] of order N, at that scale.Since the local jet generalizes to the Taylor series expansion of the underlying localintensity function, it is, therefore, argued that the local appearance of the intensity



Image Retrieval by Appearance � 3function is represented to the order of expansion.The proposed representation is also syntactic. This is because the �lter responsesare obtained solely from the signal content and without the use of \global context"or \symbolic interpretation". Further, the family of Gaussian �lters are uniquein their ability to describe the scale-space or deep structure [9; 11; 28; 3] of afunction. Consequently, the change in appearance of an image due to a change in theviewing geometry can be computed by equivalently deforming the �lter [14; 15]. Inprevious work it was demonstrated that feature vectors constructed using Gaussianderivative �lters can be used to retrieve objects that are not only scaled versionsof each other but also similar (in appearance) and within small view variations ofone another [22].In this paper an indexable strategy for image retrieval is developed using featurevectors that are constructed using combinations of the derivative �lter outputs.These combinations yield a set of di�erential invariants [3] that are invariant totwo-dimensional rigid transformations. Retrieval is achieved in two computationalsteps. During the o�-line computation phase each image in the database is �rst�ltered at sampled locations and then �lter responses across the entire database areindexed. The run-time computation of the system begins with the user selectingan example image and marking a set of salient regions within the image. Theresponses corresponding to these regions are matched with those of the databaseand a measure of �tness per image in the database is computed in both featurespace and coordinate space. Finally, images are displayed to the user in the orderof �tness (or match score) to the query.The ability for the user to construct queries by selecting regions is an importantdistinction between the approach presented here and elsewhere. The user can useher considerable semantic knowledge about the world to construct a query. Suchsemantic information is di�cult to incorporate in a system. An example of queryconstruction is shown in Figure 1, where the user has decided to �nd cars similarto the one shown and decides that the most salient part is a 'wheel'. It is clearthat providing such interaction removes the necessity for automatic determinationof saliency. In the car example, the user provides the context to search the databaseby marking the wheel and retrieved images mostly contain wheels. The associationof wheels to cars is not known to the system, rather it is one that the user decides ismeaningful. We believe that this natural human ability in selecting salient regionsmust be exploited. Further, in a fast system, feedback can be quickly obtained bybrowsing through the results (see Figure 2). If the results are unsatisfactory a newquery can be designed.The remainder of this paper is organized as follows. In Section 2 the currentliterature is surveyed for related work. In Section 3 we develop the notion ofappearance, the construction of di�erential invariant features and their �nal storageas indices. This sums up the o�-line computation. In Section 4 the run-timecomponent of the system is examined. Finally, experimental results containingexamples, recall, precision and execution time are presented in Section 5.2. RELATED WORKSeveral authors have tried to characterize the appearance of an object via a de-scription of the intensity surface. In the context of object recognition [19] represent



4 � Image Retrieval by Appearance

Fig. 1. Allowing the user to construct queries by selecting the box shownthe appearance of an object using a parametric eigen space description. This spaceis constructed by treating the image as a �xed length vector, and then computingthe principal components across the entire database. The images therefore have tobe size and intensity normalized, segmented and trained. Similarly, using principalcomponent representations described in [8] face recognition is performed in [29]. In[27] the traditional eigen representation is augmented by using most discriminantfeatures and is applied to image retrieval. The authors apply eigen representationto retrieval of several classes of objects. The issue however is that these classesare manually determined and training must be performed on each. The approachpresented in this paper is di�erent from all the above because eigen decompositionsare not used at all to characterize appearance. Further the method presented usesno learning, does not depend on constant sized images and deals with embeddedbackgrounds and heterogeneous collections of images using local representations ofappearance.The use of Gaussian derivative �lters to represent appearance is motivated bytheir use in describing the spatial structure [10] and its uniqueness in representingthe scale-space of a function [11; 9; 31; 28] and the fact that the principal componentof images are best described as Gaussians and their derivatives [6]. That is thereis a natural decomposition of images into Gaussians and their derivatives. The useof invariant transformations of Gaussians is borrowed from descriptions providedby [3]. In [21] tracking is done by using a vector of Gaussian derivatives which areindexed. [23] use use indexed di�erential invariants for object recognition. We alsouse index on di�erential invariants but there are several di�erences between theapproach presented here and theirs. First, in this work only the low two orders areused, which is more relevant to retrieving similar images (see section 3) while theyuse nine-invariants. Second, their indexing algorithm depends on interest pointdetection and is, therefore, limited by the stability of the interest operator. We onthe other hand sample the image. Third, the authors do not incorporate multiplescales into a single vector whereas here three di�erent scales are chosen. In addition



Image Retrieval by Appearance � 5the index structure and spatial checking algorithms di�er. Schmid and Mohr applytheir algorithm primarily to the problem of object recognition, do not allow forthe user to determine saliency and therefore have not applied their algorithm toretrieving similar images.The earliest general image retrieval systems were designed by [2; 20]. In [2] theshape queries require prior manual segmentation of the database which is undesir-able and not practical for most applications. There has been other work on shapeusing a description of polygons [16] and curves [1; 18; 24; 30]. Of particular interestis work by Mokhtarian et. al. where they use the curvature scale-space to representshape. Texture based image retrieval is also related to the appearance based workpresented in this paper. Using Wold modeling, in [12] the authors try to classifythe entire Brodatz texture and in [4] attempt to classify scenes, such as city andcountry. Of particular interest is work by [13] who use Gabor �lters to retrievetexture similar images, without user interaction to determine region saliency.There have been attempts to combine di�erent attributes. Shape, color andtexture have been combined in [2; 20]. This combination is not transparent to theuser; instead she must decide how to weight the di�erent attributes. In [7] colorand shape are combined by de�ning a composite metric over both.3. SYNTACTIC REPRESENTATION OF APPEARANCEThis section begins by making explicit the notion of appearance and the uniquenessof Gaussian derivative �lters therein. As a result, a representation, that is a multi-scale feature vector can be constructed by �ltering an image with a set of Gaussianderivative �lters. The multi-scale feature vector may b transformed so that theelements within this vector are invariant invariant to 2D rigid transformations.This transformed feature vector is called the multi-scale invariant vector. Then ascheme for indexing multi-scale invariant vectors computed over the entire imagedatabase is presented. This completes all the steps of the o�-line computationdescribed in the introduction.3.1 Characterization of AppearanceA function can be locally characterized by it's Taylor series expansion provided thederivatives at the point of expansion are well conditioned. The intensity function ofthe image , on the other hand, need not exhibit continuity at the point of expansion.However, it is well known that the derivative of a, possibly discontinuous, functioncan be made well posed if it is convolved with the derivative of a smooth testfunction. Consider the normalized Gaussian as a choice for the smooth test functionwhich in two dimensions is de�ned as,G (x; �) = 12��2 e�x22�2 (1)where x 2 <2, � is the scale of the Gaussian. Then the derivatives of the imageI� (x) = (I ? g) (x; �) ;x 2 <2,are well conditioned for some value of �. This iswritten as Ii1:::in;� (x) = (I ? Gi1:::in) (x; �)Gi1:::in = �n�i1 : : : �inG



6 � Image Retrieval by Appearanceand ik = x1 : : : xD; k = 1 : : : n.The local N-jet of I (x) at scale � and order N is de�ned as the set [10](citeKoenderink): JN [I ] (x;�) = fIi1:::in;�jn = 0 : : :Ng (2)It can be observed that limN!1 JN [I ] (x; �), bundles all the derivatives requiredto fully specify the Taylor expansion of I� up to derivatives of order N. Thus, forany order N , the local N-jet at scale � locally contains all the information requiredto reconstruct I at the scale of observation � up to order N . This is the primaryobservation that is used to characterize appearance. That is, up to any order thederivatives locally characterize the shape of the intensity surface, i.e. appearance,to that order. From the experiments shown in this paper it is also observed thatthis representation can be used to retrieve images that appear visually similar.As a practical example consider the local 2-jet of an image I (p) ; p = hx; yi 2 <2,at scale �.J2 [I ] (p; �) = fI� (p) ; Ix;� (p) ; Iy;� (p) ; Ixx;� (p) ; Ixy;� (p) ; Iyy;� (p)g 1That is image I is �ltered with the �rst two Gaussian derivatives (and the Gaussianitself) in both x and y directions. Point p is, therefore, associated with a featurevector of responses at scale �.The choice of the Gaussian as the smooth test function, as opposed to others,is motivated by the fact that it is unique in describing the scale-space or deepstructure of an arbitrary function. A full review of scale-space is beyond the scopeof this paper and the reader is referred to [31; 9; 3; 11; 28] for a study. Here someof the important consequences of incorporating scale space are considered. Forincreasing values of � the Gaussian �lter admits a narrowing band of frequenciesand I will appear smoother. The scale-space of I is simply I� , where � is the freevariable. Similarly, the scale space of the derivatives of I is the range of Ii1:::in;�where � is the free variable. Scale-space has important physical interpretations.For example, as an object moves away from a camera (in depth) its image appearsless structured and �ner contrasts get blurred. The scale-space of the image ofthe object models this observation. By �ltering an image with Gaussian derivative�lters (up to some order) at several scales, the appearance of that image fromdi�erent depths (from a camera) can be represented. An argument is thereforemade for a multi-scale feature vector which describes the intensity surface locallyat several scales. Multi-scale vectors represent appearance better than a single-scale vector. From a practical standpoint this means that mis-matches due to anaccidental similarity can be reduced.As a consequence of the scale-space description using Gaussian derivatives, imagepatches that are scaled versions of each other can also be compared in a straight-forward manner. Consider two images I0 and I1 that are scaled versions of eachother (but otherwise identical). Without loss of generality assume that the scalingis centered at the origin. That is I0 (p) = I1 (sp) Then the following relations hold1Iyx = Ixy and is therefore dropped



Image Retrieval by Appearance � 7[14; 15] I0 (p) ? g (�; �) = I1 (sp) ? g (�; s�)I0 (p) ? g(k)(�; �) = I1 (sp) ? g(k)(�; s�)where, g(k)(�; t) = tkgi1:::ik (�; t) (3)These equations state that if the image Is is a scaled version of I0 by a factor sthen in order to compare any two corresponding points in these images the �ltersmust also be stretched (i.e. scaled) by the same factor. For example, if a point p0is being compared with a point p1 in images I0 and I1 where I1 is twice the size ofI0, then the �lter used to compute the response at p1 must be twice that of p0 forthe responses to be equal.The multi-scale approach is, therefore, a robust representation of appearancewhich may be used to directly compare images that are scaled versions of eachother. From an implementation stand point a multi-scale feature vector at a pointp in an image I is simply the elements of the vector:�JN [I ] (p; �1) ; JN [I ] (p; �2) : : : JN [I ] (p; �k)	 (4)for some order N and a set of scales �1 : : : �k. In practice the zeroth order termsare dropped to achieve invariance to constant intensity changes.A measure of similarity between two multi-scale vectors can be obtained by cor-relating them or computing the distance between the vectors. In earlier work [22]it was shown that multi-scale vectors can be used to retrieve images that are notonly scaled versions of each other but also ones that are similar to the query. Thiswas achieved by correlating the derivative feature vectors across scales using thescale shifting theorem presented above. An important observation from that workis that as images become more dissimilar (due to several reasons) their responsevectors become less correlated, starting at the higher order. Thus, similar images,can be expected to be more correlated in their lower order than higher ones. As aconsequence only the �rst two order derivatives were used. Likewise, in this paperthe lower order derivatives are used. Similar arguments can be made for scales.As images get dissimilar, they can be expected to retain strong correlation only atlarge scales (lower spatial frequency). Further the range of scales over which theycorrelate well gets smaller. As a consequence, in this paper the multi-scale vectoris computed at three di�erent scales placed half an octave apart. This is discussedin the next sub-section. In general these parameters can be computed a priori fora large range of values (at the expense of disk space) and then left to the user topick appropriate ones on at run-time. Or they can be conditioned in advance for aspeci�c task at the expense of generality.3.2 Multi-Scale Invariant VectorsThe limitation of using the derivatives directly in a feature vector is that it limitsthe viewing range (both out-of-plane and in-plane rotations of the image). Thisissue is partially addressed by transforming the multi-scale feature vector so thatit is invariant to 2D rigid transformations.Given the derivatives of an image I irreducible di�erential invariants, that areinvariant under the group of displacements can be computed in a systematic manner[3]. The term irreducible is used because other invariants can be reduced to a



8 � Image Retrieval by Appearancecombination of the irreducible set. The value of these entities independent of thechoice of coordinate frame (up to rotations) for the low orders (two here) terms areenumerated.The irreducible set of invariants up to order two of an image I are:d0 = I Intensityd1 = I2x + I2y Magnituded2 = Ixx + Iyy Laplaciand3 = IxxIxIx + 2IxyIxIy + IyyIyIyd4 = I2xx + 2I2xy + I2yyIn experiments conducted in this paper, the vector, �� = hd1; : : : d4i� is computedat three di�erent scales. The element d0 is not used since it is sensitive to gray-level shifts. The resulting multi-scale invariant vector has at most twelve elements.Computationally, each image in the database is �ltered with the �rst �ve partialderivatives of the Gaussian (i.e. to order 2) at three di�erent scales at uniformlysampled locations. Then the multi-scale invariant vector D = h��1 ;��2 ;��3 iis computed at those locations. The list of multi-scale vectors across the entiredatabase is then indexed for rapid retrieval and is described next.3.3 Indexing Invariant VectorsThe multi-scale invariant vector D can be viewed as a �xed length record. Alocation across the entire database can be identi�ed by the generalized coordinates,de�ned as, c = (i; x; y) where i is the image number and (x; y) a coordinate withinthis image. The computation described in the previous sub-section generates anassociation between generalized coordinates and invariant vectors. This associationcan be viewed as a table M : (i; x; y;D). The number of columns in this table are3 + k, where, k is the number of �elds in an invariant vector. Each row is simplythe invariant vector corresponding to a generalized coordinate and the number ofrows is the total number of invariant vectors across the entire database.To �nd an invariant vector by coordinate, that is input a generalized coordi-nate and obtain the corresponding invariant vector, a simple look up in M canbe performed which is a constant time operation (if the dimensions of each imageis known). However, to retrieve images, a '�nd by value' functionality is needed,wherein, a query invariant vector can be found within M and the correspondinggeneralized coordinate is returned. But this entails a linear search in M which isextremely time consuming. The solution is to generate inverted �les (or tables) forM , based on each �eld of the invariant vector and index them. Then the operationof '�nd-by-value' can be performed in log time and is described below. To indexthe database by �elds of the invariant vector, the table M is split into k smallertables M 01 : : :M 0k, one for each of the k �elds of the invariant vector. Each of thesmaller tables M 0p; p = 1 � � � k contains the four columns (D(p); i; x; y). At this stageany given row across all the smaller tables contains the same generalized coordinateentries, as that in M . Then, each M 0p is sorted by it's �rst column and a binary treestructure on this column is generated. As a result, the entire database is indexed.The following steps are needed to perform a �nd-by-value operation on a queryinvariant vector. Each �eld of the query vector is used to traverse through thecorresponding index tree. Once a match is found, the generalized coordinate is
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Fig. 2. The results of the car query shown in Figure 1extracted. After all the k �elds complete their search successfully, k generalizedcoordinates would have been extracted. If all of these are exactly the same thenthe �nd-by-value routine has succeeded.The entire process of O�-line computation can be summarized in the followingsteps.(1) Filter each image at uniformly sampled locations with Gaussian derivatives atseveral scales up to order two.(2) Generate the multi-scale invariants at these points and hence the table M .(3) Compute the inverted �le M 0k for each key of the record across the entiredatabase.(4) Sort the inverted �le by key value and create a binary index.4. MATCHING INVARIANT VECTORSRun-time computation begins with the user marking selecting regions in an ex-ample image. At sampled locations within these regions, invariant vectors are



10 � Image Retrieval by Appearancecomputed and submitted as a query. The search for matching images is performedin two stages. In the �rst stage each query invariant is supplied to the '�nd-by-value' algorithm and a list of matching generalized coordinates is obtained. In thesecond stage a spatial check is performed on a per image basis, so as to verify thatthe matched locations in an image are in spatial coherence with the correspondingquery points. In this section the '�nd-by-value' and spatial checking componentsare discussed.4.1 Finding by Invariant ValueThe multi-scale invariant vectors at sampled locations within regions of a queryimage can be treated as a list. The nth element in this list contains the informationQn = (Dn; xn; yn), that is, the invariant vector and the corresponding coordinates.In order to �nd by invariant value, for any query entry Qn, the database mustcontain vectors that are within a threshold t = (t1 : : : tk) > 0. The coordinates ofthese matching vectors are then returned. This can be represented as follows. Let pbe any invariant vector stored in the database. Then p matches the query invariantentry Dn only if Dn � t < p < Dn + t. This can be rewritten as&kj=1 [Dn (j)� t (j) < p (i) < Dn (j)� t (j)]where & is the logical and operator and k is the number of �elds in the invariantvector. To implement the comparison operation two searches can be performedon each �eld. The �rst is a search for the lower bound, that is the largest entrysmaller than Dn(j) � t(j) and then a search for the upper-bound i.e. the smallestentry larger than Dn(j) + t(j). The block of entries between these two bounds arethose that match the �eld j. In the inverted �le the generalized coordinates arestored along with the individual �eld values and the block of matching generalizedcoordinates are copied from disk. To implement the logical-and part, an intersectionof all the returned block of generalized coordinates is performed. The generalizedcoordinates common to all the k �elds are the ones that match query entry Qn.The �nd by value routine is executed for each Qn and as a result each query entryis associated with a list of generalized coordinates that it matches to.In practice, the �elds over which the intersection operation is performed is amatter of experimentation. For example, for several queries and those listed here,the last two �elds of the invariant vector are used. This corresponds to six �eldsearches or twelve traversals through the index trees.4.2 Spatial-FittingThe association between a Query entry Qn and the list of f generalized coordinatesthat match it by value can be written asAn = 
xn; yn; cn1 ; cn2 : : : cnf � = 
xn; yn; (in1 ; xn1 ; yn2) : : : �inf ; xnf ; ynf ��. Here xn; yn are the coordinates of the query entry Qn and cn1 : : : cnf are the fmatching generalized coordinates. The notation cnf implies that the generalizedcoordinate c matches n and is the f th entry in the list. Once these associations areavailable, a spatial �t on a per image basis can be performed. In order to describethe �tness measure, two de�nitions are needed. First, de�ne the distance between



Image Retrieval by Appearance � 11two query entries m and n as �m;n = (xm � xn)2 + (ym � yn)2. Second, de�ne thedistance between any two generalized coordinates cmj and cnj that are associatedwith two query entries m;n by:�cmj ;cnk = �xmj � xnk�2 + �ymj � ynk�2Any image u that contains two points (locations) which match some query entrym and n respectively are coherent with the query entries m and n only if thedistance between these two points is the same as the distance between the queryentries that they match. Using this as a basis, a binary �tness measure can bede�ned asFm;n (u) = ( 1 if 9j9k j ����m;n � �cmj ;cnk ��� � T; imj = ink = u;m 6= n0 otherwiseThat is, if the distance between two matched points in an image is close to thedistance between the query points that they are associated with, then these pointsare spatially coherent (with the query). Using this �tness measure a match score foreach image can be determined. This match score is simply the maximum numberof points that together are spatially coherent (with the query). De�ne the matchscore by: score (u) �maxm Sm (u) (5)where, Sm (u) =Pfn=1 F (u)m;n. The computation of score(u) is at worst quadraticin the total number of query points. The array of scores for all images is sorted andthe images are displayed in the order of their score. T used in F is a threshold andis typically 25% of �m;n. Note that this measure not only will admit points thatare rotated but will also tolerate other deformations as permitted by the threshold.It is placed to re
ect the rationale that similar images will have similar responsesbut not necessarily under a rigid deformation of the query points.4.3 Query ConstructionThe success of a retrieval in part depends on well designed queries. That impliesthat the user should be provided with a facility to design queries. Several otherapproaches in the literature take the entire feature set or some global representationover the entire image. While this may be reasonable for certain types of retrieval,it cannot necessarily be used for general purpose retrieval.More importantly, letting the user design queries eliminates the need for detectingthe salient portions on an object, and the retrieval can be customized so as to removeunwanted portions of the image. Based on the feedback provided by the results ofa query, the user can quickly adapt and modify the query to improve performance.5. EXPERIMENTSThe choice of images used in the experiments is based on a number of consider-ations. First it is general in that it doesn't re
ect a bias towards any particularmethod, such as texture alone or shape alone. Second, it is expected that when



12 � Image Retrieval by Appearancevery dissimilar images are used the system should have little di�culty in rankingthe images. For example, if a car query is used with a database containing cars andapes, then it is expected that cars would be ranked ahead of apes. This is borneout by the experiments done to date. Much poorer discrimination is expected ifthe images are much more 'similar'. For example, di�erent species of apes shouldbe harder to discriminate.The database used in this paper has digitized images of cars, steam locomotives,diesel locomotives, apes, faces, people embedded in di�erent background(s) anda small number of other miscellaneous objects such as houses. 1561 images wereobtained from the Internet and the Corel photo-cd collection to construct thisdatabase.These photographs, were taken with several di�erent cameras of unknownparameters, and, under varying but uncontrolled lighting and viewing geometry.Also, the objects of interest are embedded in natural scenes such as car shows,railroad stations, country-sides and so on.Prior to describing the experiments, it is important to clarify what a correctretrieval means. A retrieval system is expected to answer questions such as '�nd allcars similar in view and shape to this car' or '�nd all faces similar in appearance tothis one'. To that end one needs to evaluate if a query can be designed such that itcaptures the appearance of a generic steam engine or perhaps that of a generic car.Also, one needs to evaluate the performance of matching under a speci�ed query.In the examples presented here the following method of evaluation is applied. First,the objective of the query is stated and then retrieval instances are gauged againstthe stated objective. In general, objectives of the form 'extract images similar inappearance to the query' will be posed to the retrieval algorithm.In this section we start out by demonstrating two retrieval examples and thengo on to discuss the performance of the system in terms of recall and precision.Finally the typical computation times for running a query are presented.A measure of the performance of the retrieval engine can be obtained by examin-ing the recall/precision table for several queries. Brie
y, recall is the proportion ofthe relevant material actually retrieved and precision is the proportion of retrievedmaterial that is relevant. Five queries were submitted to the database to computethe recall/precision shown in Table 1. These queries are enumerated below. Forlack of space pictorial results are shown only for the �rst two.(1) Using the white wheel as the salient region �nd all cars with white wheels.This query is depicted in Figure 1. The top twenty �ve results of this query areshown in Figure 2 read in a text-book manner. Although, as it is clear fromthe results picture, several valid cars were found within reasonable viewpointthe user is only interested in white wheels and the average precision for thisquery is 48.6%.(2) This query is depicted in Figure 3. The user seeks to �nd similar dark texturedapes including monkeys and points to the texture on this ape's coat. Theaverage precision is 57.5% and the top 25 are shown in Figure 4. Note thatalthough the 20th image is a monkey (patas monkey), it is not a valid match inas far as the user is concerned because it is not a dark textured ape or monkey.Hence, it is not counted.(3) The third query is that of the face of a human and the user expects all human
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Fig. 3. Ape query: The user decides that the texture on the coat is importantfaces in the database. The average precision is 74.7%(4) The fourth query is that of the same human face but this time the user expectsto obtain all the pictures of this particular person in the database. The averageprecision is 61.7%(5) The �fth query is that of the face of a patas monkey and the user expects toretrieve all patas monkeys whose faces are clearly visible. The average precisionis 44.5%.The recall/precision curve for all these queries together is shown is Table 1.The average precision over all the queries is a 57.4% This compares well with textretrieval where some of the best systems have an average precision of 50%2.Table 1. Precision at standard recall points for Five QueriesRecall 0 10 20 30 40 50 60 70 80 90 100Precision % 100 94.1 90.6 76.4 61.8 55.3 44.1 39.5 35.8 20.0 14.1average 57.4%2Based on personal communication with Bruce Croft
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Fig. 4. 'Monkey' Query Results



Image Retrieval by Appearance � 15Unsatisfactory retrieval occurs for several reasons. First it is possible that thequery is poorly designed. In this case the user can design a new query and re-submit.Also Synapse allows users to drop any of the displayed results in to a query boxand re-submit. Therefore, the user can not only redesign queries on the originalimage, but also can use any of the result pictures to re�ne the search. A secondsource of error is in matching generalized coordinates by value. The choice of scalesin the experiments carried out in this case are 3p2 ; 3; 3p2 with the top two invariantvectors i.e. hd3; d4i. It is possible that locally the intensity surface may have a veryclose value, so as to lie within the chosen threshold and thus introduce an incorrectpoint. By adding more scales or derivatives such errors can be reduced, but at thecost of increased discrimination. Many of these 'false matches' are eliminated in thespatial checking phase. Errors can also occur in the spatial checking phase becauseit admits much more than a rotational transformation of points with respect to thequery con�guration. Overall the performance to date has been very satisfactoryand we believe that by experimentally evaluating each phase the system can befurther improved.The time it takes to retrieve images is dependent linearly on the number ofquery points. On a Pentium Pro-200 Mhz Linux machine, typical queries executein between one and six minutes.6. CONCLUSIONS, LIMITATIONS AND FUTURE WORKWithin small view variations, images that are similar to a query are retrieved. Theseimages are also observed to be visually similar and we posit that this method hasgood potential for image retrieval.While a discussion of matching objects across di�erent sizes was presented andhas been implemented elsewhere [22], in this paper, the multi-scale invariant vectorwas used only to robustly characterize appearance. The next immediate step is toexplicitly incorporate matching across size variations.A second important question is, what types of invariants should constitute afeature vector ? This is a question of open research and is subject to extensiveveri�cation.Finally, although the current system is some what slow, it is yet a remarkableimprovement over our previous work. We believe that by examining the the spatialchecking and sampling components a further increase in speed is possible.AcknowledgementsThe authors wish to thank Adam Jenkins and Morris Hirsch for programmingsupport and Prof. Bruce Croft and CIIR for continued support of this work.REFERENCES[1] Bimbo, A. D., and Pala, P. Image-indexing using shape-based visual features. In Proc.IEEE Int. Conf. Patt. Recog. (1996), vol. 3, pp. 351{355.[2] Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani,M., Lee, D., Petkovix, D., Steele, D., and Yanker, P. Query by image and videocontent: The qbic system. IEEE Computer Magazine 28, 9 (September 1995), 23{30.[3] Florack, L. M. J. The Syntactic Structure of Scalar Images. PhD thesis, University ofUtrecht, 1993.
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