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Abstract

A system to retrieve images using a syntactic description of appearance is presented. A multi-
scale invariant vector representation is obtained by first filtering images in the database with
Gaussian derivative filters at several scales and then computing low order differential invariants.
The multi-scale representation is indexed for rapid retrieval. Queries are designed by the users
from an example image by selecting appropriate regions. The invariant vectors corresponding to
these regions are matched with those in the database both in feature space as well as in coordinate
space and a match score is obtained for each image. The results are then displayed to the user
sorted by the match score. From experiments conducted with over 1500 images it is shown that
images similar in appearance and whose viewpoint is within 25 degrees of the query image can be
retrieved with an average precision of 57.4%

1. INTRODUCTION

The goal of image retrieval systems is to operate on collections of images and in
response to visual queries extract relevant images. The application potential for
fast and effective image retrieval is enormous; ranging from database management
in museums and medicine, architecture and interior design, image archiving, to con-
structing multi-media documents or presentations[5]. There are, however, several
issues that must be understood before image retrieval is viable. Foremost among
these is an understanding of what ’retrieval of relevant images’ means. Relevance,
for users of a retrieval system, is most likely associated with semantics. For ex-
ample, a user might want all pictures of Christmas cards. A Christmas card has
associated semantics that imply, Santa Claus, Christmas tree, reindeer, snow and
so on. Encoding this semantic information into a general image retrieval system
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entails solving such problems as segmentation, recognition and automatic feature
extraction. These are extremely hard problems that are as yet unsolved.

An alternative approach to the relevance problem comes from the observation
that, in many cases attributes associated with an image when used together with
some level of user input, correlate well with the kind of semantics that are desirable.
For instance, one can provide an example of the Christmas tree and try to find other
ones by texture. Or a user can provide a picture of Santa and find others by color,
or shape or both. In simpler situations textual attributes have been associated with
images. In particular, images are annotated with text and then retrieved using a
text retrieval engine. This solution is limited because the variability and richness of
images cannot be effectively captured by annotations within any reasonable effort.
Recent work has focused directly on image content such as color [26; 25; 17], texture
features[12; 4; 20; 13], shape[16; 1; 18; 24; 30] and combinations thereof[2; 7; 20)].

In this paper images are retrieved using a characterization of the visual appear-
ance of objects. Intuitively an object’s visual appearance in an image is closely
related to a description of the shape of its intensity surface. Appearance not only
depends on the object’s three-dimensional geometric shape, but also on its albedo,
its surface texture, the view point from which it is imaged and a number of other
factors. It is non-trivial to separate the different factors constituting an object’s
appearance and it is usually not possible to separate an object’s three dimensional
shape from the other factors. For example, the face of a person has a unique
appearance that cannot just be characterized by the geometric shape of the 'com-
ponent parts’. Similarly the shape of a car such as the one shown in Figure 1 is not
just a matter of a geometric-shape outline of its ’individual parts’. In this paper
we characterize the shape of the intensity surface of imaged objects and the term
appearance will imply the phrase ’shape of the intensity surface’. The experiments
conducted in this paper verify this association. That is, objects that appear to be
visually similar can be retrieved by a characterization of the shape of the intensity
surface.

Different representations of appearance have been used in object recognition [19;
23] and have been applied to specific types of retrieval such as face recognition [8;
29]. To the best of our knowledge the system presented here is the first attempt
to characterize appearance to retrieve similar images and in this paper the de-
velopment of Synapse (Syntactic Appearance Search Engine), an image database
search engine, is documented. The approach taken here does not rely on image
segmentation (manual or automatic) or binary feature extraction. Unlike some of
the aforementioned methods, no training is required and objects can be embedded
in different backgrounds. Using an ezample image and user interaction to construct
queries Synapse retrieves similar images within small view and size variation in the
order of their similarity in syntactic appearance to a query.

The claim is that, up to a certain order, the local appearance of the intensity
surface (around some point) can be represented as responses to a set of scale pa-
rameterized Gaussian derivative filters. This set or vector of responses, called a
feature vector, when computed with filters at a certain scale, and up to order N,
completely and uniquely characterize the local jet[10] of order N, at that scale.
Since the local jet generalizes to the Taylor series expansion of the underlying local
intensity function, it is, therefore, argued that the local appearance of the intensity
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function is represented to the order of expansion.

The proposed representation is also syntactic. This is because the filter responses
are obtained solely from the signal content and without the use of “global context”
or “symbolic interpretation”. Further, the family of Gaussian filters are unique
in their ability to describe the scale-space or deep structure [9; 11; 28; 3] of a
function. Consequently, the change in appearance of an image due to a change in the
viewing geometry can be computed by equivalently deforming the filter [14; 15]. In
previous work it was demonstrated that feature vectors constructed using Gaussian
derivative filters can be used to retrieve objects that are not only scaled versions
of each other but also similar (in appearance) and within small view variations of
one another [22].

In this paper an indexable strategy for image retrieval is developed using feature
vectors that are constructed using combinations of the derivative filter outputs.
These combinations yield a set of differential invariants [3] that are invariant to
two-dimensional rigid transformations. Retrieval is achieved in two computational
steps. During the off-line computation phase each image in the database is first
filtered at sampled locations and then filter responses across the entire database are
indexed. The run-time computation of the system begins with the user selecting
an example image and marking a set of salient regions within the image. The
responses corresponding to these regions are matched with those of the database
and a measure of fitness per image in the database is computed in both feature
space and coordinate space. Finally, images are displayed to the user in the order
of fitness (or match score) to the query.

The ability for the user to construct queries by selecting regions is an important
distinction between the approach presented here and elsewhere. The user can use
her considerable semantic knowledge about the world to construct a query. Such
semantic information is difficult to incorporate in a system. An example of query
construction is shown in Figure 1, where the user has decided to find cars similar
to the one shown and decides that the most salient part is a ’wheel’. It is clear
that providing such interaction removes the necessity for automatic determination
of saliency. In the car example, the user provides the context to search the database
by marking the wheel and retrieved images mostly contain wheels. The association
of wheels to cars is not known to the system, rather it is one that the user decides is
meaningful. We believe that this natural human ability in selecting salient regions
must be exploited. Further, in a fast system, feedback can be quickly obtained by
browsing through the results (see Figure 2). If the results are unsatisfactory a new
query can be designed.

The remainder of this paper is organized as follows. In Section 2 the current
literature is surveyed for related work. In Section 3 we develop the notion of
appearance, the construction of differential invariant features and their final storage
as indices. This sums up the off-line computation. In Section 4 the run-time
component of the system is examined. Finally, experimental results containing
examples, recall, precision and execution time are presented in Section 5.

2. RELATED WORK

Several authors have tried to characterize the appearance of an object via a de-
scription of the intensity surface. In the context of object recognition [19] represent
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Fig. 1. Allowing the user to construct queries by selecting the box shown

the appearance of an object using a parametric eigen space description. This space
is constructed by treating the image as a fixed length vector, and then computing
the principal components across the entire database. The images therefore have to
be size and intensity normalized, segmented and trained. Similarly, using principal
component representations described in [8] face recognition is performed in [29]. In
[27] the traditional eigen representation is augmented by using most discriminant
features and is applied to image retrieval. The authors apply eigen representation
to retrieval of several classes of objects. The issue however is that these classes
are manually determined and training must be performed on each. The approach
presented in this paper is different from all the above because eigen decompositions
are not used at all to characterize appearance. Further the method presented uses
no learning, does not depend on constant sized images and deals with embedded
backgrounds and heterogeneous collections of images using local representations of
appearance.

The use of Gaussian derivative filters to represent appearance is motivated by
their use in describing the spatial structure [10] and its uniqueness in representing
the scale-space of a function [11; 9; 31; 28] and the fact that the principal component
of images are best described as Gaussians and their derivatives [6]. That is there
is a natural decomposition of images into Gaussians and their derivatives. The use
of invariant transformations of Gaussians is borrowed from descriptions provided
by [3]. In [21] tracking is done by using a vector of Gaussian derivatives which are
indexed. [23] use use indexed differential invariants for object recognition. We also
use index on differential invariants but there are several differences between the
approach presented here and theirs. First, in this work only the low two orders are
used, which is more relevant to retrieving similar images (see section 3) while they
use nine-invariants. Second, their indexing algorithm depends on interest point
detection and is, therefore, limited by the stability of the interest operator. We on
the other hand sample the image. Third, the authors do not incorporate multiple
scales into a single vector whereas here three different scales are chosen. In addition
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the index structure and spatial checking algorithms differ. Schmid and Mohr apply
their algorithm primarily to the problem of object recognition, do not allow for
the user to determine saliency and therefore have not applied their algorithm to
retrieving similar images.

The earliest general image retrieval systems were designed by [2; 20]. In [2] the
shape queries require prior manual segmentation of the database which is undesir-
able and not practical for most applications. There has been other work on shape
using a description of polygons [16] and curves [1; 18; 24; 30]. Of particular interest
is work by Mokhtarian et. al. where they use the curvature scale-space to represent
shape. Texture based image retrieval is also related to the appearance based work
presented in this paper. Using Wold modeling, in [12] the authors try to classify
the entire Brodatz texture and in [4] attempt to classify scenes, such as city and
country. Of particular interest is work by [13] who use Gabor filters to retrieve
texture similar images, without user interaction to determine region saliency.

There have been attempts to combine different attributes. Shape, color and
texture have been combined in [2; 20]. This combination is not transparent to the
user; instead she must decide how to weight the different attributes. In [7] color
and shape are combined by defining a composite metric over both.

3. SYNTACTIC REPRESENTATION OF APPEARANCE

This section begins by making explicit the notion of appearance and the uniqueness
of Gaussian derivative filters therein. As a result, a representation, that is a multi-
scale feature vector can be constructed by filtering an image with a set of Gaussian
derivative filters. The multi-scale feature vector may b transformed so that the
elements within this vector are invariant invariant to 2D rigid transformations.
This transformed feature vector is called the multi-scale invariant vector. Then a
scheme for indexing multi-scale invariant vectors computed over the entire image
database is presented. This completes all the steps of the off-line computation
described in the introduction.

3.1 Characterization of Appearance

A function can be locally characterized by it’s Taylor series expansion provided the
derivatives at the point of expansion are well conditioned. The intensity function of
the image , on the other hand, need not exhibit continuity at the point of expansion.
However, it is well known that the derivative of a, possibly discontinuous, function
can be made well posed if it is convolved with the derivative of a smooth test
function. Consider the normalized Gaussian as a choice for the smooth test function
which in two dimensions is defined as,

1
€22 (1)

G (x,0) =

2mo?

where x € 2, o is the scale of the Gaussian. Then the derivatives of the image
I, (x) = (Ixg)(x,0),x € %2 are well conditioned for some value of o. This is
written as

Liy ino(xX) =T xGyy . 4,) (x,0)
(sn
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and iy =x1...xp,k=1...n.
The local N-jet of I (x) at scale o and order N is defined as the set [10](cite
Koenderink):

IN (x,0) = {0

n=0...N} 2)

It can be observed that limy_,o J [I] (x,), bundles all the derivatives required
to fully specify the Taylor expansion of I, up to derivatives of order N. Thus, for
any order N, the local N-jet at scale o locally contains all the information required
to reconstruct I at the scale of observation o up to order N. This is the primary
observation that is used to characterize appearance. That is, up to any order the
derivatives locally characterize the shape of the intensity surface, i.e. appearance,
to that order. From the experiments shown in this paper it is also observed that
this representation can be used to retrieve images that appear visually similar.

As a practical example consider the local 2-jet of an image I (p),p = (z,y) € R?,
at scale o.

J? [I] (p,o) = {L, (p) i . (p) Ayo (p) Aaz,0 (p) Aey,o (p) s Ayy.o (p)}]

That is image [ is filtered with the first two Gaussian derivatives (and the Gaussian
itself) in both z and y directions. Point p is, therefore, associated with a feature
vector of responses at scale o.

The choice of the Gaussian as the smooth test function, as opposed to others,
is motivated by the fact that it is unique in describing the scale-space or deep
structure of an arbitrary function. A full review of scale-space is beyond the scope
of this paper and the reader is referred to [31; 9; 3; 11; 28] for a study. Here some
of the important consequences of incorporating scale space are considered. For
increasing values of o the Gaussian filter admits a narrowing band of frequencies
and I will appear smoother. The scale-space of I is simply I,, where o is the free
variable. Similarly, the scale space of the derivatives of I is the range of I;, ;. »
where o is the free variable. Scale-space has important physical interpretations.
For example, as an object moves away from a camera (in depth) its image appears
less structured and finer contrasts get blurred. The scale-space of the image of
the object models this observation. By filtering an image with Gaussian derivative
filters (up to some order) at several scales, the appearance of that image from
different depths (from a camera) can be represented. An argument is therefore
made for a multi-scale feature vector which describes the intensity surface locally
at several scales. Multi-scale vectors represent appearance better than a single-
scale vector. From a practical standpoint this means that mis-matches due to an
accidental similarity can be reduced.

As a consequence of the scale-space description using Gaussian derivatives, image
patches that are scaled versions of each other can also be compared in a straight-
forward manner. Consider two images Iy and I; that are scaled versions of each
other (but otherwise identical). Without loss of generality assume that the scaling
is centered at the origin. That is Iy (p) = 1 (sp) Then the following relations hold

'Tye = Iy and is therefore dropped
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[14; 15]
Io(p)xg (o) =1 (sp) *g (-, 50)
Io (p) * (k)( o) =1 (sp) xg¥) (-, 50) (3)
where g( )( ) = tkgﬁ---ik (t)

These equations state that if the image I is a scaled version of Iy by a factor s
then in order to compare any two corresponding points in these images the filters
must also be stretched (i.e. scaled) by the same factor. For example, if a point pq
is being compared with a point p; in images Iy and I; where I; is twice the size of
Iy, then the filter used to compute the response at p; must be twice that of pg for
the responses to be equal.

The multi-scale approach is, therefore, a robust representation of appearance
which may be used to directly compare images that are scaled versions of each
other. From an implementation stand point a multi-scale feature vector at a point
p in an image I is simply the elements of the vector:

{IM 1) (p,0n) , IV (1] (P, o2) ... TV [I] (, o) } (4)

for some order N and a set of scales o7 ...0. In practice the zeroth order terms
are dropped to achieve invariance to constant intensity changes.

A measure of similarity between two multi-scale vectors can be obtained by cor-
relating them or computing the distance between the vectors. In earlier work [22]
it was shown that multi-scale vectors can be used to retrieve images that are not
only scaled versions of each other but also ones that are similar to the query. This
was achieved by correlating the derivative feature vectors across scales using the
scale shifting theorem presented above. An important observation from that work
is that as images become more dissimilar (due to several reasons) their response
vectors become less correlated, starting at the higher order. Thus, similar images,
can be expected to be more correlated in their lower order than higher ones. As a
consequence only the first two order derivatives were used. Likewise, in this paper
the lower order derivatives are used. Similar arguments can be made for scales.
As images get dissimilar, they can be expected to retain strong correlation only at
large scales (lower spatial frequency). Further the range of scales over which they
correlate well gets smaller. As a consequence, in this paper the multi-scale vector
is computed at three different scales placed half an octave apart. This is discussed
in the next sub-section. In general these parameters can be computed a priori for
a large range of values (at the expense of disk space) and then left to the user to
pick appropriate ones on at run-time. Or they can be conditioned in advance for a
specific task at the expense of generality.

3.2 Multi-Scale Invariant Vectors

The limitation of using the derivatives directly in a feature vector is that it limits
the viewing range (both out-of-plane and in-plane rotations of the image). This
issue is partially addressed by transforming the multi-scale feature vector so that
it is invariant to 2D rigid transformations.

Given the derivatives of an image I irreducible differential invariants, that are
invariant under the group of displacements can be computed in a systematic manner
[3]. The term irreducible is used because other invariants can be reduced to a
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combination of the irreducible set. The value of these entities independent of the
choice of coordinate frame (up to rotations) for the low orders (two here) terms are
enumerated.

The irreducible set of invariants up to order two of an image I are:

dy =1 Intensity
d =I+1; Magnitude
dy = I+ 1y Laplacian

d3 = IzzIwIz + 2IzwaIy + IUUIUIU
dy = Ifw + 213263/ + I?;ZI?J

In experiments conducted in this paper, the vector, A, = (di,...ds), is computed
at three different scales. The element dj is not used since it is sensitive to gray-
level shifts. The resulting multi-scale invariant vector has at most twelve elements.
Computationally, each image in the database is filtered with the first five partial
derivatives of the Gaussian (i.e. to order 2) at three different scales at uniformly
sampled locations. Then the multi-scale invariant vector D = (A, , A, Ay)
is computed at those locations. The list of multi-scale vectors across the entire
database is then indexed for rapid retrieval and is described next.

3.3 Indexing Invariant Vectors

The multi-scale invariant vector D can be viewed as a fixed length record. A
location across the entire database can be identified by the generalized coordinates,
defined as, ¢ = (i, x,y) where i is the image number and (z,y) a coordinate within
this image. The computation described in the previous sub-section generates an
association between generalized coordinates and invariant vectors. This association
can be viewed as a table M : (i,z,y, D). The number of columuns in this table are
3 + k, where, k is the number of fields in an invariant vector. Each row is simply
the invariant vector corresponding to a generalized coordinate and the number of
rows is the total number of invariant vectors across the entire database.

To find an invariant vector by coordinate, that is input a generalized coordi-
nate and obtain the corresponding invariant vector, a simple look up in M can
be performed which is a constant time operation (if the dimensions of each image
is known). However, to retrieve images, a ’find by value’ functionality is needed,
wherein, a query invariant vector can be found within M and the corresponding
generalized coordinate is returned. But this entails a linear search in M which is
extremely time consuming. The solution is to generate inverted files (or tables) for
M, based on each field of the invariant vector and index them. Then the operation
of ’find-by-value’ can be performed in log time and is described below. To index
the database by fields of the invariant vector, the table M is split into k smaller
tables M, ... M, one for each of the k fields of the invariant vector. Each of the
smaller tables M;,p = 1---k contains the four columns (D(p), i, z,y). At this stage
any given row across all the smaller tables contains the same generalized coordinate
entries, as that in M. Then, each M; is sorted by it’s first column and a binary tree
structure on this column is generated. As a result, the entire database is indexed.

The following steps are needed to perform a find-by-value operation on a query
invariant vector. Each field of the query vector is used to traverse through the
corresponding index tree. Once a match is found, the generalized coordinate is
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Fig. 2. The results of the car query shown in Figure 1

extracted. After all the k fields complete their search successfully, k& generalized
coordinates would have been extracted. If all of these are exactly the same then
the find-by-value routine has succeeded.

The entire process of Off-line computation can be summarized in the following
steps.

(1) Filter each image at uniformly sampled locations with Gaussian derivatives at
several scales up to order two.
(2) Generate the multi-scale invariants at these points and hence the table M.

(3) Compute the inverted file M,; for each key of the record across the entire
database.

(4) Sort the inverted file by key value and create a binary index.
4. MATCHING INVARIANT VECTORS

Run-time computation begins with the user marking selecting regions in an ex-
ample image. At sampled locations within these regions, invariant vectors are
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computed and submitted as a query. The search for matching images is performed
in two stages. In the first stage each query invariant is supplied to the find-by-
value’ algorithm and a list of matching generalized coordinates is obtained. In the
second stage a spatial check is performed on a per image basis, so as to verify that
the matched locations in an image are in spatial coherence with the corresponding
query points. In this section the ’find-by-value’ and spatial checking components
are discussed.

4.1 Finding by Invariant Value

The multi-scale invariant vectors at sampled locations within regions of a query
image can be treated as a list. The n'® element in this list contains the information
Qn = (Dp, Ty, yn), that is, the invariant vector and the corresponding coordinates.
In order to find by invariant value, for any query entry @,, the database must
contain vectors that are within a threshold ¢ = (¢; ...t;) > 0. The coordinates of
these matching vectors are then returned. This can be represented as follows. Let p
be any invariant vector stored in the database. Then p matches the query invariant
entry D, only if D,, —t < p < D,, + t. This can be rewritten as

& Dy () — t(j) < p (i) < Dy (5) — ()]

where & is the logical and operator and k is the number of fields in the invariant
vector. To implement the comparison operation two searches can be performed
on each field. The first is a search for the lower bound, that is the largest entry
smaller than D, (j) — t(j) and then a search for the upper-bound i.e. the smallest
entry larger than D, (j) + ¢(j). The block of entries between these two bounds are
those that match the field j. In the inverted file the generalized coordinates are
stored along with the individual field values and the block of matching generalized
coordinates are copied from disk. To implement the logical-and part, an intersection
of all the returned block of generalized coordinates is performed. The generalized
coordinates common to all the k fields are the ones that match query entry @Q,,.
The find by value routine is executed for each ,, and as a result each query entry
is associated with a list of generalized coordinates that it matches to.

In practice, the fields over which the intersection operation is performed is a
matter of experimentation. For example, for several queries and those listed here,
the last two fields of the invariant vector are used. This corresponds to six field
searches or twelve traversals through the index trees.

4.2 Spatial-Fitting

The association between a Query entry (J,, and the list of f generalized coordinates
that match it by value can be written as

A, = <mn=yn7cn17cn2 ---Cnf> = <mn7yn7 (in17mn17yn2) s (infamnf7ynf)>

. Here z,,yy, are the coordinates of the query entry @, and c¢,, ...c,, are the f
matching generalized coordinates. The notation c,, implies that the generalized
coordinate ¢ matches n and is the f** entry in the list. Once these associations are
available, a spatial fit on a per image basis can be performed. In order to describe

the fitness measure, two definitions are needed. First, define the distance between
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two query entries m and n as 0, = (T, — a:n)2 + (Ym — yn)2. Second, define the
distance between any two generalized coordinates ¢p,; and ¢, that are associated
with two query entries m, n by:

Ocy,; om, = (xm — xnk)Q + (Um - ynk)Q

Any image u that contains two points (locations) which match some query entry
m and n respectively are coherent with the query entries m and n only if the
distance between these two points is the same as the distance between the query
entries that they match. Using this as a basis, a binary fitness measure can be
defined as

Fon ) = {

ST im; =in, =u,m#n

it 353k | G — 0

0 otherwise

ij sCny,

That is, if the distance between two matched points in an image is close to the
distance between the query points that they are associated with, then these points
are spatially coherent (with the query). Using this fitness measure a match score for
each image can be determined. This match score is simply the maximum number
of points that together are spatially coherent (with the query). Define the match
score by:

score (u) =M Sy, (1) (5)

where, S, (u) = Zfz:l F (u),, ,- The computation of score(u) is at worst quadratic
in the total number of query pbints. The array of scores for all images is sorted and
the images are displayed in the order of their score. T used in F is a threshold and
is typically 25% of 0y,.. Note that this measure not only will admit points that
are rotated but will also tolerate other deformations as permitted by the threshold.
It is placed to reflect the rationale that similar images will have similar responses
but not necessarily under a rigid deformation of the query points.

4.3 Query Construction

The success of a retrieval in part depends on well designed queries. That implies
that the user should be provided with a facility to design queries. Several other
approaches in the literature take the entire feature set or some global representation
over the entire image. While this may be reasonable for certain types of retrieval,
it cannot necessarily be used for general purpose retrieval.

More importantly, letting the user design queries eliminates the need for detecting
the salient portions on an object, and the retrieval can be customized so as to remove
unwanted portions of the image. Based on the feedback provided by the results of
a query, the user can quickly adapt and modify the query to improve performance.

5. EXPERIMENTS

The choice of images used in the experiments is based on a number of consider-
ations. First it is general in that it doesn’t reflect a bias towards any particular
method, such as texture alone or shape alone. Second, it is expected that when



12 . Image Retrieval by Appearance

very dissimilar images are used the system should have little difficulty in ranking
the images. For example, if a car query is used with a database containing cars and
apes, then it is expected that cars would be ranked ahead of apes. This is borne
out by the experiments done to date. Much poorer discrimination is expected if
the images are much more ‘similar’. For example, different species of apes should
be harder to discriminate.

The database used in this paper has digitized images of cars, steam locomotives,
diesel locomotives, apes, faces, people embedded in different background(s) and
a small number of other miscellaneous objects such as houses. 1561 images were
obtained from the Internet and the Corel photo-cd collection to construct this
database.These photographs, were taken with several different cameras of unknown
parameters, and, under varying but uncontrolled lighting and viewing geometry.
Also, the objects of interest are embedded in natural scenes such as car shows,
railroad stations, country-sides and so on.

Prior to describing the experiments, it is important to clarify what a correct
retrieval means. A retrieval system is expected to answer questions such as ’find all
cars similar in view and shape to this car’ or ’find all faces similar in appearance to
this one’. To that end one needs to evaluate if a query can be designed such that it
captures the appearance of a generic steam engine or perhaps that of a generic car.
Also, one needs to evaluate the performance of matching under a specified query.
In the examples presented here the following method of evaluation is applied. First,
the objective of the query is stated and then retrieval instances are gauged against
the stated objective. In general, objectives of the form ’extract images similar in
appearance to the query’ will be posed to the retrieval algorithm.

In this section we start out by demonstrating two retrieval examples and then
go on to discuss the performance of the system in terms of recall and precision.
Finally the typical computation times for running a query are presented.

A measure of the performance of the retrieval engine can be obtained by examin-
ing the recall /precision table for several queries. Briefly, recall is the proportion of
the relevant material actually retrieved and precision is the proportion of retrieved
material that is relevant. Five queries were submitted to the database to compute
the recall /precision shown in Table 1. These queries are enumerated below. For
lack of space pictorial results are shown only for the first two.

(1) Using the white wheel as the salient region find all cars with white wheels.
This query is depicted in Figure 1. The top twenty five results of this query are
shown in Figure 2 read in a text-book manner. Although, as it is clear from
the results picture, several valid cars were found within reasonable viewpoint
the user is only interested in white wheels and the average precision for this
query is 48.6%.

(2) This query is depicted in Figure 3. The user seeks to find similar dark textured
apes including monkeys and points to the texture on this ape’s coat. The
average precision is 57.5% and the top 25 are shown in Figure 4. Note that
although the 20*" image is a monkey (patas monkey), it is not a valid match in
as far as the user is concerned because it is not a dark textured ape or monkey.
Hence, it is not counted.

(3) The third query is that of the face of a human and the user expects all human
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Fig. 3. Ape query: The user decides that the texture on the coat is important

faces in the database. The average precision is 74.7%

(4) The fourth query is that of the same human face but this time the user expects
to obtain all the pictures of this particular person in the database. The average
precision is 61.7%

(5) The fifth query is that of the face of a patas monkey and the user expects to
retrieve all patas monkeys whose faces are clearly visible. The average precision
is 44.5%.

The recall/precision curve for all these queries together is shown is Table 1.
The average precision over all the queries is a 57.4% This compares well with text
retrieval where some of the best systems have an average precision of 50%2.

Table 1. Precision at standard recall points for Five Queries
Recall 0 10 20 30 40 50 60 70 80 90 100
Precision % 100 | 94.1 | 90.6 | 76.4 | 61.8 | 55.3 | 44.1 | 39.5 | 35.8 | 20.0 | 14.1

average | 57.4% |

?Based on personal communication with Bruce Croft
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Fig. 4. ’Monkey’ Query Results
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Unsatisfactory retrieval occurs for several reasons. First it is possible that the
query is poorly designed. In this case the user can design a new query and re-submit.
Also Synapse allows users to drop any of the displayed results in to a query box
and re-submit. Therefore, the user can not only redesign queries on the original
image, but also can use any of the result pictures to refine the search. A second
source of error is in matching generalized coordinates by value. The choice of scales
in the experiments carried out in this case are %7 3, % with the top two invariant
vectors i.e. (d3,d4). It is possible that locally the intensity surface may have a very
close value, so as to lie within the chosen threshold and thus introduce an incorrect
point. By adding more scales or derivatives such errors can be reduced, but at the
cost of increased discrimination. Many of these 'false matches’ are eliminated in the
spatial checking phase. Errors can also occur in the spatial checking phase because
it admits much more than a rotational transformation of points with respect to the
query configuration. Overall the performance to date has been very satisfactory
and we believe that by experimentally evaluating each phase the system can be
further improved.

The time it takes to retrieve images is dependent linearly on the number of
query points. On a Pentium Pro-200 Mhz Linux machine, typical queries execute
in between one and six minutes.

6. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Within small view variations, images that are similar to a query are retrieved. These
images are also observed to be visually similar and we posit that this method has
good potential for image retrieval.

While a discussion of matching objects across different sizes was presented and
has been implemented elsewhere [22], in this paper, the multi-scale invariant vector
was used only to robustly characterize appearance. The next immediate step is to
explicitly incorporate matching across size variations.

A second important question is, what types of invariants should constitute a
feature vector 7 This is a question of open research and is subject to extensive
verification.

Finally, although the current system is some what slow, it is yet a remarkable
improvement over our previous work. We believe that by examining the the spatial
checking and sampling components a further increase in speed is possible.
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