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TextFinder: An Automatic System To

Detect And Recognize Text In Images

Victor Wu, R. Manmatha, Edward M. Riseman

Abstract

There are many applications in which the automatic detection and recognition
of text embedded in images is useful. These applications include digital libraries,
multimedia systems, Information Retrievial Systems, and Geographical Informa-
tion Systems. When machine generated text is printed against clean backgrounds,
it can be converted to a computer readable form (ASCII) using current Optical
Character Recognition (OCR) technology. However, text is often printed against
shaded or textured backgrounds or is embedded in images. FExamples include
maps, advertisements, photographs, videos and stock certificates. Current doc-
ument segmentation and recognition technologies cannot handle these situations
well.

In this paper, a four-step system which automatically detects and extracts
text in images is proposed. First, a texture segmentation scheme is used to focus
attention on regions where text may occur. Second, strokes are extracted from the
segmented text regions. Using reasonable heuristics on text strings such as height
similarity, spacing and alignment, the extracted strokes are then processed to form
rectangular bozes surrounding the corresponding text strings. To detect text over

a wide range of font sizes, the above steps are first applied to a pyramid of images



generated from the input image, and then the bozes formed at each resolution level
of the pyramid are fused at the image in the original resolution level. Third, text
18 extracted by cleaning up the background and binarizing the detected text strings.
Finally, better text bounding boxes are generated by using the binarized text as
strokes. Text is then cleaned and binarized from these mew bozxes. If the text
is of an OCR-recognizable font, it is passed through a commercial OCR engine
for recognition. The system is stable, robust, and works well on images (with
or without structured layouts) from a wide variety of sources, including digitized
video frames, photographs, newspapers, advertisements, stock certificates, and

personal checks. All parameters remain the same for all the experiments.

Keywords  text reading system, character recognition, multimedia indexing, text de-
tection, texture segmentation, filters, hierarchical processing, binarization, background

removal, connected-components analysis.

1 Introduction

Most of the information available today is either on paper or in the form of still pho-
tographs and videos. To build digital libraries, this large volume of information needs
to be digitized into images and the text converted to ASCII for storage, retrieval, and
easy manipulation. However, current OCR technology [2, 10] is largely restricted to
finding text printed against clean backgrounds, and cannot handle text printed against

shaded or textured backgrounds, and/or embedded in images. More sophisticated text



reading systems usually employ document analysis (page segmentation) schemes to
identify text regions before applying OCR so that the OCR engine does not spend
time trying to interpret non-text items. However, most such schemes require clean
binary input [4, 18, 19, 20]; some assume specific document layouts such as newspa-
pers [8] and technical journals [11]; others utilize domain-specific knowledge such as
mail address blocks [14] or configurations of chess games [1]. There is thus a need for
systems which extract and recognize text from general backgrounds.

In this paper, a new end-to-end system is proposed which automatically extracts
and recognizes text in images. The system takes greyscale images as input'. It detects
text strings in the image and puts rectangular bounding boxes around them. These
bounded regions in the input images are then cleaned up and binarized so that the text
stands out. The extracted text can then be recognized by a commercial OCR system,
if the text is of an OCR-readable font.

Systems which automatically extract and recognize text from images with general

backgrounds are also useful in the following situations:

1. Text found in images or videos can be used to annotate and index those mate-
rials. For example, video sequences of events such as a basketball game can be
annotated and indexed by extracting a player’s number, name and the name of
the team that appear on the player’s uniform (Figure 1(a, b). In contrast, image

indexing based on image content, such as the shape of an object, is difficult and

LA binary image can be processed by first scaling it so that its intensity ranges from 0 to 255



(a) (b)
Figure 1: An example. (a) An input image; (b) Extracted text before the Character Recog-
nition module.

computationally expensive to do.

2. Systems which automatically register stock certificates and other financial doc-
uments by reading specific text information in the documents are in demand.
This is because manual registration of the large volume of documents generated

by daily trading requires tremendous manpower.

3. Maps need to be stored electronically in building a Geographical Information
System (GIS). One approach is to scan the maps first and then extract the lines,
text, and symbols. The lines are then stored in a vector representation and the
text and symbols in symbolic forms. The electronic representation of a map

makes updating, scaling, and retrieval much easier.



2 Prior Work

OCR technology has been used to convert the text in scanned paper documents into
ASCII symbols. However, current commercial OCR systems do not work well if text
is printed against shaded or hatched backgrounds, often found in documents such
as photographs, maps, monetary documents, engineering drawings and commercial
advertisements. Furthermore, these documents are usually scanned in greyscale or
color to preserve details of the graphics and pictures which often exist along with
the text. For current OCR systems, these scanned images need to be binarized before
actual character segmentation and recognition can be done. A typical OCR system does
the binarization to separate text from the background by global thresholding ([5, 13]).
Unfortunately, global thresholding is usually not possible for complicated images, as
noted by many researchers ([13], [17]). Consequently, current OCR systems work poorly
in these cases.

One solution to the global thresholding problem is to use different thresholds for dif-
ferent local regions (adaptive thresholding) [8]. Trier and Taxt [17] report an evaluation
of eleven local adaptive thresholding schemes.

Many document segmentation methods have been proposed in the literature. Some
of these methods are top-down approaches, some are bottom-up schemes, and others
are based on texture segmentation schemes in computer vision. Classic top-down tech-
niques are based on the run length smoothing (RLS) algorithm [18, 20] to smooth the

image first, then, horizontal and vertical projection profiles [19] are commonly used to



cut the page into smaller blocks such as columns and paragraphs [11, 15, 19]. Bottom-
up methods work by grouping small components (starting with pixels as connected
components) into successively larger components until all blocks are found on the page
[4, 12]. The third category of document segmentation methods treat text as a type
of texture and hence use texture segmentation algorithms to detect text [6, 7]. Some
work has been done to detect text using color information [22].

Smith and Kanade [16] developed a simple technique to detect text in video images.
Although fast, the technique is not robust. Etemad et al [3] used a neural net to classify
the output of wavelets into text and non-text regions. The neural net requires a rich
set of training examples to work effectively. The top-down and bottom-up approaches
require the input image to be binary. The projection profile based schemes work if
the page has a Manhattan layout: that is, there is only one skew angle and the page
can be segmented by horizontal and vertical cuts. Although the texture segmentation
scheme in [6] can in principle be applied to greyscale images, it was only used on
binary document images, and in addition, the binarization problem was not addressed.
Other systems utilize domain-specific knowledge such as mail address blocks [14] or
configurations of chess games [1].

In summary, although a considerable amount of work has been done on different as-
pects of document analysis and understanding, few working systems have been reported
that can read text from document pages with both structured and non-structured lay-

outs and textured or hatched backgrounds. The system presented in this paper is



our contribution to filling the gap in this area of research and development, and to

constructing a complete automatic text reading system.

3 System Overview

The goal here is to build an end-to-end automatic text extraction system which accepts
a wide range of images as input, detects text in the input images, and then binarizes
and cleans up the detected text so that it can be fed into a commercial OCR for
character recognition.

The system takes advantage of the distinctive characteristics of text which make it
stand out from other image material. For example, by looking at the comic page of a
newspaper a few feet away, one can probably tell quickly where the text is without actu-
ally recognizing individual characters. Intuitively, text has the following distinguishing
characteristics: (1) Text possesses certain frequency and orientation information; (2)
Text shows spatial cohesion  characters of the same text string (a word, or words
in the same sentence on the same line) are of similar heights, orientation and spacing.

The first characteristic suggests that text may be treated as a distinctive texture,
and thus be segmented out using texture segmentation techniques. The first phase of
the system, therefore, uses Texture Segmentation (Figure 2) to segment the text
(Section 4). The texture segmentation scheme used is not sufficient for text detection
and extraction if images more complicated than clean newspaper scans have to be

dealt with. Nevertheless, the segmentation result can be used as a focus of attention
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Figure 2: The top level components of the text detection and extraction system. The
pyramid of the input image is shown as I, I, Iy

for further processing called Chip Generation (section 5) of the system.

The basic idea for chip generation is to apply a set of appropriate heuristics to
find text strings within/near the segmented regions. The heuristics are designed to
reflect the second characteristic of text as listed above. The algorithm uses a bottom-
up approach: significant edges form strokes; strokes are connected to form chips
(regions) corresponding to text strings. The rectangular bounding boxes of the chips
are used to indicate where the hypothesized (detected) text strings are.

The above text detection procedures work well for text over a certain range of font
sizes. To detect text whose font size varies significantly, the input image is processed

at different resolutions (Section 6). The output chip boxes generated at each resolution



level are then mapped back onto the original image and redundant boxes are eliminated
(Chip Scale Fusion). As an example, to find text of fonts up to 160 pixels in height,
a hierarchy of three levels is required (Figure 2).

It will be shown that for each chip, a single threshold suffices to clean up and
binarize the corresponding region in the input image so that the text stands out. A
simple, effective histogram-based algorithm, as described in [21], is used to find the
threshold value automatically for each text region. This algorithm is used for the Text
Clean-up module in the system.

Non-text items might survive the previous processing and occur in the binarized
output. Thus, a Chip Refinement phase is used in the system to filter them out. This
is done by treating the extracted items (text and non-text) as strokes to re-generate
chips using the same algorithms (with stronger constraints) in the Chip Generation
phase. The chips produced this time usually enclose the text strings better. The Chip
Clean-up process is then applied to the new chips to obtain better binarization results.

Figure 2 depicts the system described above. Experimental results have shown that
the system works well with both machine generated fonts and some script fonts. Prac-
tically speaking, the font sizes do not matter. The system is also stable and robust all
the system parameters remain the same for all of the text images from a wide variety
of sources including newspapers, magazines, printed advertisement, photographs, and
checks. Notice that some of these documents have structured layout, some do not,

and the system works well in either case. A detailed description of the experiments is



presented in section 9.

4 The Texture Segmentation Module

As stated in section 3 text can be treated as a specific texture. Thus, one natural
way to detect text is by using texture segmentation. A standard approach to texture
segmentation is to first filter the image using a bank of linear filters, such as Gaussian
derivatives ([9] or Gabor functions [6] followed by some non-linear transformation such
as half-wave rectification, full-wave rectification, or a hyperbolic function tanh(«t).
Then features are computed to form a feature vector for each pixel from the filtered
images. These feature vectors are then classified to segment the textures into different
classes.

In this paper, 9 filters are used to segment the texture. The filters are the 3 second
order derivatives of Gaussians at three different scales 0 = (1,1/2,2). Each filter
output is passed through the non-linear transformation tanh(at) where @ = 0.25. A
local energy estimate is computed using the outputs of the non-linear transformation.
The result consists of 9 images where each pixel in one of these images represents the
local energy due to a given filter. At each pixel, a feature vector can be constructed
consisting of the energy estimates from the 9 images for that location. The set of
feature vectors is clustered using a K means algorithm (with K = 3).

Since text generally ‘has a stronger response to the filters, while background areas

with little intensity variation have nearly no response (i.e. have close to zero energy),
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Figure 3: Results of Texture Segmentation and Chip Generation. (a) Portion of an input
image; (b) Output of the clustering stage. Dark regions are labeled as “text” regions; (c¢) The
Text regions after the morphological closure operation; (d) Strokes produced by performing
the Stroke Generation procedure on a; (e) Filtered strokes; (f) Chips produced by applying
Stroke Aggregation on strokes in e; (g) Chips after the Chip Filtering and Extension processes;
(h) Chips in g mapped to the input image.

the following cluster labeling scheme is used. The cluster whose center is closest to the
origin of the feature vector space, (0,0, ...,0), is labeled as background. The cluster
whose center is furthest away from the background cluster center is labeled as text.
Figure 3(a) shows a portion of an original input image. Only part of the original
input image is shown so that the details are more noticeable. This is a Stouffer’s

advertisement scanned at 300dpi. There is text on a clean dark background, text
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printed on Stouffer boxes, Stouffer’s trademarks (in script), and a picture of the food.
Figure 3(b) shows the pixel labels after the texture segmentation step. The dark area
corresponds to the segmented “text” regions, and the white area corresponds to the
background. The grey area is where the pixels have some energy, but not enough to
be text pixels.

As shown in Figure 3(b), the text regions may be broken or have holes. Thus, as the
last step of the segmentation phase of the system, a morphological closure operation
is carried out on the segmented text regions. Figure 3(c) shows the result of this

operation carried out on the text regions shown in 3(b).

5 The Chip Generation Phase

In practice, text may occur in images with complex backgrounds and texture patterns,
such as foliage, windows, grass etc. In other words, some non-text patterns may pass
the filters and initially be misclassified as text, as shown in Figure 3(c). Furthermore,
segmentation accuracy at texture boundaries is a well-known and difficult problem in
texture segmentation. Consequently, it is often the case that text regions are connected
to other regions which do not correspond to text, or one text string might be connected
to another text string of a different size or intensity. This might cause problems for
later processing. For example, if two text strings with significantly different intensity
levels are joined into one region, one intensity threshold might not separate both text

strings from the background.
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Therefore, heuristics need to be employed to refine the segmentation results. Ac-
cording to our experiments, the segmentation process usually finds text regions while
excluding most of the non-text ones. These regions can be used to direct further pro-
cessing. Furthermore, since text is intended to be readable, there is usually a significant
contrast between it and the background. Thus contrast can be utilized finding text.
Also, it is usually the case that characters in the same word/phrase/sentence are of
the same font and have similar heights and inter-character spaces (unless it is in some
kind of decorative font style). Finally, it is obvious that characters in a horizontal text
string are horizontally aligned?.

The basic idea for the Chip Generation phase is to use the segmented regions
as the focus of attention, and then apply a set of appropriate constraints to find text
strings within the segmented regions. The algorithm uses a bottom-up approach: sig-
nificant edges form strokes; strokes are connected to form chips corresponding to text
strings. The rectangular bounding boxes of the chips are used to indicate where the
hypothesized (detected) text strings are.

Conceptually, Chip Generation consists of the following main steps which are ap-

plied in the order given:

1. Stroke Generation: strokes are generated from significant edges;

2. Stroke Filtering: strokes which are unlikely to belong to any horizontal text

2In this paper, the focus will be on finding horizontal, linear text strings only. The issue of finding
text strings of any orientation will be addressed in future work.
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string are eliminated;

3. Stroke Aggregation: strokes which are likely to belong to the same text string

are connected to form chips;

4. Chip Filtering: chips which are unlikely to correspond to horizontal text strings

are eliminated;

5. Chip Extension: filtered chip are treated as strokes and aggregated again to

form chips which cover the text strings more completely.

5.1 Stroke Generation

Text must have significant contrast in order to be readable. Thus, the edges of char-
acters can be expected to have significant contrast. Therefore, the input image is first
convolved with a second-order Gaussian derivative in the horizontal direction and then
thresholded to find the significant edges. Connected components computation is then
employed to group edges into strokes.

Empirically, 0 = 1 was found to be a reasonable choice. Also, the threshold value

was set to 10 for all the experiments. Figure 3(d) shows the strokes for Figure 3(a).

5.2 Stroke Filtering

As one can clearly see in Figure 3(d), strokes are found at regular intervals in the

regions where text is present. However, non-text strokes will also be extracted where
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there are significant horizontal intensity changes in a scene.

The purpose of Stroke Filtering is to eliminate the false positive strokes by using
heuristics which take into account the fact that neighboring characters in the same
text string usually have similar heights and are horizontally aligned. It is reasonable to
assume that the similarity of character heights causes the heights of the corresponding
stokes to be similar. Furthermore, since the focus is on finding text strings, a text
stroke should have similar strokes nearby which belong to the same text string. These

heuristics can be described using connectability which is defined as:

Definition 1 Let A and B be strokes. A and B are connectable if they are of similar
height and horizontally aligned, and there is a path between A and B (a horizontal

sequence of consecutive pizels in the segmented region which connects A and B).

Here, two strokes are considered to be of similar height if the height of a shorter
stroke is at least 40% of the height of a taller one. To determine the horizontal align-
ment, strokes are projected onto the Y-axis. If the overlap of the projections of two
strokes is at least 50% of the shorter stroke, they are considered to be horizontally
aligned.

Given the above definition, the criterion used for stroke filtering can be simply

stated as follows:
e a stroke is eliminated if one of the following conditions are true:
1. it does not sufficiently overlap with the segmented text regions produced by

the texture segmentation phase;
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2. it has no connectable stroke.

Condition 1 says the strokes are expected to overlap the segmented regions. Since
the text segmentation is often not perfect, one cannot expect total overlap. A minimum
of 30% overlap rate worked well for all the test images. Condition 2 says that if there
is no path that leads to some connectable stroke(s), it is probably an isolated stroke
or line which does not belong to any text string.

Figure 3(e) shows the result of applying this procedure to the strokes in figure 3(d).
Notice that most of the text is still present while more of the background has been

eliminated.

5.3 Stroke Aggregation

An important function for the Chip Generation phase is to generate chips that corre-
spond to text strings. This is done by aggregating strokes belonging to the same text
string.

Since characters which belongs to the same text string are expected to be of similar
height and horizontally aligned, the concept of connectability can be used to aggregate
the strokes. In addition, it is clear that strokes corresponding to the same text string
should be close to each other. The width of a character and the spacing between
adjacent characters in a text string are related to the heights of the characters. Thus,
it is reasonable to measure the spacing between adjacent strokes as a function of the

heights of the strokes. By empirical observation, the spacing between the characters

16



and words of a text string is usually less than 3 times the height of the tallest character,
and so is the width of a character in most fonts. Therefore, for all of the experiments,

the following criterion is used to generate chips:

e two strokes, A and B, are connected if they are connectable and there is a path

between A and B whose length is less than 3 times the height of the taller stroke.

Figure 3(f) shows the result of applying the Chip Generation procedure to the
strokes in figure 3(e). Notice that most of the isolated strokes are connected into
chips which partially or completely cover text strings. The chips are shown with their

bounding boxes to make it easier to see.

5.4 Chip Filtering

Some non-text strokes may also pass the Stroke Filtering process, and therefore form
false positive chips requiring further filtering. This might happen, for example, when
there are periodically occurring lines or patterns in the image.

Text strings are expected to have a certain height in order to be reliably recognized
by an OCR system. Thus, one choice is to filter the chips by their heights. Furthermore,
since we are interested in text strings, not just isolated characters, the width of a chip
is also used to filter out text. Lastly, for horizontally aligned text strings, their aspect
ratio (width/height) is usually large. Therefore, chips are filtered using the following

constraints on their minimum bounding boxes:
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e a chip is eliminated if the width of its box is less than cw,; or the height of its

box is less than ch, or the aspect ratio of its box is larger than ratio,

It is usually difficult even for a human to read the text when its height is less than
7 pixels, thus 7 has been used for ch, for the experiments. A horizontal text string
is usually longer horizontally, hence setting cw, to at least twice the minimum height
seems reasonable. Thus, in all of our experiments, cw, = 15 and ch, = 7 were used.
Normally, the width of a text string should be larger than its height. But in some
fonts, the height of a character is larger than its width. Therefore, ch, = 1.1 is used

here, attempting to cover that case to some extent.

5.5 Chip Extension

It is expected that some strokes only cover fragments of the corresponding characters.
Therefore, these strokes might violate the constraints used for stroke filtering, and
hence be eliminated. Consequently, some of the chips generated so far may only cover
part of the corresponding text strings.

Fortunately, this fragmentation problem can usually be corrected. Notice that the
chips corresponding to the same text stroke are still horizontally aligned and of similar
height. Thus, by treating the chips as strokes, the Stroke Aggregation procedure can
be applied again to aggregate the chips into larger chips. This is exactly what the Chip
Extension step does. As a result, more words are completely covered by the extended

chips.
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(d)
Figure 4: The scale problem and its solution. (a) Chips generated for the input image at

full resolution; (b) half resolution; (c) 1 resolution; (d) Chips generated at all three levels

mapped onto the input image. Scale-redundant chips are removed.

Figure 3(g) shows the result of applying the Chip Filtering and Extension steps to
the chips in Figure 3(f). The rectangular chip bounding boxes are mapped back onto

the input image to indicate detected text as shown in Figure 3(h).

6 A Solution to the Scale Problem

The three frequency channels used in the segmentation process work well to cover
text over a certain range of font sizes. Text from larger font sizes is either missed or
fragmented. This is called the (scale problem). Intuitively, the larger the font size of

the text, the lower the frequency it possesses. Thus, when text font size gets too large,
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its frequency falls outside the three channels selected in section 4.

We propose a pyramid approach to the scale problem: form a pyramid of input
images and process each image in the pyramid using the standard channels (o =
1,4/2,2) as described in the previous sections (see Figure 2). At the bottom of the
pyramid is the original image; the image at each level (other than the bottom) is
obtained by reducing the image one level below by half in both dimensions. Text of
smaller font sizes can be detected using the images lower in the pyramid as shown in
Figure 4(a) while text of large font sizes is found using images higher in the pyramid
as shown in Figure 4(c). The bounding boxes of detected text regions at each level are

mapped back to the original input image (bottom level).

6.1 Chip Scale Fusion

Sometimes a text string or a part of it responds to more than one band of the frequency
channels, and hence forms overlapping chips at different levels. For example, text
with large fonts may partially respond to higher frequency channels, hence forming
fragmented boxes which cover parts of the string at a lower level. At the same time,
it strongly responds at some lower frequency channels which are more compatible,
hence forming a more complete box to cover the entire string at higher level(s) (Figure
4(b,c)). After the chips produced at different levels are mapped back onto the original
image (bottom level), the fragmented chips will be covered in full or in part by larger

boxes. Thus, it is desirable to eliminate these scale-redundant chips and keep the chips
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which overlap more with the text strings.

When most of a chip B overlaps with another chip A, it is likely that the text
covered by B is also covered by the other chip A, especially when more than 85% of
chip B overlaps with chip A (empirical finding). Another situation occurs when only
a small portion of B overlaps with A. In this case, if A is significantly larger than B,
B is also likely to be a scale-redundant chip. It is especially the case if at least 50% of
chip B overlaps with chip A and chip A is at least 10 times bigger than B (empirical
finding). Thus, the following straightforward procedure is used for the scale fusion for

all of the experiments:

e for any pair of chips A and B assuming Area(A) > Area(B), chip B is eliminated
if one of the following holds: (1) 85% of B is covered by A; (2) 50% of B is covered

by A and the area of B is less than 10% of the area of A.

Figure 4(d) is the result of the above scale fusion procedure applied to chips in

Figure 4(a,b,c). Notice that text from a large range of font sizes is detected.

7 Text on Complex Backgrounds

The previous sections describe a system which detects text in images and puts boxes
around detected text strings in the input image. The text strings may be printed
against complex image backgrounds (see for example Figure 5(a)). Current OCR

systems cannot handle such text because they require text to be printed against a
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Figure 5: The Text Clean-up process. (a) Original text chip; (b) Histogram of a; (c)
Smoothed version of a; (d) Histogram of c; (e) The binarization result by thresholding c
using a value in the valley of f; (f) Smoothed version of d.

clean background. In addition, OCR systems require that the text must be binarized
before they can process it.

Our goal here is to find a simple, robust algorithm which will remove the background
while preserving the text, eliminate noise and also produce a binary image which
current OCR systems can handle. Local thresholding is a good way to do background
and noise removal while simultaneously binarizing the image. The text chips produced
usually contain text strings whose characters all roughly have the same intensity. These
chips are, therefore, good candidates for local thresholding.

The algorithm for background removal and binarization is described in [21]. Here,
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we use Figure 5 to briefly demonstrate how the algorithm works: First, the text chip
(Figure 5(a)) generated by the system is smoothed to produce the chip shown as
Figure 5(c). Next, the intensity histogram of the smoothed chip is computed as shown
in Figure 5(d). The black text corresponds to the portion of the histogram to the
left of the major valley. The valley can be automatically detected by first smoothing
the histogram in Figure 5(d) to produce the histogram in Figure 5(f). The histogram
smoothing eliminates the small noise peaks in Figure 5(d). The text in Figure 5(c)
can then be automatically extracted by picking a threshold at the first valley counted
from the left side of the histogram in Figure 5(f). The resulting thresholded output is
shown in Figure 5(e). All the characters but one “s” have been successfully recognized
using an commercial OCR engine.

Since the current system does not know whether dark text or light text is in a text
chip, one output is produced for each case for all the text chips.

This clean-up and binarization procedure has been successfully used on many im-

ages (see for example the Experiments section). More discussion can be found in [21].

8 The Text Refinement

Experiments show that the text detection phase is able to locate text strings in regular
fonts, and some even from script fonts or trademarks. However, sometimes non-text
items are identified as text as well. In addition, the bounding boxes of the chips

sometimes do not tightly surround the text strings. The consequence of these problems
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Figure 6: An input image from the New Yorker magazine.

is that non-text items may occur in the binarized image, produced by mapping the
extracted items onto the original page. An example is shown in Figures 6 and 7. These
non-text items are not desirable since they may hinder the performance of an OCR
system.

However, by treating the extracted items as strokes, the Stroke Filtering process
(section 5.2) can be applied here to eliminate the non-text items, since tighter con-

straints can be used at this time. This is because (1) the clean-up procedure is able
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Figure 7: The binarization result of Figure 6 before the refinement step.

to extract most characters without attaching to characters nearby and non-text items
(Figure 7), and (2) the strokes at this stage are composed of mostly complete or almost
complete characters as opposed to the vertical connected edges of the characters gen-
erated by the Stroke Generation step (section 5.1). Thus, it can be expected that the
correct text strokes comply more with the heuristics used in the early Chip Generation
phase.

Therefore, the Stroke Filtering procedure (section 5.2) with tighter constraints is
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Figure 8: The binarization result of Figure 6 after the refinement step.

used here to remove more non-text items. Then, the Stroke Aggregation process (sec-
tion 5.3) is used again to generate a new set of probably better chips. This is followed
by the Text Clean-up process to extract the text from the input image regions corre-
sponding to the chips. The binarization result is usually better since the tighter the
chip bounds the text, the less irrelevant image area (noise) is included, and hence the
better the clean-up process works.

A more restricted constraint for connectability of two similar strokes is used at this
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stage. This constraint requires that the gap between them must be no more than twice
the height of the shorter stroke as opposed to three times used in the earlier Chip
Generation stage. Also, an extra constraint which requires that the vertical distance
between the bottoms or the tops of the strokes be small is used to determine if two
strokes are horizontally aligned. In all of the experiments, no more than 10 pixels were
allowed for this distance.

An example is given in Figure 8 which shows the binarization result of Figure 6

after this refinement phase.

9 Experiments

The system has been tested using 48 images. Some of the test images were downloaded
from the Internet, some from the Library of Congress, and others were locally scanned
documents. These test images came from a wide variety of sources: digitized video
frames, photographs, newspapers, advertisements in magazines or sales flyers, and
personal checks. Some of the images have regular page layouts, others do not. It
should be pointed out that all the system parameters remain the same throughout the
whole set of test images, showing the robustness of the system.

For the images scanned by us, a resolution of 300dpi (dots per inch) was used. This
is the standard resolution required, for example, by the Caere OCR engine that was
used. It should be pointed out that 300dpi resolution is not required by our system.

In fact, no assumptions are made about the resolution of the input images, since such
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information is normally not available for the images from outside sources, such as those

downloaded from the Internet.

9.1 Text Detection and Clean-up

This experiment demonstrates the performance of the system up to the Text Filtering
process. Characters and words (as perceived by one of the authors) were counted in
each image (the ground truth). The total numbers over the whole test set are shown in
the “Total Perceived” column in Table 1. Then, detected characters and words which
are completely enclosed by the text boxes produced after the Chip Scale Fusion step
were counted for each image. The total numbers of detected characters and words
summed up over the whole test set is shown in the “Total Detected” column of Table
1. Finally, characters and words which are clearly readable by a person after the Chip
Refinement and Text Clean-up steps (final extracted text) are counted for each image.
Note that only the text which is horizontally aligned is counted (skew angle of the text
string is less than roughly 30 degrees). These extracted characters (words) are called
cleaned-up characters (words)?.

As shown in Table 1, there are a total of 21820 characters and 4406 words in the 48
test images. Of these, 20788 (95%) characters and 4139 (93%) words are detected. If
the percentages are computed for each image and then averaged over the whole set of

images, the normalized percentages (by weighting all the images equally) are 89% for

3Due to space limitations, the table of the above results itemized for each test image is not included
in this paper
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Total Total Total Total Total
Perceived | Detected Clean-up || OCRable | OCRed
Char | 21820 20788 (95%) | 91% 14703 12428 (84%)
Word | 4406 4139 (93%) | 86% 2981 2314 (77%)

Table 1: Summary of the system’s performance. 48 images were used for detection and
clean-up. Out of these, 35 binarized images were used for the OCR. process.

detected characters and 85% for detected words. 91% of the detected characters and

86% of the detected words are successfully cleaned*. These results are listed in Table

1.

9.2 OCR Testing

We do not intend to invent our own OCR system at this point. Instead, Caere’s Word-
Scan Plus 4.0 for Windows was used to do character recognition. For this experiment,
a binary image is formed using all the cleaned-up text chips for each input image. Then
these binary images are manually fed to the OCR system for recognition.

35 images were reconstructed by mapping the extracted text back to the corre-
sponding input images used in the previous experiment. In Table 1, the column “Total
OCRable” shows the total number of extracted characters (words) (shown in the Total
Clean-up column) that appear to be of machine printed fonts in the corresponding
images (Note that only the machine printed characters are counted so that the OCR
engine can be applied). The “Total OCRed” column shows the number of characters

(words) in these images which are correctly recognized by the OCR engine.

4A word is successfully cleaned only if all its characters are clearly recognizable by a person.
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Figure 9: Example 1. (a) Original image (ads11); (b) Extracted text; (¢) The OCR result

Getting your
y
money'’s worth
never came with
so many choices

Lok at all the ways you can
anny Steutfers suse - home
see...for around 52

- sinffed
(&U:{,f.%?ni MPcppE'f

Soufer  Turkey Tetrazzini
BBl
Qg ndacaroni & Beef |

@ ) Chicken Fic

Tuna Neodle
Casserole

| S
@ 4 |I.:'f"v9

Creamed Chicken

Turkey Ple

Esc¢ ed Chicken
& Noodles

. ~Nothi
(b)

using Caere’s WordScan Plus 4.0 on b.

As shown in the table, there are 14703 characters and 2981 printed words which
are OCRable in these images. 12428 (84%) of the characters and 2314 (77%) of the

words are correctly recognized by the OCR engine. The normalized percentages are

78% and 72% respectively.

Figure 9(a) is the original image of file ads11. This is an image of an advertisement

for Stouffer’s, which has no structured layout. The final binarization result is shown
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in the middle. The corresponding OCR output is shown on the right. This example
is intended to provide a feeling of the overall performance of the system by showing
whole images. The drawback is that some fine details are lost due to the scaling of
the images to fit the page. For example, the words of the smaller fonts and the word
Stouffer’s in script appear to be fragmented, although actually they are not.

The words under “Stuffed Pepper” were not found because there is little response
to the texture segmentation process in that region (see Figure 3). This is because the
words are actually blurred, hence the region has very low energy. Notice that most
of the texture in the picture of the food is filtered out, showing the robustness of the
system.

The OCR engine correctly recognized most of the text of machine-printed fonts as
shown in Figure 9 (c). It made mistakes on the Stouffer’s trademarks since they are in
script. It should be pointed out that the clean-up output looks fine to a person in the

places where the rest of the OCR errors occurred.

10 Conclusion

Current OCR and other document segmentation and recognition technologies do not
work well for documents with text printed against shaded or textured backgrounds or
those with non-structured layouts. In contrast, we have proposed a text extraction
system which works well for normal documents as well as documents described in

the above situations. The system first uses a text segmentation procedure to focus
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attention to regions where text may occur, and then a Chip Generation module to
find actual text strings within these regions. Reasonable heuristics on text strings,
such as height similarity, spacing and alignment are used in this module. Multi-scale
processing is used to account for significant font size variations. Detected text strings
are cleaned up and binarized before actual character recognition begins.

48 images from a wide variety of sources such as newspapers, magazines, printed
advertisement, photographs, and checks have been tested on the system. They are
greyscale images with structured and non-structure layouts and a wide range of font
styles (including certain script and hand-written fonts) and sizes (practically, the font
sizes do not matter for the system). Some text has overlapping background texture
patterns in the images.

There are 21820 characters and 4406 words in the test images (perceivable to one
of the authors). 95% of the characters and 93% of the words have been successfully
extracted by the system. Out of some 14703 characters and 2981 words of extracted
text which are of OCR-readable fonts, 84% of the character and 77% of the words are
successfully recognized by a commercial OCR system.

The system is stable and robust all the system parameters remain the same

through out all the experiments.
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