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TextFinder: An Automatic System ToDetect And Recognize Text In ImagesVictor Wu, R. Manmatha, Edward M. RisemanAbstractThere are many applications in which the automatic detection and recognitionof text embedded in images is useful. These applications include digital libraries,multimedia systems, Information Retrievial Systems, and Geographical Informa-tion Systems. When machine generated text is printed against clean backgrounds,it can be converted to a computer readable form (ASCII) using current OpticalCharacter Recognition (OCR) technology. However, text is often printed againstshaded or textured backgrounds or is embedded in images. Examples includemaps, advertisements, photographs, videos and stock certi�cates. Current doc-ument segmentation and recognition technologies cannot handle these situationswell.In this paper, a four-step system which automatically detects and extractstext in images is proposed. First, a texture segmentation scheme is used to focusattention on regions where text may occur. Second, strokes are extracted from thesegmented text regions. Using reasonable heuristics on text strings such as heightsimilarity, spacing and alignment, the extracted strokes are then processed to formrectangular boxes surrounding the corresponding text strings. To detect text overa wide range of font sizes, the above steps are �rst applied to a pyramid of images1



generated from the input image, and then the boxes formed at each resolution levelof the pyramid are fused at the image in the original resolution level. Third, textis extracted by cleaning up the background and binarizing the detected text strings.Finally, better text bounding boxes are generated by using the binarized text asstrokes. Text is then cleaned and binarized from these new boxes. If the textis of an OCR-recognizable font, it is passed through a commercial OCR enginefor recognition. The system is stable, robust, and works well on images (withor without structured layouts) from a wide variety of sources, including digitizedvideo frames, photographs, newspapers, advertisements, stock certi�cates, andpersonal checks. All parameters remain the same for all the experiments.Keywords | text reading system, character recognition, multimedia indexing, text de-tection, texture segmentation, �lters, hierarchical processing, binarization, backgroundremoval, connected-components analysis.
1 IntroductionMost of the information available today is either on paper or in the form of still pho-tographs and videos. To build digital libraries, this large volume of information needsto be digitized into images and the text converted to ASCII for storage, retrieval, andeasy manipulation. However, current OCR technology [2, 10] is largely restricted to�nding text printed against clean backgrounds, and cannot handle text printed againstshaded or textured backgrounds, and/or embedded in images. More sophisticated text2



reading systems usually employ document analysis (page segmentation) schemes toidentify text regions before applying OCR so that the OCR engine does not spendtime trying to interpret non-text items. However, most such schemes require cleanbinary input [4, 18, 19, 20]; some assume speci�c document layouts such as newspa-pers [8] and technical journals [11]; others utilize domain-speci�c knowledge such asmail address blocks [14] or con�gurations of chess games [1]. There is thus a need forsystems which extract and recognize text from general backgrounds.In this paper, a new end-to-end system is proposed which automatically extractsand recognizes text in images. The system takes greyscale images as input1. It detectstext strings in the image and puts rectangular bounding boxes around them. Thesebounded regions in the input images are then cleaned up and binarized so that the textstands out. The extracted text can then be recognized by a commercial OCR system,if the text is of an OCR-readable font.Systems which automatically extract and recognize text from images with generalbackgrounds are also useful in the following situations:1. Text found in images or videos can be used to annotate and index those mate-rials. For example, video sequences of events such as a basketball game can beannotated and indexed by extracting a player's number, name and the name ofthe team that appear on the player's uniform (Figure 1(a, b). In contrast, imageindexing based on image content, such as the shape of an object, is di�cult and1A binary image can be processed by �rst scaling it so that its intensity ranges from 0 to 2553



(a) (b)Figure 1: An example. (a) An input image; (b) Extracted text before the Character Recog-nition module.computationally expensive to do.2. Systems which automatically register stock certi�cates and other �nancial doc-uments by reading speci�c text information in the documents are in demand.This is because manual registration of the large volume of documents generatedby daily trading requires tremendous manpower.3. Maps need to be stored electronically in building a Geographical InformationSystem (GIS). One approach is to scan the maps �rst and then extract the lines,text, and symbols. The lines are then stored in a vector representation and thetext and symbols in symbolic forms. The electronic representation of a mapmakes updating, scaling, and retrieval much easier.
4



2 Prior WorkOCR technology has been used to convert the text in scanned paper documents intoASCII symbols. However, current commercial OCR systems do not work well if textis printed against shaded or hatched backgrounds, often found in documents suchas photographs, maps, monetary documents, engineering drawings and commercialadvertisements. Furthermore, these documents are usually scanned in greyscale orcolor to preserve details of the graphics and pictures which often exist along withthe text. For current OCR systems, these scanned images need to be binarized beforeactual character segmentation and recognition can be done. A typical OCR system doesthe binarization to separate text from the background by global thresholding ([5, 13]).Unfortunately, global thresholding is usually not possible for complicated images, asnoted by many researchers ([13], [17]). Consequently, current OCR systems work poorlyin these cases.One solution to the global thresholding problem is to use di�erent thresholds for dif-ferent local regions (adaptive thresholding) [8]. Trier and Taxt [17] report an evaluationof eleven local adaptive thresholding schemes.Many document segmentation methods have been proposed in the literature. Someof these methods are top-down approaches, some are bottom-up schemes, and othersare based on texture segmentation schemes in computer vision. Classic top-down tech-niques are based on the run length smoothing (RLS) algorithm [18, 20] to smooth theimage �rst, then, horizontal and vertical projection pro�les [19] are commonly used to5



cut the page into smaller blocks such as columns and paragraphs [11, 15, 19]. Bottom-up methods work by grouping small components (starting with pixels as connectedcomponents) into successively larger components until all blocks are found on the page[4, 12]. The third category of document segmentation methods treat text as a typeof texture and hence use texture segmentation algorithms to detect text [6, 7]. Somework has been done to detect text using color information [22].Smith and Kanade [16] developed a simple technique to detect text in video images.Although fast, the technique is not robust. Etemad et al [3] used a neural net to classifythe output of wavelets into text and non-text regions. The neural net requires a richset of training examples to work e�ectively. The top-down and bottom-up approachesrequire the input image to be binary. The projection pro�le based schemes work ifthe page has a Manhattan layout: that is, there is only one skew angle and the pagecan be segmented by horizontal and vertical cuts. Although the texture segmentationscheme in [6] can in principle be applied to greyscale images, it was only used onbinary document images, and in addition, the binarization problem was not addressed.Other systems utilize domain-speci�c knowledge such as mail address blocks [14] orcon�gurations of chess games [1].In summary, although a considerable amount of work has been done on di�erent as-pects of document analysis and understanding, few working systems have been reportedthat can read text from document pages with both structured and non-structured lay-outs and textured or hatched backgrounds. The system presented in this paper is6



our contribution to �lling the gap in this area of research and development, and toconstructing a complete automatic text reading system.
3 System OverviewThe goal here is to build an end-to-end automatic text extraction system which acceptsa wide range of images as input, detects text in the input images, and then binarizesand cleans up the detected text so that it can be fed into a commercial OCR forcharacter recognition.The system takes advantage of the distinctive characteristics of text which make itstand out from other image material. For example, by looking at the comic page of anewspaper a few feet away, one can probably tell quickly where the text is without actu-ally recognizing individual characters. Intuitively, text has the following distinguishingcharacteristics: (1) Text possesses certain frequency and orientation information; (2)Text shows spatial cohesion | characters of the same text string (a word, or wordsin the same sentence on the same line) are of similar heights, orientation and spacing.The �rst characteristic suggests that text may be treated as a distinctive texture,and thus be segmented out using texture segmentation techniques. The �rst phase ofthe system, therefore, uses Texture Segmentation (Figure 2) to segment the text(Section 4). The texture segmentation scheme used is not su�cient for text detectionand extraction if images more complicated than clean newspaper scans have to bedealt with. Nevertheless, the segmentation result can be used as a focus of attention7
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Figure 2: The top level components of the text detection and extraction system. Thepyramid of the input image is shown as I, I1, I2 : : :.for further processing called Chip Generation (section 5) of the system.The basic idea for chip generation is to apply a set of appropriate heuristics to�nd text strings within/near the segmented regions. The heuristics are designed tore
ect the second characteristic of text as listed above. The algorithm uses a bottom-up approach: signi�cant edges form strokes; strokes are connected to form chips(regions) corresponding to text strings. The rectangular bounding boxes of the chipsare used to indicate where the hypothesized (detected) text strings are.The above text detection procedures work well for text over a certain range of fontsizes. To detect text whose font size varies signi�cantly, the input image is processedat di�erent resolutions (Section 6). The output chip boxes generated at each resolution8



level are then mapped back onto the original image and redundant boxes are eliminated(Chip Scale Fusion). As an example, to �nd text of fonts up to 160 pixels in height,a hierarchy of three levels is required (Figure 2).It will be shown that for each chip, a single threshold su�ces to clean up andbinarize the corresponding region in the input image so that the text stands out. Asimple, e�ective histogram-based algorithm, as described in [21], is used to �nd thethreshold value automatically for each text region. This algorithm is used for the TextClean-up module in the system.Non-text items might survive the previous processing and occur in the binarizedoutput. Thus, aChip Re�nement phase is used in the system to �lter them out. Thisis done by treating the extracted items (text and non-text) as strokes to re-generatechips using the same algorithms (with stronger constraints) in the Chip Generationphase. The chips produced this time usually enclose the text strings better. The ChipClean-up process is then applied to the new chips to obtain better binarization results.Figure 2 depicts the system described above. Experimental results have shown thatthe system works well with both machine generated fonts and some script fonts. Prac-tically speaking, the font sizes do not matter. The system is also stable and robust|allthe system parameters remain the same for all of the text images from a wide varietyof sources including newspapers, magazines, printed advertisement, photographs, andchecks. Notice that some of these documents have structured layout, some do not,and the system works well in either case. A detailed description of the experiments is9



presented in section 9.
4 The Texture Segmentation ModuleAs stated in section 3 text can be treated as a speci�c texture. Thus, one naturalway to detect text is by using texture segmentation. A standard approach to texturesegmentation is to �rst �lter the image using a bank of linear �lters, such as Gaussianderivatives ([9] or Gabor functions [6] followed by some non-linear transformation suchas half-wave recti�cation, full-wave recti�cation, or a hyperbolic function tanh(�t).Then features are computed to form a feature vector for each pixel from the �lteredimages. These feature vectors are then classi�ed to segment the textures into di�erentclasses.In this paper, 9 �lters are used to segment the texture. The �lters are the 3 secondorder derivatives of Gaussians at three di�erent scales � = (1;p2; 2). Each �lteroutput is passed through the non-linear transformation tanh(�t) where � = 0:25. Alocal energy estimate is computed using the outputs of the non-linear transformation.The result consists of 9 images where each pixel in one of these images represents thelocal energy due to a given �lter. At each pixel, a feature vector can be constructedconsisting of the energy estimates from the 9 images for that location. The set offeature vectors is clustered using a K means algorithm (with K = 3).Since text generally `has a stronger response to the �lters, while background areaswith little intensity variation have nearly no response (i.e. have close to zero energy),10



(a) (b) (c) (d)

(e) (f) (g) (h)Figure 3: Results of Texture Segmentation and Chip Generation. (a) Portion of an inputimage; (b) Output of the clustering stage. Dark regions are labeled as \text" regions; (c) TheText regions after the morphological closure operation; (d) Strokes produced by performingthe Stroke Generation procedure on a; (e) Filtered strokes; (f) Chips produced by applyingStroke Aggregation on strokes in e; (g) Chips after the Chip Filtering and Extension processes;(h) Chips in g mapped to the input image.the following cluster labeling scheme is used. The cluster whose center is closest to theorigin of the feature vector space, (0; 0; : : : ; 0), is labeled as background. The clusterwhose center is furthest away from the background cluster center is labeled as text.Figure 3(a) shows a portion of an original input image. Only part of the originalinput image is shown so that the details are more noticeable. This is a Stou�er'sadvertisement scanned at 300dpi. There is text on a clean dark background, text11



printed on Stou�er boxes, Stou�er's trademarks (in script), and a picture of the food.Figure 3(b) shows the pixel labels after the texture segmentation step. The dark areacorresponds to the segmented \text" regions, and the white area corresponds to thebackground. The grey area is where the pixels have some energy, but not enough tobe text pixels.As shown in Figure 3(b), the text regions may be broken or have holes. Thus, as thelast step of the segmentation phase of the system, a morphological closure operationis carried out on the segmented text regions. Figure 3(c) shows the result of thisoperation carried out on the text regions shown in 3(b).
5 The Chip Generation PhaseIn practice, text may occur in images with complex backgrounds and texture patterns,such as foliage, windows, grass etc. In other words, some non-text patterns may passthe �lters and initially be misclassi�ed as text, as shown in Figure 3(c). Furthermore,segmentation accuracy at texture boundaries is a well-known and di�cult problem intexture segmentation. Consequently, it is often the case that text regions are connectedto other regions which do not correspond to text, or one text string might be connectedto another text string of a di�erent size or intensity. This might cause problems forlater processing. For example, if two text strings with signi�cantly di�erent intensitylevels are joined into one region, one intensity threshold might not separate both textstrings from the background. 12



Therefore, heuristics need to be employed to re�ne the segmentation results. Ac-cording to our experiments, the segmentation process usually �nds text regions whileexcluding most of the non-text ones. These regions can be used to direct further pro-cessing. Furthermore, since text is intended to be readable, there is usually a signi�cantcontrast between it and the background. Thus contrast can be utilized �nding text.Also, it is usually the case that characters in the same word/phrase/sentence are ofthe same font and have similar heights and inter-character spaces (unless it is in somekind of decorative font style). Finally, it is obvious that characters in a horizontal textstring are horizontally aligned2.The basic idea for the Chip Generation phase is to use the segmented regionsas the focus of attention, and then apply a set of appropriate constraints to �nd textstrings within the segmented regions. The algorithm uses a bottom-up approach: sig-ni�cant edges form strokes; strokes are connected to form chips corresponding to textstrings. The rectangular bounding boxes of the chips are used to indicate where thehypothesized (detected) text strings are.Conceptually, Chip Generation consists of the following main steps which are ap-plied in the order given:1. Stroke Generation: strokes are generated from signi�cant edges;2. Stroke Filtering: strokes which are unlikely to belong to any horizontal text2In this paper, the focus will be on �nding horizontal, linear text strings only. The issue of �ndingtext strings of any orientation will be addressed in future work.13



string are eliminated;3. Stroke Aggregation: strokes which are likely to belong to the same text stringare connected to form chips;4. Chip Filtering: chips which are unlikely to correspond to horizontal text stringsare eliminated;5. Chip Extension: �ltered chip are treated as strokes and aggregated again toform chips which cover the text strings more completely.5.1 Stroke GenerationText must have signi�cant contrast in order to be readable. Thus, the edges of char-acters can be expected to have signi�cant contrast. Therefore, the input image is �rstconvolved with a second-order Gaussian derivative in the horizontal direction and thenthresholded to �nd the signi�cant edges. Connected components computation is thenemployed to group edges into strokes.Empirically, � = 1 was found to be a reasonable choice. Also, the threshold valuewas set to 10 for all the experiments. Figure 3(d) shows the strokes for Figure 3(a).5.2 Stroke FilteringAs one can clearly see in Figure 3(d), strokes are found at regular intervals in theregions where text is present. However, non-text strokes will also be extracted where14



there are signi�cant horizontal intensity changes in a scene.The purpose of Stroke Filtering is to eliminate the false positive strokes by usingheuristics which take into account the fact that neighboring characters in the sametext string usually have similar heights and are horizontally aligned. It is reasonable toassume that the similarity of character heights causes the heights of the correspondingstokes to be similar. Furthermore, since the focus is on �nding text strings, a textstroke should have similar strokes nearby which belong to the same text string. Theseheuristics can be described using connectability which is de�ned as:De�nition 1 Let A and B be strokes. A and B are connectable if they are of similarheight and horizontally aligned, and there is a path between A and B (a horizontalsequence of consecutive pixels in the segmented region which connects A and B).Here, two strokes are considered to be of similar height if the height of a shorterstroke is at least 40% of the height of a taller one. To determine the horizontal align-ment, strokes are projected onto the Y-axis. If the overlap of the projections of twostrokes is at least 50% of the shorter stroke, they are considered to be horizontallyaligned.Given the above de�nition, the criterion used for stroke �ltering can be simplystated as follows:� a stroke is eliminated if one of the following conditions are true:1. it does not su�ciently overlap with the segmented text regions produced bythe texture segmentation phase;15



2. it has no connectable stroke.Condition 1 says the strokes are expected to overlap the segmented regions. Sincethe text segmentation is often not perfect, one cannot expect total overlap. A minimumof 30% overlap rate worked well for all the test images. Condition 2 says that if thereis no path that leads to some connectable stroke(s), it is probably an isolated strokeor line which does not belong to any text string.Figure 3(e) shows the result of applying this procedure to the strokes in �gure 3(d).Notice that most of the text is still present while more of the background has beeneliminated.5.3 Stroke AggregationAn important function for the Chip Generation phase is to generate chips that corre-spond to text strings. This is done by aggregating strokes belonging to the same textstring.Since characters which belongs to the same text string are expected to be of similarheight and horizontally aligned, the concept of connectability can be used to aggregatethe strokes. In addition, it is clear that strokes corresponding to the same text stringshould be close to each other. The width of a character and the spacing betweenadjacent characters in a text string are related to the heights of the characters. Thus,it is reasonable to measure the spacing between adjacent strokes as a function of theheights of the strokes. By empirical observation, the spacing between the characters16



and words of a text string is usually less than 3 times the height of the tallest character,and so is the width of a character in most fonts. Therefore, for all of the experiments,the following criterion is used to generate chips:� two strokes, A and B, are connected if they are connectable and there is a pathbetween A and B whose length is less than 3 times the height of the taller stroke.Figure 3(f) shows the result of applying the Chip Generation procedure to thestrokes in �gure 3(e). Notice that most of the isolated strokes are connected intochips which partially or completely cover text strings. The chips are shown with theirbounding boxes to make it easier to see.5.4 Chip FilteringSome non-text strokes may also pass the Stroke Filtering process, and therefore formfalse positive chips requiring further �ltering. This might happen, for example, whenthere are periodically occurring lines or patterns in the image.Text strings are expected to have a certain height in order to be reliably recognizedby an OCR system. Thus, one choice is to �lter the chips by their heights. Furthermore,since we are interested in text strings, not just isolated characters, the width of a chipis also used to �lter out text. Lastly, for horizontally aligned text strings, their aspectratio (width/height) is usually large. Therefore, chips are �ltered using the followingconstraints on their minimum bounding boxes:17



� a chip is eliminated if the width of its box is less than cw� ; or the height of itsbox is less than ch� or the aspect ratio of its box is larger than ratio�It is usually di�cult even for a human to read the text when its height is less than7 pixels, thus 7 has been used for ch� for the experiments. A horizontal text stringis usually longer horizontally, hence setting cw� to at least twice the minimum heightseems reasonable. Thus, in all of our experiments, cw� = 15 and ch� = 7 were used.Normally, the width of a text string should be larger than its height. But in somefonts, the height of a character is larger than its width. Therefore, ch� = 1:1 is usedhere, attempting to cover that case to some extent.5.5 Chip ExtensionIt is expected that some strokes only cover fragments of the corresponding characters.Therefore, these strokes might violate the constraints used for stroke �ltering, andhence be eliminated. Consequently, some of the chips generated so far may only coverpart of the corresponding text strings.Fortunately, this fragmentation problem can usually be corrected. Notice that thechips corresponding to the same text stroke are still horizontally aligned and of similarheight. Thus, by treating the chips as strokes, the Stroke Aggregation procedure canbe applied again to aggregate the chips into larger chips. This is exactly what the ChipExtension step does. As a result, more words are completely covered by the extendedchips. 18



(a) (b) (c)
(d)Figure 4: The scale problem and its solution. (a) Chips generated for the input image atfull resolution; (b) half resolution; (c) 14 resolution; (d) Chips generated at all three levelsmapped onto the input image. Scale-redundant chips are removed.Figure 3(g) shows the result of applying the Chip Filtering and Extension steps tothe chips in Figure 3(f). The rectangular chip bounding boxes are mapped back ontothe input image to indicate detected text as shown in Figure 3(h).

6 A Solution to the Scale ProblemThe three frequency channels used in the segmentation process work well to covertext over a certain range of font sizes. Text from larger font sizes is either missed orfragmented. This is called the (scale problem). Intuitively, the larger the font size ofthe text, the lower the frequency it possesses. Thus, when text font size gets too large,19



its frequency falls outside the three channels selected in section 4.We propose a pyramid approach to the scale problem: form a pyramid of inputimages and process each image in the pyramid using the standard channels (� =1;p2; 2) as described in the previous sections (see Figure 2). At the bottom of thepyramid is the original image; the image at each level (other than the bottom) isobtained by reducing the image one level below by half in both dimensions. Text ofsmaller font sizes can be detected using the images lower in the pyramid as shown inFigure 4(a) while text of large font sizes is found using images higher in the pyramidas shown in Figure 4(c). The bounding boxes of detected text regions at each level aremapped back to the original input image (bottom level).6.1 Chip Scale FusionSometimes a text string or a part of it responds to more than one band of the frequencychannels, and hence forms overlapping chips at di�erent levels. For example, textwith large fonts may partially respond to higher frequency channels, hence formingfragmented boxes which cover parts of the string at a lower level. At the same time,it strongly responds at some lower frequency channels which are more compatible,hence forming a more complete box to cover the entire string at higher level(s) (Figure4(b,c)). After the chips produced at di�erent levels are mapped back onto the originalimage (bottom level), the fragmented chips will be covered in full or in part by largerboxes. Thus, it is desirable to eliminate these scale-redundant chips and keep the chips20



which overlap more with the text strings.When most of a chip B overlaps with another chip A, it is likely that the textcovered by B is also covered by the other chip A, especially when more than 85% ofchip B overlaps with chip A (empirical �nding). Another situation occurs when onlya small portion of B overlaps with A. In this case, if A is signi�cantly larger than B,B is also likely to be a scale-redundant chip. It is especially the case if at least 50% ofchip B overlaps with chip A and chip A is at least 10 times bigger than B (empirical�nding). Thus, the following straightforward procedure is used for the scale fusion forall of the experiments:� for any pair of chips A and B assuming Area(A) � Area(B), chip B is eliminatedif one of the following holds: (1) 85% of B is covered by A; (2) 50% of B is coveredby A and the area of B is less than 10% of the area of A.Figure 4(d) is the result of the above scale fusion procedure applied to chips inFigure 4(a,b,c). Notice that text from a large range of font sizes is detected.
7 Text on Complex BackgroundsThe previous sections describe a system which detects text in images and puts boxesaround detected text strings in the input image. The text strings may be printedagainst complex image backgrounds (see for example Figure 5(a)). Current OCRsystems cannot handle such text because they require text to be printed against a21
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(f)Figure 5: The Text Clean-up process. (a) Original text chip; (b) Histogram of a; (c)Smoothed version of a; (d) Histogram of c; (e) The binarization result by thresholding cusing a value in the valley of f; (f) Smoothed version of d.clean background. In addition, OCR systems require that the text must be binarizedbefore they can process it.Our goal here is to �nd a simple, robust algorithmwhich will remove the backgroundwhile preserving the text, eliminate noise and also produce a binary image whichcurrent OCR systems can handle. Local thresholding is a good way to do backgroundand noise removal while simultaneously binarizing the image. The text chips producedusually contain text strings whose characters all roughly have the same intensity. Thesechips are, therefore, good candidates for local thresholding.The algorithm for background removal and binarization is described in [21]. Here,22



we use Figure 5 to brie
y demonstrate how the algorithm works: First, the text chip(Figure 5(a)) generated by the system is smoothed to produce the chip shown asFigure 5(c). Next, the intensity histogram of the smoothed chip is computed as shownin Figure 5(d). The black text corresponds to the portion of the histogram to theleft of the major valley. The valley can be automatically detected by �rst smoothingthe histogram in Figure 5(d) to produce the histogram in Figure 5(f). The histogramsmoothing eliminates the small noise peaks in Figure 5(d). The text in Figure 5(c)can then be automatically extracted by picking a threshold at the �rst valley countedfrom the left side of the histogram in Figure 5(f). The resulting thresholded output isshown in Figure 5(e). All the characters but one \s" have been successfully recognizedusing an commercial OCR engine.Since the current system does not know whether dark text or light text is in a textchip, one output is produced for each case for all the text chips.This clean-up and binarization procedure has been successfully used on many im-ages (see for example the Experiments section). More discussion can be found in [21].
8 The Text Re�nementExperiments show that the text detection phase is able to locate text strings in regularfonts, and some even from script fonts or trademarks. However, sometimes non-textitems are identi�ed as text as well. In addition, the bounding boxes of the chipssometimes do not tightly surround the text strings. The consequence of these problems23



Figure 6: An input image from the New Yorker magazine.is that non-text items may occur in the binarized image, produced by mapping theextracted items onto the original page. An example is shown in Figures 6 and 7. Thesenon-text items are not desirable since they may hinder the performance of an OCRsystem.However, by treating the extracted items as strokes, the Stroke Filtering process(section 5.2) can be applied here to eliminate the non-text items, since tighter con-straints can be used at this time. This is because (1) the clean-up procedure is able24



Figure 7: The binarization result of Figure 6 before the re�nement step.to extract most characters without attaching to characters nearby and non-text items(Figure 7), and (2) the strokes at this stage are composed of mostly complete or almostcomplete characters as opposed to the vertical connected edges of the characters gen-erated by the Stroke Generation step (section 5.1). Thus, it can be expected that thecorrect text strokes comply more with the heuristics used in the early Chip Generationphase.Therefore, the Stroke Filtering procedure (section 5.2) with tighter constraints is25



Figure 8: The binarization result of Figure 6 after the re�nement step.used here to remove more non-text items. Then, the Stroke Aggregation process (sec-tion 5.3) is used again to generate a new set of probably better chips. This is followedby the Text Clean-up process to extract the text from the input image regions corre-sponding to the chips. The binarization result is usually better since the tighter thechip bounds the text, the less irrelevant image area (noise) is included, and hence thebetter the clean-up process works.A more restricted constraint for connectability of two similar strokes is used at this26



stage. This constraint requires that the gap between them must be no more than twicethe height of the shorter stroke as opposed to three times used in the earlier ChipGeneration stage. Also, an extra constraint which requires that the vertical distancebetween the bottoms or the tops of the strokes be small is used to determine if twostrokes are horizontally aligned. In all of the experiments, no more than 10 pixels wereallowed for this distance.An example is given in Figure 8 which shows the binarization result of Figure 6after this re�nement phase.
9 ExperimentsThe system has been tested using 48 images. Some of the test images were downloadedfrom the Internet, some from the Library of Congress, and others were locally scanneddocuments. These test images came from a wide variety of sources: digitized videoframes, photographs, newspapers, advertisements in magazines or sales 
yers, andpersonal checks. Some of the images have regular page layouts, others do not. Itshould be pointed out that all the system parameters remain the same throughout thewhole set of test images, showing the robustness of the system.For the images scanned by us, a resolution of 300dpi (dots per inch) was used. Thisis the standard resolution required, for example, by the Caere OCR engine that wasused. It should be pointed out that 300dpi resolution is not required by our system.In fact, no assumptions are made about the resolution of the input images, since such27



information is normally not available for the images from outside sources, such as thosedownloaded from the Internet.9.1 Text Detection and Clean-upThis experiment demonstrates the performance of the system up to the Text Filteringprocess. Characters and words (as perceived by one of the authors) were counted ineach image (the ground truth). The total numbers over the whole test set are shown inthe \Total Perceived" column in Table 1. Then, detected characters and words whichare completely enclosed by the text boxes produced after the Chip Scale Fusion stepwere counted for each image. The total numbers of detected characters and wordssummed up over the whole test set is shown in the \Total Detected" column of Table1. Finally, characters and words which are clearly readable by a person after the ChipRe�nement and Text Clean-up steps (�nal extracted text) are counted for each image.Note that only the text which is horizontally aligned is counted (skew angle of the textstring is less than roughly 30 degrees). These extracted characters (words) are calledcleaned-up characters (words)3.As shown in Table 1, there are a total of 21820 characters and 4406 words in the 48test images. Of these, 20788 (95%) characters and 4139 (93%) words are detected. Ifthe percentages are computed for each image and then averaged over the whole set ofimages, the normalized percentages (by weighting all the images equally) are 89% for3Due to space limitations, the table of the above results itemized for each test image is not includedin this paper 28



Total Total Total Total TotalPerceived Detected Clean-up OCRable OCRedChar 21820 20788 (95%) 91% 14703 12428 (84%)Word 4406 4139 (93%) 86% 2981 2314 (77%)Table 1: Summary of the system's performance. 48 images were used for detection andclean-up. Out of these, 35 binarized images were used for the OCR process.detected characters and 85% for detected words. 91% of the detected characters and86% of the detected words are successfully cleaned4. These results are listed in Table1.9.2 OCR TestingWe do not intend to invent our own OCR system at this point. Instead, Caere's Word-Scan Plus 4.0 for Windows was used to do character recognition. For this experiment,a binary image is formed using all the cleaned-up text chips for each input image. Thenthese binary images are manually fed to the OCR system for recognition.35 images were reconstructed by mapping the extracted text back to the corre-sponding input images used in the previous experiment. In Table 1, the column \TotalOCRable" shows the total number of extracted characters (words) (shown in the TotalClean-up column) that appear to be of machine printed fonts in the correspondingimages (Note that only the machine printed characters are counted so that the OCRengine can be applied). The \Total OCRed" column shows the number of characters(words) in these images which are correctly recognized by the OCR engine.4A word is successfully cleaned only if all its characters are clearly recognizable by a person.29



(a) (b) (c)Figure 9: Example 1. (a) Original image (ads11); (b) Extracted text; (c) The OCR resultusing Caere's WordScan Plus 4.0 on b.As shown in the table, there are 14703 characters and 2981 printed words whichare OCRable in these images. 12428 (84%) of the characters and 2314 (77%) of thewords are correctly recognized by the OCR engine. The normalized percentages are78% and 72% respectively.Figure 9(a) is the original image of �le ads11. This is an image of an advertisementfor Stou�er's, which has no structured layout. The �nal binarization result is shown30



in the middle. The corresponding OCR output is shown on the right. This exampleis intended to provide a feeling of the overall performance of the system by showingwhole images. The drawback is that some �ne details are lost due to the scaling ofthe images to �t the page. For example, the words of the smaller fonts and the wordStou�er's in script appear to be fragmented, although actually they are not.The words under \Stu�ed Pepper" were not found because there is little responseto the texture segmentation process in that region (see Figure 3). This is because thewords are actually blurred, hence the region has very low energy. Notice that mostof the texture in the picture of the food is �ltered out, showing the robustness of thesystem.The OCR engine correctly recognized most of the text of machine-printed fonts asshown in Figure 9 (c). It made mistakes on the Stou�er's trademarks since they are inscript. It should be pointed out that the clean-up output looks �ne to a person in theplaces where the rest of the OCR errors occurred.
10 ConclusionCurrent OCR and other document segmentation and recognition technologies do notwork well for documents with text printed against shaded or textured backgrounds orthose with non-structured layouts. In contrast, we have proposed a text extractionsystem which works well for normal documents as well as documents described inthe above situations. The system �rst uses a text segmentation procedure to focus31



attention to regions where text may occur, and then a Chip Generation module to�nd actual text strings within these regions. Reasonable heuristics on text strings,such as height similarity, spacing and alignment are used in this module. Multi-scaleprocessing is used to account for signi�cant font size variations. Detected text stringsare cleaned up and binarized before actual character recognition begins.48 images from a wide variety of sources such as newspapers, magazines, printedadvertisement, photographs, and checks have been tested on the system. They aregreyscale images with structured and non-structure layouts and a wide range of fontstyles (including certain script and hand-written fonts) and sizes (practically, the fontsizes do not matter for the system). Some text has overlapping background texturepatterns in the images.There are 21820 characters and 4406 words in the test images (perceivable to oneof the authors). 95% of the characters and 93% of the words have been successfullyextracted by the system. Out of some 14703 characters and 2981 words of extractedtext which are of OCR-readable fonts, 84% of the character and 77% of the words aresuccessfully recognized by a commercial OCR system.The system is stable and robust | all the system parameters remain the samethrough out all the experiments.
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