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Abstract Techniques of exploratory data analysis are
used to study the weight of evidence that the occurrence
of a query term provides in support of the hypothesis
that a document is relevant to an information need. In
particular, the relationship between the document fre-
quency and the weight of evidence is investigated. A
correlation between document frequency normalized by
collection size and the mutual information between rele-
vance and term occurrence is uncovered. This correlation
is found to be robust across a variety of query sets and
document collections. Based on this relationship, a the-
oretical explanation of the efficacy of inverse document
frequency for term weighting is developed which differs in
both style and content from theories previously put forth.
The theory predicts that a “flattening” of idf at both low
and high frequency should result in improved retrieval
performance. This altered idf formulation is tested on
all TREC query sets. Retrieval results corroborate the
prediction of improved retrieval performance. In conclu-
sion, we argue that exploratory data analysis can be a
valuable tool for research whose goal is the development
of an explanatory theory of information retrieval.

1 Introduction

In 1972, Spark Jones demonstrated that document fre-
quency can be used effectively for the weighting of query
terms [23]. Ever since, formulations of inverse document
frequency have played a key role in information retrieval
research. In this paper a theory of why inverse document
frequency has been so effective is developed. Both the
approach taken and the conclusions drawn differ from
theories previously put forth. Employing techniques of
exploratory data analysis EDA, the weight of evidence
WORE in favor of relevance offered by query term occur-
rence is studied. The result is an explanatory theory of
inverse document frequency, idf, derived from observed
statistical regularities of extensive retrieval data.

The work reported here is the first phase of a larger
research project whose goal is the development of a re-
trieval formula that: 1) is explanatory, in that each com-
ponent of the formula has a direct interpretation in terms
of measurable statistical characteristics of identifiable re-
trieval objects (query terms, documents, etc.); 2) is sup-
ported by the careful observation and study of empirical
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data; and 3) yields retrieval performance comparable, if
not superior, to current state of the art retrieval systems.

The goal of this work is not primarily the production
of an improved retrieval technique. The principal objec-
tive is rather a retrieval procedure derived from an ex-
planatory theoretical model supported by hard empirical
evidence. With this in mind, the first phase of the study
has centered on the relation between the frequency with
which a term occurs in a collection and its ability to dis-
criminate between relevant and non-relevant documents.
In this phase, document frequency is analyzed indepen-
dent of other considerations, such as term frequency and
document length, despite the fact that these are known
to be significant factors in the construction of effective
term weights.

We begin, in the following section, with a brief review
of the concepts of weight of evidence and exploratory data
analysis in the context of this article and how they per-
tain to the research reported here. We continue with a
review of research specifically related to the utilization
of document frequency for the weighting of query terms.
Particular emphasis is placed on the combination match
model, proposed initially by Croft and Harper, and work
by Salton, et al. on term precision.

We go on to present an empirical study of retrieval
data. Analysis of this data leads us to propose mutual
information between term occurrence and relevance as a
natural and useful measure of query term quality. We
conclude that this measure is correlated with document
frequency and use this to derive a theoretical explana-
tion in support of idf weighting which is different from
theories that have previously been proposed. The theory
developed, in conjunction with the empirical evidence,
predicts that a modification of the idf formula should
produce improved performance. In Section 6, we present
experiments that corroborate this prediction. In conclu-
sion we return to the research summarized in Section 3,
and compare and contrast it with the work presented
here.

2 Weight of Evidence & EDA

Weight of Evidence I.J. Good formally defines the
weight in favor of a hypothesis, h, provided by evidence,
e, as [12, 11]:

O(hle)
o (1)

woe(h : e) = log

which he thinks is a concept “almost as important as that
of probability itself” [11, p. 249]. Good elucidates simple,
natural desiderata for the formalization of the notion of
weight of evidence, including an “additive property”:

woe(h : e1 Aez) =woe(h:er) +woe(h:ez|er) (2)



This property states that the weight in favor of a hy-
pothesis provided by two pieces of evidence is equal to
the weight provided by the first piece of evidence, plus
the weight provided by the second piece of evidence, con-
ditioned on our having previously observed the first (i.e.
woe(h : e2), calculated on the subspace corresponding
to e1). Starting from these desiderata, Good is able to
show that, up to a constant factor, weight of evidence
must take the form given in eq. 1. From ( 1), it follows
directly that:

log O(hle) =log O(h) + woe(h : €)

That is, if we are disposed to think on a log-odds scale,
our final belief in a hypothesis (e.g. relevance of a doc-
ument) is equal to our initial belief plus the weight of
whatever evidence we are presented with. Log-odds is an
attractive scale because weights accumulate additively;
also because the entire range from —oco to +oo is used.

There is nothing new about using either log-odds or
weight of evidence in information retrieval. The Robert-
son/Sparck Jones term weight discussed in the next sec-
tion is motivated by the desire to determine the log-odds
of relevance conditioned on the term occurrence pattern
of a document. The weight, w,s; of eq. 4, can be viewed
as the difference between the weights of evidence in fa-
vor of relevance provided by the occurrence and non-
occurrence of the term. Also, the focus of statistical
inference based on logistic regression is the probability
of the event of interest transformed by the logit function;
that is, the log-odds.

Exploratory Data Analysis Hartwig and Dearing
define exploratory data analysis as “a state of mind, a
way of thinking about data analysis — and also a way of
doing it” [16, p. 9]. They advance adherence to two prin-
ciples. First, that one should be skeptical of data sum-
maries which may disguise the most enlightening charac-
teristics of the phenomenon being investigated. Second,
that one must be open to unanticipated patterns in the
data, because uncovering such patterns can be, and often
is, the most eventful outcome of the analysis.

The emphasis in exploratory data analysis is on mak-
ing the most of graphical displays of the data. The hu-
man mind is far better at uncovering patterns in visual
input than in lists or tables of numbers. Depending solely
on the reduction of large quantities of data to a few sum-
mary statistics erases most of the message the data have
for us. EDA embodies a set of useful methods and strate-
gies, fomented primarily by John W. Tukey [24]. For ex-
ample, techniques for data smoothing and re-expression
of variables have been used in the study presented in this
article.

3 Related Work

In 1972, Sparck Jones, convincingly demonstrated that
the weighting of query terms can significantly improve
retrieval performance compared to unweighted coordina-
tion match ranking [23]. The weighting formula she pro-
posed was an approximation of:

N
ws; = log E (3)

where n is the document frequency of the term (the num-
ber of documents in which the term appears); and N is
the number of documents in the entire collection.

3.1 Probabilistic Explanations

In a letter to the Journal of Documentation, Robertson
pointed out that, viewed as a function of the probability
of term occurrence, the sum of weights could be inter-
preted as the probability of mutual occurrence of multiple
query terms [17]; thus providing theoretical arguments
for the use of wsj. Together, in 1976, Robertson and
Sparck Jones presented the Binary Independence Model
[18], in which terms are weighted by:

plocc|rel) - (1 — p(occ|rel))

(4)

Wrsj = lo —
! 8 (1 — p(occ|rel)) - p(occ|rel)

where p(occ|rel) is the probability of the term occurring
in relevant documents’, and p(occ|rel) is the correspond-
ing probability for non-relevant documents. Use of the
model depends on the availability of relevance feedback
information, on which estimates of the two conditional
probabilities can be based.

Applying the probabilistic approach of Robertson and
Sparck Jones, Croft and Harper [5] work with an equiv-
alent formulation of wn;:

wpe; = log p(occlrel) p(occ|rel)

1 — p(occ|rel)

(5)

1 — p(occ|rel)

Their goal is the development of a probabilistically jus-
tified weighting formula that can be used in a retrieval
setting in the absence of, or prior to, relevance feedback.
They make two assumptions: 1) there “is no information
about the relevant documents and we could therefore as-
sume that all the query terms had equal probabilities of
occurring in the relevant documents” [5, p. 287]; and
2) the probability, p(occ|rel), of a term occurring in a
non-relevant document can be estimated by %, the pro-
portion of documents that contain the term in the entire
collection. With these two assumptions, the combination
match formula:

N—n

(6)

is derived. In this formula, k is an experimentally deter-
mined constant, corresponding to the log-odds of a term
occurring in a relevant document. The second compo-
nent is essentially equivalent to ( 3) for all but very high
frequency terms.

Robertson and Walker [19] have recently looked anew
at the combination match weight, w.,. They point out
two “anomalies” of the Croft/Harper weights. One is
that the probability of a term occurring in a relevant
document must go to zero as the probability of a term
occurring in the collection as a whole goes to zero. More
important, they state, is that the weight, wcn of ( 6), will
assume negative values for high frequency terms. These
anomalies cause them to modify the assumption of equal
probability of occurrence in relative documents, in favor
of an assumption that this probability “increases from a
non-zero starting point to reach unity” [19, p. 19] for a
term that appears in all documents. In this paper, we
shall examine in greater detail both of the assumptions
leading to the combination match weighting formula, as
well as their modification as proposed by Robertson and
Walker.

1For the purposes of exposition, the original notation used by
the authors discussed in this section has been replaced by the no-
tation used in this paper. In this way, we hope to facilitate com-
parison among the different approaches, including the approach
presented here.

wen = k + log




3.2 Term Precision

In a series of papers in this same period, Salton and co-
workers reported both theoretical and empirical work on
a ranking formula based on what they called term pre-
cision. In earlier papers, term precision was defined as
[20]:

p(occ|rel) plocc|rel)

W =7 — p(occ|rel)

1 — p(occ|rel)

Later, term precision was defined as the log of this quan-
tity [21, 27], yielding the same weight as given by Robert-
son and Sparck Jones (eq. 4). The form they adopt for
what amounts to p(occ|rel) differs from that of both
Croft/Harper and Robertson/Walker. The term pre-
cision model assumes a two-piece linear function with:
plocc|rel) = 0 at p(occ) = 0; p(occ|rel) = 1 at p(occ) = 1;
and a change in slope at p(occ) = p(rel). This function
is chosen based on the assumption that “the user will
pick terms with properties somewhere between those ob-
taining for the random and perfect terms” [27, p. 159],
sustained by solid theoretical arguments as to what the
probability of occurrence conditioned on relevance must
be for both perfect and random terms as a function of
document frequency.

3.3 Regression

Regression strategies (explicitly or implicitly) assume a
parameterized model and apply statistical techniques to
fit the model to available data. In 1983, Fox used mul-
tiple regression analysis to derive an equation for pre-
dicting the probability that a document will be judged
relevant to a query [3]. In [28], Yu and Mizuno use lin-
ear regression to determine parameter settings for both
a binary and non-binary model. Fuhr and Buckley [9, §]
have used a least-square error criterion to determine co-
efficients for a polynomial weighting function of term-
document pair descriptor variables. The group at Berke-
ley has conducted extensive research into the use of lo-
gistic regression [10, 4]. Logistic regression is generally
considered a natural approach for estimating a probabil-
ity. The [0, 1] range that can be assumed by a probabil-
ity does not correspond to other regression models, but
is accounted for in logistic regression. Also, normality
assumptions which are often behind the statistical infer-
ence techniques used in standard regression analysis are
inappropriate for a dichotomous response variable (such
as relevance). We shall return to discuss the benefits of
applying exploratory data analysis in the selection of po-
tential statistical models to which regression techniques
can be applied.

3.4 Other Weighting Approaches

Not all work in term weighting has centered on the prob-
ability of relevance. Prior to the term precision model,
Salton and others experimented with the discrimination
value of a term [20]. This is a measure of how important
a term is in distinguishing documents of the collection
from each other. Information theoretic considerations
have also been used. In early work, information theory
was used to derive a weight based on signal-noise ratio
[22]. In [26], Wong and Yao develop a term weighting
theory based on the entropy of a term’s distribution in
the collection. They show that idf weighting is easily de-
rived as a special case of their more general weighting

scheme. In this paper, however, we restrict our attention
to term weighting based on the probability of relevance.

4 TREC Data Analysis

In this section we present a retrospective analysis of in-
formation retrieval data. This analysis was undertaken
for the specific purpose of gaining insight into the rela-
tionship between the document frequency of a query term
and the expected value of the term as evidence in favor of
relevance. The study involved data from queries 051-100
from the first Text REtrieval Conference (TREC) and
the Associated Press (AP) documents from TREC vol-
ume 1 [13]. Each data point corresponds to one query
term. The query terms were taken from the concepts
field of the TREC 1 topics. For the purposes of uncov-
ering underlying statistical regularities, we wanted a set
of quality query terms which would keep to a minimum
the “noise” in the data to be analyzed.

4.1 Binning the Data

Initially, we had planned for all query terms to be plotted.
Two problems immediately presented themselves. First,
rare terms are likely to have zero counts. For variables
that are functions of log odds, a zero count translates to
a (positive or negative) infinite value. One way around
the problem is to add a small value to each of the counts
of interest, as done for instance in [18], where for the
purpose of estimating w;,;, 0.5 is added to each count.

The choice of constant, however, is to a large degree
arbitrary. Two slightly different choices for the constant
value can give a very different overall picture of the data
when they are plotted, particularly at the low frequency
end. Since our objective is precisely to infer the “true
shape” of the data, this approach is inadequate to our
needs.

A second problem, is that the variance of the variables
we are interested in is large, relative to the effects we
hope to uncover. This can be seen clearly, for example,
at the left of figure 4 where p(occ|rel) is plotted against
log O(occ) for all terms for which it has a finite value.

In order to confront both of these problems, data
points were grouped together in bins. Each bin was
then converted into a single pseudo-term by averaging all
counts. Calculations of probabilities, weights, etc. were
done on the pseudo-terms and these results were then
plotted. A bin size of k¥ = 20 was found to be best for
our purposes. The plot of binned pseudo-terms corre-
sponding to the left of figure 4 is shown at the right of
the same figure. Although we will focus on the binned
plots in this paper, each of these plots will be displayed
alongside its unbinned version, in order that the reader
may get a feel for the raw data. It should be kept in mind,
however, that points with zero counts are not represented
in the unbinned versions.

4.2 Plotting the Data

Taking a lead from the Croft and Harper formulation of
eq. 5, our data analysis begins by focusing on the com-
ponents, p(occ|rel) and p(occ|rel), and how these com-
ponents correlate with document frequency. Because we
hope to compare various document sets of differing sizes,
we prefer not to plot our data in terms of absolute doc-
ument frequencies. Instead, we plot against p(occ) = %,
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Figure 1: p(occ|rel) as function of p(occ)
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Figure 2: p(occ|rel) as function of p(occ)
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the probability that the term will occur in a document
chosen randomly from the collection.

Occurrence in Non-relevant Documents With
respect to p(occ|rel), we see in figure 1 that it is well
approximated by p(occ). We will return to analyze the
variable, p(occ|rel), in more detail.

Occurrence in Relevant Documents More in-
teresting is figure 2, which shows a plot of p(occ|rel) as
a function of p(occ). We see from this scatter plot that
as the document frequency (equivalently, probability of
term occurrence) gets small, the probability of the term
occurring in a relevant document gets small as well.

This plot of p(occ|rel) vs. p(occ) gives us reason to
question the advisability of the assumption of equal prob-
ability of term occurrence in the relevant documents,
used in [5] as the basis of eq. 6. This also puts into ques-
tion the assumptions made in [19]. Both the assumption
that p(occ|rel) increases from a non-zero starting point
and that the increase is linear with increasing p(occ) con-
tradict the evidence provided by figure 4. We return to
discuss these points further in Section 7.

A glance at this graph suggests that a re-expression
of variables may be indicated. The histogram shown at
the left in figure 3 confirms that the distribution of doc-
ument frequencies is highly skewed. With this type of
skew, a logarithmic? transformation is often found to be
beneficial [24]. In this paper, we go one step further and

re-express the variable as log O(occ) = log 12 (,,O(Cocc)c)- For

practical purposes, given typical document frequencies
for query terms, the difference between logp(occ) and
log O(occ) is negligible. For the development of a general
theory, log O(occ) tends to be a preferable scale on which
to work, due to the symmetric treatment it gives to prob-
abilities below and above .5. The histogram at the right
in figure 3 shows the distribution of the variable after it
has been re-expressed as log O(occ). Of course, our in-
terest in logp(oce) or log O(occ) is further motivated by
the knowledge that this statistic is, in fact, known to be
a useful indicator of term value.

The variable, p(occ|rel), is re-plotted as a function
of log O(occ) in figure 4. The plot against the log-odds
shows that the decrease in p(occ|rel) continues as doc-
ument frequency get smaller and smaller, a fact that
was obscured by the bunching together of points below
p(oce) = 0.01 in the original plot (figure 2).

p(occ|rel) Relative to p(occ) Despite the transfor-
mation of the independent variable, looking at p(occ|rel)
directly makes it hard to appreciate the phenomenon of
interest. The conditional probability of occurrence is
higher for high frequency terms. But, high frequency
terms are more likely to appear in documents, in general.
It comes as no great surprise, then, that they are more
likely to occur in relevant documents. This is particu-
larly obvious for very high frequency terms as compared
to very low frequency terms.

What may be of more interest to us, then, is how
much more likely it is for a term to occur in the relevant
documents compared to its being found in an arbitrary
document of the collection as a whole. Figure 5 shows

a plot of the ratio % as a function of log O(occ).

‘We observe here a clear non-linear increase in this ratio

2As an aid to intuitive comprehension, all logarithms in this
paper are logarithms to the base 10.

as document frequency decreases. From this plot it is
evident that, in general: 1) query terms are more likely
to appear in relevant documents than in the collection as
a whole, and 2) how much more likely their appearance
in relevant documents is correlates inversely with docu-
ment frequency. The apparent exponential nature of this
correlation calls out for the logarithm of % to be

investigated.

Log of the Ratio of p(occ|rel) to p(occ)

In fig-
ure 6 the log of the ratio % is plotted against the

logarithm of the odds of occurrence in the collection. In
the plot, we observe:

p(oce|rel) with

e a roughly linear overall increase in log 2(0c0)

decreasing log O(occ);
e a stronger linear relationship apparent in the
midrange of document frequencies on the log scale;

e an apparent flattening of this growth at both high
and low frequencies.

A number of comments are in order. First, a clear pat-
tern has emerged that is difficult to attribute to chance.
Furthermore, the “reality” of this regularity is corrob-
orated by our inspection of data from other collections
included in TREC volumes 1 and 2. To the author’s
knowledge, this relationship has not been previously re-
ported in the information retrieval literature.

Second, the apparent flattening of the curve at the
two extremes is supported by theoretical considerations.
At the low-frequency end, we note that:

plocc|rel) _ ploce A rel) _ p(rellocc) 1
plocc)  plrelploce) — plrel) ~ plrel)

(7)

If we assume that, for a given query, the probability of
relevance across the entire collection is approximately

one in a thousand®, then log% must be below
3.0. We can conclude that, on average, the growth of
the log ratio observed between log O(occ) = —1.0 and
log O(occ) = —3.0 cannot be sustained for very small
document frequencies. It is reasonable to assume that
this growth should begin to taper off as log plocclrel) p-

p(occ)
proaches — log p(rel).

The argument is similar at the high frequency end.
We can safely assume that, on average, a query term,
even a very high frequency query term, is more likely to
appear in a relevant document than it is to appear in
an arbitrary document of the collection. Hence, the ra-
tio, M, is greater than 1, and its logarithm greater

p(oce)
than 0. Since we conclude that log % can be ex-

pected to be positive at all document frequencies, its rate
of descent must taper off at same point before reaching
0. Presumably it approaches 0 asymptotically as the log
odds of occurrence goes to co (i.e. term occurs in all
documents). It is reasonable to entertain the hypothe-
sis that this leveling off is what we are observing with
the rightmost points in figure 6 (and have observed in
plots for other collections as well). We must be cautious,
however. The leveling off may, in truth, occur at higher
frequencies; the flattening suggested by the few points in
question attributable to chance happening.

3For the AP collection, the average probability of relevance
over the 50 queries is .00085.



Finally, we note that the quantity:

plocc|rel)

p(oce A rel)
=1lo
p(occ)

p(rel) - ploce)

p(rellocc)

lo p(rel)

has connections to information theory. Often referred to
as mutual information, it has been used as a measure of
variable dependence in both information retrieval [25, 6]
and computational linguistics [2]. In a very important
sense, it can be taken as a measure of the information
about one event provided by the occurrence of another
[7]. In our context, it can be taken as a measure the
information about relevance provided by the occurrence
of a query term. In what follows, we shall adopt the
notation,

MI(occ, rel)

for this quantity, which we believe to be an object worthy
of attention as a measure of term value in IR research.
It will be the main focus in the analysis that follows.

5 Mutual Information and idf

In this section, we show how the general relationship ob-

served between MI(occ, rel) = log 222D 314 df can be
p(occ)

used to explain why inverse document frequency should

be expected to produce good retrieval performance when

used for term weighting.

5.1 Awoe

Our interest in this paper is in modeling the weight of
evidence in favor of relevance provided by the occurrence
or non-occurrence of a query term. Presumably, the oc-
currence of a query term provides positive evidence and
its absence is negative evidence. If we will assign a non-
zero score only to those terms that appear in a document,
this score should be, woe(rel : occ) —woe(rel : o¢c). This
quantity, which we shall denote by Awoe, measures how
much more evidence we have in favor of relevance when
the term occurs in a document than we do when it is ab-
sent. Based on the formal definition of weight of evidence
(1), together with that for mutual information, it is not
difficult to show that Awoe can be expressed as:

Awoe = MI(oce, rel) + log p(occ) — log p(occ|rel)
—log p(occ|rel) + log p(oce|rel)  (8)

5.2 Awoe ~ MI(occ,rel)

We will now argue that:
1) log p(occ|rel) = log p(occ)
2) -log p(occ|rel) is not too big;
3) log p(occ|rel) = 0

This done, we will be able to reduce eq. 8 to the following
approximation for Awoe:
Awoe = MlI(occ,rel) + log p(occ) (9)
This approximation, together with assumptions concern-
ing the form of MI(occ, rel) based on our data analysis,
will lead us to an understanding of idf weighting.
Although we have made every effort to maintain an
appropriate level of rigor in what follows, the arguments
below do not attempt to be precise. We speak in terms

of “not too large”, “approximately the same”, “not much
greater than”. The goal is to explain why, based on our
analysis, 4df in the form of -log O(occ) can, in general, be
expected to perform well. We do not conclude that idfis
optimal as a term weight; nor do we make any attempt
at a precise estimate of how far from optimal it may be.
Figure 6, and similar plots for other collections we have
studied, lead us to expect values of MI(occ,rel) in the
approximate range of 0.5 to 2.5 for the vast majority of
query terms. This should be kept in mind. Quantities
of the order of magnitude of 0.1 may then be considered
negligible when the goal is to show that Awoe is roughly
approximated by MI(occ, rel).

1) log p(occjrel) =~ log p(occ) We assume p(rel)
is small. If the probability of occurrence is fairly large
relative to the probability of relevance, the order of mag-
nitude of p(occ|rel) will, of necessity, be the same as that
of p(oce), since it can be shown that:

ploce) — p(rel)

— p(oce)
< <
1= plrel) = p(occ|rel) < 1

— p(rel)
Therefore, log p(occ|rel) will be close to log p(occ).
When p(occ) is not large relative to p(rel), we can
also conclude that logp(occ|rel) = logp(occ), but the
reasoning requires knowledge of the relationship between
p(occ|rel) and p(occ). For small p(rel),

p(oce) - (1 _ plocclrel) -p(rel))

(10)

rel) =
plocc|rel) p(0c0)
For a probability of occurrence greater than 1 in 10,000,

the data indicate (figure 5) that % can be expected

to be no more than 300. Given typical values for p(rel),

1- % -p(rel)) can still be expected to be less than

one half of the value of p(occ), and log;, p(occ|rel) can
be expected to be not too different from log,, p(occ).

Concluding that p(occ|rel) = p(occ) may be problem-
atic for query terms whose probability of occurrence is
much less than .0001. On the other hand, query terms of
this sort appear to be few and far between. Even when
such a rare query term appears, its scarcity in the col-
lection as a whole implies that its precise term weight
is unlikely to have a major impact on overall retrieval
performance.

The derivation of the combination match weighting
formula (equation 6) in [5] also depends on p(occ|rel)
being well approximated by p(occ). We emphasize, how-
ever, that for low frequency query terms, the argument

given here depends heavily on the value of plocelrel) o)
p(occ)

ative to p(rel). In theory, at least, p(occ|rel) could be
an arbitrarily small fraction of p(occ). If this were the
case, log O(occ|rel) would then be very different from

log O(occ). Knowledge of the behavior of %

ports a conclusion, p(occ|rel) = p(occ), which cannot be
rigorously maintained in its absence.

sup-

2) —log p(occ|rel) is not too big Though it may
not be negligible, — log p(occ|rel) cannot be too big. The
data show that p(occ|rel) > .1, even for the most frequent
pseudoterm. Therefore, 0 < —log p(occ|rel) < 1.

A component of the derived weight that approaches
1.0 is not insignificant. We believe that an idf formula-
tion that takes this factor into consideration should per-
form better than one that does not. Nonetheless, a value



close to 1 for -log p(occ|rel) is achieved by only a small
percentage of query terms — those which appear in more
than 25% of all documents. Also, log p(occ|rel), falls off
rapidly with decreasing document frequency. For the AP
data, it is already less than 0.5 for the second bin of 20
data points. In and of itself, the effect of ignoring the con-
tribution of log p(acc|rel) should not overwhelm the over-
all effect of the more important component, MI(occ, rel),
of Awoe given in eq. 8

3) log p(occ|rel)~0 Presumably, a query term is
more likely to occur in the relevant documents than in
the collection as a whole. Hence, it is more likely not
to be present in the non-relevant documents than in
a random document of the entire collection. That is,
p(oce|rel) > p(occ). In this study, p(occ) is found to
be greater than .7 for all pseudo-terms. Equivalently,
0 > logp(occ|rel) > —0.15. This component too, has a
minimal effect on Awoe.

5.3 idf approximates Awoe

There is little question about our ability to infer from the
available data that MI(occ, rel) increases with decreasing
document frequency. To a first order approximation, we
can say that this increase is roughly linear with respect
to log p(occ).

MI(oce, rel) + log O(occ) (11)
But, k2 can be ignored. By casual inspection of figure 6,
we see that any reasonable linear approximation of the

plot of log 22el™el) 45 4 function of log p(occ) will have an
p(occ)

intercept value relatively close to 0. Once the constant
k2 has been eliminated, the remaining constant, ki, be-
comes irrelevant for the purposes of ranking. And so we

conclude that the idf formulation,

Awoe =

N—ni

idf = —log O(occ) = log (12)

n;

should produce good retrieval performance.

6 Improving on IDF

We have shown that by accepting some, empirically moti-
vated, assumptions concerning query terms the quantity
Awoe can be approximated by MI(occ, rel). By further
assuming that MI(occ, rel) is roughly linear in log O(occ),
we showed that traditional idf formulations should per-
form well. We also argued in Section 4, however, that
both theoretical and empirical considerations give rea-
son to assume a flattening of MI(occ, rel) at both ends of
the practical spectrum of document frequencies.

If we assume that the “true” form of the function
that maps log O(occ) to MI(oce, rel) involves flattening
at the extremes, the map to Awoe will exhibit similar
shape. If we accept the hypothesis that the plot of fig-
ure 6 is representative of the general behavior of query
terms for the types of queries and collections we study,
we should expect improved retrieval performance from a
term weighting formula that accounts for the observed
flattening.

To test this prediction, we compared retrieval perfor-
mance of two versions of the INQUERY IR system [1] on
each of the ad-hoc tasks for TREC 1 through TREC 6
[14]. Queries were formed by taking all words from both
the title and description. All stopwords were removed,

as were all duplicates. The baseline system used pure
idf term weighting with idf = —log O(occ)?. The test
system used a flattened version of idf. For this version,
weights were kept at 0 for all values of -log O(occ) be-
low 1.0; increased at the same rate as -log O(occ) from
—log O(occ) = 1.0 to —log O(oce) = 3.0; and maintained
at a constant value for all terms for which -log O(occ) ex-
ceeded 3.0.

An alternative to this 3-piece piecewise-linear func-
tion, would have been to do either a (non-linear) regres-
sion to fit a curve to the pseudo-term data of figure 6; or
a (non-linear) logistic regression to derive a function for
log O(occ|rel) vs. log O(occ) using the 0/1 (rel/non-rel)
values for the original, unbinned data. Although we plan
to take just this approach eventually, we believe that it
is premature at this stage of the research.

We do not feel that precise curve fitting is appropriate
when important interactions are not yet being accounted
for. In this case, the problem is dependencies that are
known to exist among the query terms. If two query
terms are not independent, the weight of evidence pro-
vided by the second term must be conditioned on whether
the first term occurred or not. If the terms are correlated,
woe(rel : occ2) will be greater than woe(rel : occa | ocer).

It is generally accepted that interdependence of query
terms has a noticeable impact on the effectiveness of
term weighting [15, 25, 10]. Since, to date, we have
made no attempt to model the influence of term depen-
dence, determination of a precise function for estimation
of woe(rel : occ) is not indicated. What we look for,
instead, is to test a general conclusion that the weights
for terms at the low frequency extreme should be ap-
proximately equal, and the same for terms at the high
frequency extreme.

The results of these tests are summarized in Table 1.
The test version outperforms the baseline system in terms
of average precision, on all six query sets, substantially
on five of the six. The test system also outperforms the
baseline system on a majority of queries on each of the
six query sets. The “/+” column gives the number of
queries for which the test system performed below/above
baseline. The column labeled “sign” gives the results
of the sign test for each query set. Each value indi-
cates the probability of the test version outperforming
the baseline on as many of the queries as it did were each
system equally likely to outperform the other. The col-
umn labeled “wilcoxon” gives the analogous probability
according to the wilcoxon test, taking into account the
size of the differences in average precision for each of the
queries. Improvement was found at all (11) levels of re-
call on TREC’s 2 through 5; all but the 50% recall level
on TREC 1 and all but the 80% recall level on TREC 6.

7 Discussion

We have shown strong empirical support for concluding
that MI(occ, rel) as a function of log O(occ) is roughly
linear, with a slope of the order of magnitude of %; and
that this can be used to explain why inverse document
frequency has been found to be so useful for term weight-
ing. Previous probabilistic explanations have started
from plausible a priori assumptions, in particular as-
sumptions concerning the probability of a query term
occurring in a relevant document. In this section, we

*Tests with idf = — log p(occ) were also run. For all test sets,
performance differences were small, with -log O(occ) outperform-
ing -log p(occ) on all 6 of the test sets.



avg. prec.

baseline test | % diff -/ + sign wilcoxon
TREC 1 0.1216 0.1312 7.88 18/32 | 0.0325 0.0201
TREC 2 0.0693 0.1021 | 47.36 10/40 | 0.0000 0.0000
TREC 3 0.0676 0.1257 | 86.03  4/46 | 0.0000 0.0000
TREC 4 0.0680 0.1002 | 47.42 15/34 | 0.0047 0.0006
TREC 5 0.0466 0.0688 | 47.63 17/32 | 0.0222 0.0006
TREC 6 0.1185 0.1422 | 20.01 12/37 | 0.0002 0.0000

Table 1: 3-piece piecewise-linear vs. linear versions of idf

review these earlier efforts in light of the results reported
here.

Central to the combination match model of Croft and
Harper is the assumption of constant p(occ|rel) for all
terms. In the absence of any pertinent prior knowledge
concerning these terms, this is a quite reasonable assump-
tion; essentially an application of the Laplacian “law of
insufficient reason”. However, with the availability of
large numbers of conscientiously formulated queries, sys-
tematically judged against diverse, voluminous document
collections, pertinent information becomes accessible. In-
spection of this data supplies us with sufficient reason for
assigning unequal probabilities for p(occ|rel) based on a
term’s document frequency.

The probabilities suggested by the data vary over a
wide range. The value of the first term, log O(occ|rel), in
eq. b, ranges from approximately 0.0 to 2.0. This value,
which is treated as constant in the model, varies over al-
most half the range of the second term, log O(occ|rel),
which stays between 0.0 and 4.0 for virtually all of the
terms of our study. Also, the second term, log O(occ|rel),
cannot be presumed to be approximated by log O(occ), a
priori. This puts the theoretical foundation of the com-
bination match model in question.

The Robertson/Walker adjustment of the combina-
tion match formula allows for an increase in p(occ|rel)
that grows linearly with p(occ). This is intuitively ap-
pealing at the same time that it resolves an anomaly
in the combination match model. What’s more, the
data confirm that p(occ|rel) does rise monotonically with
p(occ). However, the increase is not at all linear, at least
not for the greater portion of the document frequency
range. Also, the data indicate that the positive value
that should be assumed for p(occ|rel) for the lowest fre-
quency terms must be very very small. Unfortunately
they find themselves restricted to values above 0.5. Fig-
ure 2 shows that only fairly high frequency terms can
be expected to appear in as many as half of the relevant
documents.

The term precision model comes closest to being val-
idated by the empirical data. The overall shape of the
curve for p(occ|rel) predicted by the model comes clos-
est to approximating the plot shown in figure 2. But,
the 2-piece piecewise-linear function of the term preci-
sion model derives from the assumption that the query
term of a given document frequency will have a proba-
bility, p(occ|rel), that is a linear combination of the best
possible query term and a randomly chosen query term
at that document frequency. Again, a quite reasonable
assumption in the absence of any pertinent knowledge,
appears to be contradicted by the data.

All of these models have resulted from what can be
considered a prior:i reasoning. While the conceptualiza-
tion involved is insightful and to a large degree forced
on earlier researchers due to the paucity of hard data,
the availability of extensive retrieval data is, we believe,

an invaluable asset which should not be ignored. This
extends as well to research that seeks to apply statisti-
cal techniques such as regression analysis to the IR task.
This research does have a more empirical flavor. Data is
used so that parameters can be estimated. That is to say,
so that a member of a family of functions can be chosen.
The a priori aspect, though more subtle, is still present,
however. From which family of functions, is the “best”
member to be selected from? There is typically little rea-
son, a priori, to believe that the relationship of interest is
well modeled by, for example, a polynomial function; or
that the log-odds of some event is linear as a function of
the proposed “explanatory” variables. Exploratory anal-
ysis could be part of an initial phase, during which the
researcher becomes acquainted with data in order to de-
termine what would be a reasonable family of functions
on which to base regression techniques.

As mentioned in the introduction, the work reported
here represents step 1 of a more extensive research
agenda. Major objectives that lie ahead include the anal-
ysis and modeling of:

e the overall effect of query term dependencies on the
total weight of evidence. As explained in Section 6
we have yet to account for what we know to be a
systematic overestimate of Awoe.

e within-document term frequency as a source of evi-
dence;

o document length as a source of evidence;

o distinctions as sources of evidence between different
classes of terms, such as: phrases vs. simple words,
capitalized words vs. lower case words; query ex-
pansion terms vs. terms of original user query.

We are optimistic that these investigations will prove
fruitful.
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