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Abstract

The representation of physical space has traditionally fo-

cused on keyphrases such as “Computer Science Building”

or “Physics Department” that help us in describing and

navigating physical spaces. However, such keyphrases do

not capture many properties of physical space. As with the

assignment of a keyword to describe a piece of text, these

constructs sacrifice meaningful information for abstraction.

We propose a system of spatial representation based on

richer, emergent language models that encode information

lost in keyphrase approaches. We use a mix of wearable and

ubiquitous computing environments for the construction of

these models. Wearable computers infer language models

of their hosts. These language models then act as semantic

paint over spaces in a ubiquitous computing environment.

Spaces collect this information and construct representa-

tions based on interactions with augmented humans. A pro-

totype navigation system based on this theory is presented

and compared to traditional representations.

1. Introduction

Traditionally, the semantic labeling of spaces with build-

ing or room names involves the manual task of assign-

ing some keyphrase to a space. Unfortunately, these as-

signments do not constitute a rich representation of space.

A computer science building is more than just “computer

science”; it also encompasses, to varying degress, “algo-

rithms,” “artificial intelligence,” “machine learning,” and

many other topics depending on the occupants of the build-

ing. That is, a person’s conception of a building includes

more than its structure (e.g., floor plans, lighting). Espe-

cially when familiar with the objects and people occupying

a building, a person might think of that building as some-

thing more abstract and meaningful than a collection of

generic objects and people. For example, the task of la-

beling a building would be quite difficult if we were only

given access to its structural properties. Knowledge of the

occupants provides insight when constructing a meaningful

description. When we are given the names and homepages

of the occupants, we can better assign a useful label to a

building.

We describe the development of a system of spatial rep-

resentation grounded in the interaction of people in space.

Related work in representation has been conducted in infor-

mation retrieval and collaborative filtering. In these areas,

good document or item representations are measured by an

ability to effectively rank a set of items with respect to a

query or active user. Likewise, the task of finding relevant

spaces can motivate the adoption of similar representations;

we want to rank space with respect to a description of what

we are looking for.

We explore approaches to spatial representation that rely

upon occupant-derived representation. Such a model re-

quires both a representation of the individual occupants as

well as an algorithm for constructing a representation of

the space from this information. Wearable computers pro-

vide an excellent platform for the first task. Indeed, tradi-

tional user modeling techniques deployed in a variety of do-

mains serve as a lower bound on the performance of wear-

able computers in constructing representations of individu-

als. Already, wearable computer systems have been devel-

oped which demonstrate the ability to construct fine-grained

models of individuals [5, 11]. To address the second task,

we adopt a computational partitioning of space similar to

Dataspace [7]. In this architecture, physical spaces such as

buildings or rooms maintain computational resources pro-

viding a location for accumulating knowledge. Individu-

als with wearable computers passing through these spaces

provide the personal information used to build spatial mod-

els. The problem of constructing a representation of a space

reduces to reasoning about the collection of user models



which pass through a space.

This paper develops the idea of interaction-based spatial

representations by starting from traditional approaches to

representation. A general theory of interaction-based repre-

sentation is developed in Section 2. In order to contextual-

ize our approach to previous methods of representation, we

have organized several existing architectures into a set of

categories. Using this theory of interaction-based represen-

tations, we develop a method for constructing interaction-

based spatial representations in Section 3. In the course of

this process, we describe representational techniques pre-

viously not explored. Having developed an algorithm for

building these representations, we describe the implemen-

tation of a prototype navigation system in Section 4. We

conclude by placing our research in context and discussing

future directions in Sections 5 and 6.

2. Interaction-based Representation

Being concerned with the representation of space, we be-

gin by discussing the various methodologies of construct-

ing representations. Our focus will not be on a personal

representation of space as is explored in artificial intelli-

gence. Instead, we will prefer an approach which focuses

on the social definition of a space. So, rather than having

an agent ask, “what is this space about?”, we have the space

ask, “what am I about?” In particular, we are interested

in the representation of spaces as a product of interaction

with people. However, we will first develop a more general

method for building interaction-based representations using

previous work.

2.1 Simple Interaction

The first type of representation to consider is a simple de-

scription of what is interacting in a system of objects. There

are many dimensions upon which interaction may occur:

two people speaking (linguistic interaction), several people

being in eyesight of eachother (visual interaction), two cars

colliding (physical interaction). When considering a partic-

ular dimension, some objects are more relevant than others.

The two people in a room are more relevant during a dia-

log than, for example, the chairs these individuals are sit-

ting on. Relevance is mentioned as a means to reduce the

system which we will have to describe. Even though the

door may be semi-relevant to a dialog, such a system can

be described as two people speaking. Therefore, linguis-

tic interactions can be described by an interaction matrix of

partners in conversations. That wearable computers provide

this type of human-level monitoring partially motivates this

work and explains why many of the examples involve peo-

ple. Beyond this, however, ubiquitous computing results in

a similar potential in physical objects. For example, if cars

are augmented with collision sensors, an interaction matrix

can describe the physical interaction.

Much previous research implicitly adopts this interaction

based framework. For example, collaborative filtering and

Chalmers’ path-based information retrieval abstract infor-

mation objects (e.g. documents, movies, songs) and manip-

ulate their representations with respect to the people they

interact with [4, 1]. In these systems, people are represented

by the objects they have read, watched, or heard. Likewise,

the information objects are represented by the people who

read, watch, or hear them. Both representations ignore de-

scriptions of the components (i.e. people and items).

In terms of ubiquity, Davis, et al. develop a represen-

tation of nodes in an ad hoc wireless network with respect

to communicative interaction [6]. In such an environment,

nodes may have very limited communication range and high

mobility. Globally, the resulting network can be partitioned,

dynamic, and altogether difficult to navigate. The goal is

to find a relatively short and reliable route from one node

to another given only a destination’s identifier. Interaction

is defined by two nodes being within communication range.

Here, a particular node is represented by the history of other

nodes with which it has had possible communication. As

with collaborative filtering, a description of the components

of this representation (i.e. other nodes) is lacking.

2.2 Interaction Described

A second type of representation is possible using the de-

scriptive history of interactions an object has participated

in. We believe that there is power in describing the inter-

action itself. When people are speaking, one can describe

the system not just by who is speaking to whom but also

by what words are spoken between these individuals. When

two cars collide, one can use a range of values to describe

the collision. Consequently, a person can be represented

by the words he or she has read, written, heard, or spoken.

Likewise, a car can be described by the severity of collisions

it has been involved in.

Traditional information retrieval may be cast in this rep-

resentation scheme. The population of objects consists of

the users and their document collection. Interaction is de-

fined by reading a document and, hence, can be described

by what is read. That is, a document is only represented by

the words that flow between it and a reader (i.e. the text).

More recent information retrieval systems incorporate addi-

tional knowledge into representation. For example, hyper-

text retrieval adds inter-document interaction to representa-

tion [15, 9].

With respect to collaborative filtering, content-based

schemes incorporate linguistic knowledge about the inter-

actions beween objects and observers [13]. So, in addition

to being represented by the people who have interacted with



it, a particular item is also represented by a description of

the interaction which may be the text of a document or the

synopsis of a film.

Both of the representational schemes describe important

aspects of the system. Simple interaction tells one a lot.

But, while it gives insight into the identities of the peers, this

set alone provides nothing beyond a social context. Know-

ing the ISBN numbers of books I read and social security

number of the people I speak with tells one little about my

interests. It may, as in collaborative filtering, be able to rep-

resent interests in the abstract sense of individuals’ overlap-

ping book or dialog-peer selections. Nevertheless, if given

the text of all of the books and the linguistic histories of all

of my dialog-peers, then one may be able to better describe

my interests. Similarly, knowing who is passing through

space can tell one a lot about popularity and groups of peo-

ple. Knowledge about the set of interests of that group can

go further even if we do not know what is of particular in-

terest in that space.

3. Spatial Semantic Model

The focus in our examples on people and language is not

accidental. First, people are readily monitored and repre-

sented by wearable computers. One of the advantages of

wearable computers is their persistant existance with an in-

dividual. The interaction of these wearable computers and

other physically-bound computers allows the exploration

of the representational methodologies we described above.

Second, language grounds representation in flexible, under-

standable primitives. For our ends, a linguistic represen-

tation is useful since it allows us to build systems that are

queriable using traditional information retrieval techniques

[12, 19]. Words provide a powerful interface potential and

carry a history of academic research. Given these aspects,

we would like to build a spatial representation system which

incorporates both interaction as well as linguistic represen-

tations. We will first describe a framework for building lin-

guistic representations. Using this grounding and the ideas

developed in Section 2, we will develop a method to bind

meaningful linguistic representations to physical space.

3.1 Linguistic Representation

Wearable computers have access to a wealth of linguistic

information in the form of both text (email, web browsing,

and document composition) and speech (through speech

recoginition technology). The result is a history of words

which have passed over the user’s lips, ears, and eyes. Com-

plete histories are informative but not compact and certainly

not immediately comparable.

We propose the use of information retrieval techniques

for abstracting from collections of words. The information

retrieval community represents documents in any number of

ways: keywords, subject headings, abstracts, term vectors.

Recent advances in information retrieval have found rep-

resentational power in language models of documents [16].

The intuition with language models is that there is an under-

lying generative model for some collection of words. Word

collections act as a sample from this model and can be be

used to estimate the “true”, underlying language model. To

a certain extent, for an individual, this representation can

serve to describe a set of interests. A person who is in-

terested in computer science is more likely to speak, write,

hear, or read about “algorithms” and “artificial intelligence”

than a person who is not interested in these things at all.

3.2 Traditional Interaction­based Spatial Repre­
sentations

Since we are basing our spatial representation on inter-

action, an investigation of methods described in Section 2

is appropriate.

First, we consider the a representation based on simple

interaction. The resultant representations would be similar

to items in the collaborative filtering example or nodes in

the ad hoc routing example. A single space would be repre-

sented by a vector of individuals who have passed through

it. A collection of these spatial representations would allow

query by example like collaborative filtering or the search

for a paritcular individual like ad hoc routing. However,

neither of these features result in easy map-based interac-

tion.

We have already described the advantages of linguistic

representations in Section 3.1. Practically, though, where

does the linguistic information about a space come from?

Although it is natural to think about linguistic interactions

between people, using language to characterize interaction

with space is not obvious. Let us consider the options. If

it is claimed that there are word-based representations of

spaces, where do the representations come from? Perhaps a

linguistic interaction with a space means a linguistic inter-

action is occurring in that space. A linguistic history of a

space would be constructed from the history of words spo-

ken within that space. Basically, anything communicated

between people in a space is monitored and incorporated

into its representation. Figure 1 provides an interpretation

of the source of linguistic information. The resulting lin-

gusitic representations are based solely on the linguistic in-

teractions happening in a space. The identities of the par-

ticipants are ignored. A linguistic representation of space

built like this is reasonable but not practical. The history of

words spoken in a space is potentially sparse or misrepre-

sentative. Even though nary a word may be spoken in an

office, it can still have a representation based on the people

occupying it.
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Figure 1. Linguistic information from linguis­

tic interaction occuring in a space: The
linguistic representation of a room is con­

structed solely from the words spoken in the

room.

3.3 User­based Interaction­based Representa­
tions

The short-comings of traditional approaches to

interaction-based representation lead us to consider

novel methods of constructing such representations. One

of the disadvantages described above was the potential

sparsity in immediate linguistic information. In order to ac-

cumulate more data for our models, then, we adovocate the

construction of models based upon the linguistic represen-

tations of the people using that space. Wearable computers

provide the ability to not only monitor speech but also a

persistant monitoring of a user. It is this monitoring which

allows the construction of rich models of user linguistic

patterns. The information about the users occupying in

the space is then exploited to construct a representation

of the room itself. Figure 2 depicts the transmission of

an entire linguistic representation to the space. This user

representation includes the terms mentioned in the example

in Figure 1 as well as an individual context for those terms.

A subtle distinction between this approach and previous

approaches should be realized. Whereas the two interacive

representations described place objects in either an immedi-

ate social or information context, our spatial representation

attempts to combine the two. The linguistic representations

are constructed not from immediate interaction such as text

in a document but from the linguistic representations of the

users. This would be akin to describing a document by the

Room Representation

wearable
computer

policy
agent

machine
learning

wearable

computer

...

...

Figure 2. Linguistic information from linguis­

tic representations of the individuals in a

space: The linguistic representation of a
room is constructed from an abstract repre­

sentation of occupants in a room. This ab­
stract representation describes a user’s set

of interests.

During each timestep,

1. wearable machines recompute linguistic repre-

sentations of their hosts

2. if a user enters a space,

(a) the new user’s wearable machine transmits

its linguistic representation to computer as-

sociated with that space

(b) the spatially-bound machine recomputes a

representation of itself based on the new

collection of linguistic user representations

Figure 3. Representation construction algo­

rithm

confluence of linguistic representations of its readers. This

is an alternative representation we assume is a close approx-

imation of immediate interaction. Even in cases where in-

formation about immediate interaction is provided, a rea-

soning about the linguistic representations of users is po-

tentially exploitable. For example, if two statistics texts are

equivalent with respect to content, knowing that one is far

more often used by computer scientists perhaps tells us that

this text is better suited for a computer science curriculum

than the other.

A space, then, accumulates knowledge about its occu-

pants in the form of these models from which composite

representations can be constructed. Components of this dis-

tribution will be reinforced if people have common inter-

ests. So, even though several people in a particular space

may be quite different, the composite representation should



For each space to be considered,

1. calculate the relevance of the space to the query

2. highlight the spaces according to this relevance

measure.

Figure 4. Representation retrieval algorithm

encompass the similarities between those representations.

In order to accomplish this with a collection of language

models, we perform a uniform combination of between of

people who have passed through a particular space. Figure 3

describes the behavior of the system construction algorithm

during execution.

The querying of a collection of spatial representations

can be thought of as analogous to reading a map for rele-

vant areas. In this case, reading is substituted by natural

language querying similar to modern information retrieval

systems. Because our spatial representations are proba-

bilistic models, we can compute the relevance of a space

as the probability of that spatial representation generating

the query. The relevance is related, then, to the likelihood

of those words having been spoken by the occupants who

passed through that space. Using our map metaphor, Figure

4 describes the retrieval algorithm.

3.4 Scenario: Alice’s Day Out

Consider the following scenario. Alice, an undergradu-

ate computer science student, owns, like everyone else, a

wearable computer which infers a linguistic representation

from her web browsing and document composing habits.

Because Alice is interested in areas such as wearable com-

puting and artificial intelligence, the language model allots

a larger probability mass to words such as “wearable,” “mo-

bile,” “learning,” and additional, related words. However,

Alice is not one dimensional so her language model as-

signs relatively high probability to terms such as “guitar,”

“tremelo,” and “flamenco.” Clearly Alice also has some in-

terest in classical guitar.

Since Alice’s environment is augmented with spatial rep-

resentation machines, rooms in her department’s building

have representations associated with the language models of

common foot traffic. So, as Alice enters her laboratory, her

wearable communicates the inferred language model to the

local spatial representation machine. The spatial represen-

tation machine then recalculates its representation based on

this new information as well as the history of language mod-

els it has been transmitted by others. Because the major-

ity of peers in Alice’s laboratory also study machine learn-

ing, the combined language model reinforces terms such as

“learning,” “training,” and so on.

This afternoon, Alice visits a university campus she is

considering for graduate school. Unfamiliar with the cam-

pus, Alice asks her wearable how to get to the machine

learning laboratory. The wearable contacts the campus di-

rectory which maintains communication with all of the spa-

tial representation machines on campus. This central direc-

tory then estimates the probability of Alice’s query being

satisfied by the different spaces. The campus directory con-

structs a campus map overlaid with color whose intensity is

relative to this probability. The map is transmitted to Alice’s

wearable. Alice notices that there is a cluster of bright red

spaces in the building next to her. A visit to the brightest

spaces results in Alice finding the machine learning labo-

ratory. Investigating other brightly colored spaces in the

building, Alice discovers that the robotics laboratory also

conducts interesting work in machine learning.

Satisfied with the machine learning research on campus,

Alice asks about guitar playing on campus. Disappointed by

the initial results (almost every building has a guitar player),

Alice specifies classical guitar playing. A small cluster of

rooms gets highlighted in a nearby building. Here, Alice

finds a music department where, apparently, flamenco is

embraced.

4. Prototype Interface

This spatial representation system is being deployed for

the Computer Science Building at the University of Mas-

sachusetts. While a department-wide adoption of wearable

computers is welcome, it is not feasible at the moment. Lin-

guistic data for occupants of the building has been synthe-

sized from publications and home pages. This data will

serve to construct language models of the occupants of the

building. However, before constructing the models, some

preprocessing was conducted. First, text extracted from

these documents was normalized by stemming according to

the KStem algorithm and dropping a list of high-frequency,

content-free stop words [10]. Terms occurring only once in

the entire collection were omitted from calculations. For

each individual in the department, his or her documents

were used to build a vector of term-frequency pairs. Simple

language models are built using the maximum likelihood

estimate,

�✂✁☎✄✝✆✟✞✡✠ ☛✌☞ ✁ ✄✍✆✟✞✎✑✏ ☛✌☞ ✁☎✄✝✆ ✏ ✞✓✒
where ☛✌☞ ✁ ✄✝✆✟✞ is the count in the term vector for building

occupant ✔ . This gives us a naı̈ve language model. Unfortu-

nately, such an estimate assigns zero probability to unseen

words. This problem is addressed by by mixing the max-

imum likelihood language model with a model of general

English. In this case, a general English model is constructed



from the entire collection of documents for all users. There-

fore,

�✁�✁ ✄✝✆ ✏ ✞ ✠ ✂ � ✁ ✄✝✆ ✏ ✞☎✄✑✄✝✆✟✞✠✂ ✞ �☛✡✌☞ ✄✝✆ ✏ ✞ ✒
where

✂
is a mixing parameter which we set to ✍✏✎✒✑ .

A model for the second and third floors of the Computer

Science Building was then constructed to allow simulation

of occupancy. The individuals were associated with their

offices in the model. Many offices are shared, demand-

ing a combination of the language models of the occupants.

Composite language models were built by uniformly com-

bining the individual language models,

� ✄✝✆ ✏✔✓ ✕✗✖ ✞ ✠ ✆✓ ✘ ✖ ✓✚✙✛✢✜✒✣✥✤ � �✛ ✄✝✆
✏ ✞

where
✘ ✖

is the set of occupants in the space ✦ for which✕ ✖
is a model.

This semantic model of the building is constructed lo-

cally on a Xybernaut wearable computer [21]. Due to the

relatively small number of potentially relevant spaces, no

optimization of the indexing needed to be conducted. This

would be necessary in very large buildings or sets of spaces.

We designed the system for speech to allow the flexibility of

traditional information retrieval querying without the over-

head of learning to use traditional wearable keyboard alter-

natives. A user interacts with the system by issuing speech

queries recognized by IBM ViaVoice runtime libraries [20].

The set of recognized words constitutes the query. The sys-

tem then generates a relevance measure for all the spaces

in the building based upon the probability of the space’s se-

mantic model,
✕✧✖

, generating those words:

� ✄✩★ ✓ ✕ ✖ ✞ ✠ ✪ ✏ � ✄✩★ ✏ ✓ ✕ ✖ ✞ ✒
where

★
is the sequence of query terms. These probabilities

are then used to mark up a map of the building that is pre-

sented to the user on a touch panel display. Figure 5 shows

this map for the query “robotics.” The interface presents

the user with the current state of the query, which provides

context for the results. These results are displayed in two

panels. The left-hand panel shows the relevance of spaces

in the building. The right-hand panel displays the ranked

list of relevant spaces using manually assigned labels. We

found that this list helps in rapidly characterizing the space

especially when used in conjunction with the highlighted

map. In our example, the system highlights the robotics

laboratory and offices of associated people. Interestingly,

the system also detects the interest of machine learning and

artificial intelligence laboratories in robotics.

5. User Experience

Having built a prototype system, we were interested in

the application of this visualization to the task of naviga-

tion of space. Several computer science students with vary-

ing amounts of experience in the Computer Science build-

ing were given the system to use for exploring the space.

Most users were enthusiastic about the system as a means

of reducing the overhead when investigating a new build-

ing. Traditionally when trying to determine where relevant

research is being conducted in a building, a coordination

of web-browsing and physical maps is necessary. Our sys-

tem combines this information into a single interface to al-

low more efficient navigation. Users were able to quickly

find the offices and laboratories relevant to particular in-

terests. Some also gained an awareness of previously un-

known similarities between laboratories. Most participants

were largely disappointed with speech recognition perfor-

mance which resulted in longer search times. One user rec-

ommended the option for query reformulation so that the

map state would change as terms were added to a query.

6. Related Work

With respect to representation, our approach is quite

similar to stigmergetic or pheromone-based algorithms [3].

These systems harness the distributed, socially-constructed

representation of traffic on a network for problems such

as finding shortest paths. Important to these algorithms is

the notion of agent leaving markers at geographic locations

and having representations emerge as a result of the marker

accumulation. Our work in spatial representations demon-

strates the application of this theory to domains outside of

networking.

As an architecture, the Dataspace model comes closest to

the system we describe [7]. While Dataspace describes at a

high level how to partition and query spaces, the authors do

not describe how the information in such a system comes to

reside where it does. We consider our system to be an ini-

tial attempt at exploiting such an architecture in information

retrieval.

Brown’s work with stick-e notes is also related in the as-

cription of data to spaces [2]. Stick-e notes are text data

stored in spaces. This text is broadcast to a computer user if

certain contextual information is satisfied. Individuals may

then leave similar notes for others traveling through such an

augmented space. It is this latter part which we are automat-

ing so that instead of transmitting a text message, a user

transmits a complex representation. Coincidentally, it is not

impossible for a spatial machine in our system to broad-

cast its own representation to users passing through. This

message encodes not only a spatial representation but also a

potential user context. For example, many researchers have



Relevant Spaces Ranked List

Floor 2

Floor 1

Query

3

1

2

4

Figure 5. Spatial search results for the query “robotics”: The left­hand panel displays the relevant

spaces graphically. The right­hand panel displays a ranking of relevant spaces using manually
assigned labels.

described information retrieval systems which incorporate

contextual information such as location or room occupants

[8, 17]. This information retrieval system could seamlessly

consider spatial context in the form of the models that we

present.

Several recent artificial intelligence approaches to rep-

resentation attempt to learn meaning based on the co-

occurrence of spoken words and physical objects [14, 18].

These techniques reinforce specific word-sensor associa-

tions in an attempt to learn word meaning. The negotiated

representation resides in the heads of the individual agents

operating within the environment. In other words, the arti-

ficial intelligence community is interested in a vertical ap-

proach to intelligence by focusing on the construction of a

highly sophisticated agent or group of agents acting in dy-

namic physical environments. In some ways, our work is an

inversion of these artificial intelligence initiatives. The sys-

tem attempts to learn object meaning by placing the repre-

sentation into the object itself. Hence, we are interested in a

horizontal approach to intelligence by focusing on the con-

struction of sophisticated dynamic physical environments.

Agents hold no privileged place.

7. Conclusion

We have presented a system to construct rich, emergent

spatial representations. The representations result in mean-

ingful spaces and aid in visualization and navigation. In

designing the representational system, a novel method for

approximating immediate linguistic representation was de-

veloped.

There are several extensions to the system we are cur-

rently considering. The temporal and dynamic aspects of

these emergent representations remain unexplored. Realis-

tic movement models would be necessary for these exper-

iments. We are investigating the acquisition of empirical

movement data for the faculty and students in our system.

By incorporating movement into our model of the build-

ing, spatial representations can be constructed using differ-

ent transformations on the interaction histories. For exam-

ple, considering only the a short, recent history of people

occupying a space may reduce the accuracy of the repre-

sentation but will make the representation more robust to

the dynamism of shared spaces.

While the prototype system holds promise, limitations

exist. The type of queries possible is limited by the amount

of representational power in text information related to a

space. For example, it is unlikely that the system would

work well on queries for subway stations, restaurants, or



other public places. The people occupying these places are

too diverse. Inferring meaningful representations for these

spaces from individuals’ language data may not be possible

but we believe useful linguistic histories exist somewhere in

the environment.

Wearable computers provide the ability to model a vast

amount of user interaction beyond words. Several initia-

tives to model context reveal the ability to model abstract

states such as “walking” or “sitting” [5, 11]. One can imag-

ine other abstract states such as such as “hammering”. If

such states were communicated to objects in the environ-

ment, then we could also imagine representing objects by

the ways they have been used. For example, a hammer

would most often be used for hammering though a shoe may

also used for the same task. An agent confronted with the

need to hammer would not have to reason about the ham-

mering properties of objects in the environment. Instead,

it may merely seek those objects whose representations in-

clude hammering.
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