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The University of Massachusetts participated in the cross-language and novelty tracks this year.  The cross-language 

submission was characterized by combination of evidence to merge results from two different retrieval engines and 

a variety of different resources – stemmers, dictionaries, machine translation, and an acronym database.  We found 

that proper names were extremely important in this year’s queries.  For the novelty track, we applied variants of 

techniques that have been employed for other problems.  In addition, we created additional training data by 

manually annotating 48 additional topics. 

1. Cross Language Track 
We submitted one monolingual run and four cross-language runs.  For the monolingual run, the technology was 

essentially the same as the system we used for TREC 2001.  For the cross-language run, we integrated some new 

elements into the Arabic system - a light stemmer that was the result of extensive research [10], the standard 

probabilistic dictionary based on the UN bilingual lexicon, an expanded dictionary, acronym expansion [12], 

language modeling, and relevance modeling.  In addition, we utilized combination of evidence extensively.    

Because our submitted runs were the results of combination of evidence (combining ranked lists from multiple IR 

runs) we use the term sub-run to refer the individual component runs before combination. We first describe the 

resources, techniques, and models we used, then we describe each run in detail.  After presenting our official results, 

we include some post-hoc runs which correct the errors made in preparing our official submissions, and which help 

interpret some of the results. 

1.1.   Arabic and English Resources 

The Arabic resources consist of a corpus, normalization and stemming algorithms, and bilingual lexicons. Some of 

these were developed at UMass and others were provided for TREC participants this year.   The English resources 

consist of a corpus, stemmers, and an acronym facility, as follows: 

Arabic Corpus – was the same AFP ARB collection of 383,872 documents in Arabic for TREC-2001 [6] . It was 

converted to CP1256 encoding, and then indexed in two different ways (1) using UMass normalization and 

stemming, and (2) using TREC standard normalization and stemming.  Only stemmed tokens longer than one byte in 

length were indexed, and stop words were removed. 

UMass Normalization and Light Stemming – These are described in detail in SIGIR02 [10].  In brief, 

normalization consists of converting to Windows Arabic encoding (CP1256), if necessary, removing punctuation, 

diacritics, and non-letters, replacing إ ,أ, and آ with bare alif ا, replacing final ى with ي, and replacing final ة with 

 Our light stemming algorithm, light10_stop, a slight modification of the light stemmer described in [10], consists  .ه

of stop word removal, stripping definite articles )،لل وال، بال، آال، فالال ،(  and و (and) from word beginnings and 

stripping 10 suffixes from word ends (ها، ان، ات، ون، ين، يه، ية، ه،  ة،  ي ).  Stopwords were removed using a list 

of 168 words from Shereen Khoja [8] . 

UMass bilingual lexicon – This dictionary is an enhanced version of the dictionary we used for TREC-2001, which 

was gathered from several sources, as described in [11].  This year we collected more translations from online 

sources, by including the NMSU proper name dictionary, which used to be available from their Arabic tools page: 

http://crl.nmsu.edu/~ahmed/downloads.html.  In addition, we submitted all the query words from our expanded 

English queries to two online translation systems, Al Misbar (http://www.almisbar.com/salam_trans.html) and 



Ajeeb’s Tarjim (http://tarjim.ajeeb.com/ajeeb/).  These systems gave one translation (or transliteration) for each 

term.  These were added to the dictionary. 

TREC Normalization and Stemming – A Perl script written by Kareem Darwish and modified by Leah Larkey was 

distributed as the standard stemmer for TREC.  It is also a light stemmer, but it is not as light as the UMass stemmer. 

TREC bilingual lexicon – We used the bilingual lexicon with probabilities from BBN, derived from the UN parallel 

corpus.  The English words in this dictionary are stemmed with the Porter stemmer, and the Arabic words are  

stemmed with the TREC standard stemmer.  We did not use the bilingual dictionary from Tufts University.   

English Corpus – We used AP news articles from 1994 through 1998 in the Linguistic Data Consortium’s NA 

News corpus for an English background language model, and for English query expansion.   

English stop words and stemming - English stop words are from INQUERY’s standard list of 418 stop words.  

English stop phrases are defined by regular expressions in a script we have used before in TREC (in English).  In 

order to use the BBN probabilistic dictionary we performed Porter stemming on the queries.  In sub-runs that did not 

use the BBN dictionary, we left the English unstemmed, stemming with kstem [9] only when the English word was 

not found in the dictionary. 

Acronym Expansion – In the cross-language runs, we looked up in the Acrophile system [12] any sequences of all-

capital letters.  The top-ranking expansion for each acronym was added to the query. 

1.2.   Information Retrieval 

We used INQUERY [5] for the monolingual run and two of the cross-language sub-runs, and language modeling 

(LM) for the rest of the crosslingual sub-runs.  For both English and Arabic, text was broken up into words at any 

white space or punctuation characters.  For Arabic, there were five additional Arabic punctuation characters 

included in the definition of punctuation.   Words of one-byte length (in CP1256 encoding) were not indexed.   

INQUERY - The monolingual run and some of the cross-language runs used a version of INQUERY as the search 

engine.  This version computes the belief function reported in UMass’s TREC9 report [2].  The main difference 

between this version and “real” INQUERY is that proximity information is not stored in the index, so that 

INQUERY operators requiring proximity information are not implemented.  

For cross-language INQUERY retrieval, English queries are translated to Arabic as follows.  For each English word 

in a query, do the following: find the set of all translations in the dictionary.  If the English word is not found, stem 

the English word using the kstem stemmer and look it up again.  Stem the Arabic translations.  If any of the 

translations consist of an Arabic phrase rather than a single word, enclose the phrase in a #filreq operator.  

Enclose all the alternative Arabic translations for a single English word under a #syn (synonym) operator.  Finally, 

take all the #syn sets and build a weighted sum query out of all the stemmed translations of the query terms by 

subsumimg all the synonym sets under a #wsum (weighted sum) operator.  Each synonym set was given the weight 

described in the query expansion section. 

 Crosslingual Language Modeling (LM) - In language modeling, documents are represented as probability 

distributions over a vocabulary.  Documents are ranked by the probability of generating the query by randomly 

sampling the document model.  The language models here are simple unigram models, similar to those of [14] .   

Unigram probabilities in our official run were estimated as a mixture of maximum likelihood probability estimates 

from the document and the corpus, as follows:  
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where P(Qe|Da) is the probability of generating the query from the document model, the e’s are the English words in 

the query, P(a|Da) is the probability of an Arabic word a in the document Da, P(e|a) is the translation probability of 

seeing the English query word e given the presence of Arabic word a, and P(e|GE) is the probability of the English 

query word in the English background model.  P(a|Da) is estimated as tfa,Da /|Da| where tfa,Da is the number of 

occurrences of term a in Arabic document Da and |Da| is the length of document, that is, the number of total term 

occurrences in the document.  The translation probability P(e|a) comes from the bilingual lexicon.  If the lexicon 

was derived from a parallel corpus, these probabilities represent the proportion of the time that Arabic word a was 

aligned with English word e in the parallel corpus.  If the lexicon is a dictionary, and Arabic word a has n different 



translations into English e1,…en, then P(e|a) is estimated as 1/n.  The background probability P(e|GE) is estimated as 

( ) ∑
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CtCe dfdfGEeP ,,|  where dfe,C is the number of English documents in C containing term e, and the 

summation is over all the terms in the English collection, as in [7]. 

Query Expansion - We expanded English queries in some of our cross-language sub-runs using the AP news 

articles from 1994 through 1998 in the Linguistic Data Consortium’s NA News corpus.  This corpus was indexed 

without stemming, but normalized to lower case.  We retrieved the top 10 documents for each query.  Terms from 

these documents received an expansion score which was the sum across the ten documents of the INQUERY belief 

score for the term in the document.  The 5 terms with the highest expansion score were added to the query.  Final 

term weights were set to 2wo + we where wo is the original weight in the unexpanded query and we=1.   

Arabic query expansion was handled in different ways for INQUERY sub-runs and LM sub-runs.  For INQUERY 

sub-runs, Arabic query expansion was just like English query expansion, except the top 10 documents were 

retrieved from the Arabic corpus, rather than the English corpus, and 50 terms, not 5, were added to the query. 

In language model sub-runs, query expansion was carried out using relevance modeling [13].  The best matching 

fifty documents were retrieved and 500 words were selected as the new query. Associated with each word is an 

estimated probability of observing this word in the relevant documents. 

Combination of Evidence – Sub-runs were combined into submitted runs by normalizing document scores in ranked 

lists, and then summing lists two at a time.  Score normalization was a linear min-max normalization where 

scorenorm=(score-min)/(max-min).  

1.3.   Monolingual run 

Our one monolingual run was designated UMassM, and carried out as follows: 

1. Convert queries to CP1256 encoding 

2. Extract titles and descriptions from topics. 

3. Remove stop phrases, using a script developed for TREC2001. 

4. Stem the query with the UMass light stemmer and remove stop words. 

5. Expand the query by adding the best 50 words from the top ranking 10 documents. 

6. Retrieve the top 1000 documents using INQUERY. 
 

Overall average precision on this run was .3619.  The per-query comparison among the 18 submitted monolingual 

runs suggests that our approach favored recall over precision. We performed at or above the median average 

precision on 34 of the 50 queries, and below the median on 16 queries. In number of relevant documents retrieved in 

top 1000, we were at or above the median in 44 or the 50 queries, and at the highest number in 28 queries.   

1.4.   Cross-language runs 

Our cross-language submissions relied heavily on combination of evidence this year. We used two different 

dictionaries that could not be combined because they were built with different stemmers.  In our own dictionary, a 

composite of a variety of different sources, English was not stemmed, and Arabic words were stemmed using the 

UMass light stemmer.  In the standard probabilistic dictionary, (the bilingual lexicon built at BBN using the UN 

parallel corpus), Arabic words were stemmed using the Darwish stemmer, and English was stemmed with the Porter 

stemmer.  We ran several independent retrieval sub-runs and combined their ranked lists at the end.   

Each sub-run used one of two different retrieval engines – INQUERY or LM, one of two different resource sets:  

UMass dictionary and stemmer, or TREC standard probabilistic dictionary and stemmer, one of 3 different query 

expansion options:  English only, Arabic only, or English and Arabic, and one of two different selections from the 

topic:  title and description, or title, description, and narrative. 

The steps were as follows: (For sub-runs) 

1. Select text from titles and descriptions, or titles, descriptions, and (in X2n and X6n conditions) select 

capitalized words from narrative field.  

2. Remove stop phrases from English queries. 

3. Expand acronyms 

4. Lower case the query 



5. Expand the English query (optional – depends on condition) 

6. Expand the Arabic query (optional – depends on condition) 

7. Retrieve top 2000 documents 

 

Twelve different crosslingual conditions were run.  These sub-runs were combined into four cross language runs that 

can be briefly described as follows: 

1. UMassX2 – combination of 2 INQUERY cross language sub-runs both using title and description fields. 

2. UMassX6 – combination of all 6 cross language sub-runs using title and description fields. 

3. UMassX2n – combination of 2 INQUERY sub-runs using title, description, and narrative fields. 

4. UMassX6n – combination of all 6 cross language sub-runs using title, description, and narrative fields.   

 

Table 1 lists the resources used in each of the 12 sub-runs, and indicates which sub-runs composed each submitted 

run.    Names of submitted runs are abbreviated e.g. UMassX2 as X2, etc. 

Table 1: Definition of sub-runs 

Sub-run 
Compo- 

nent of 
Engine 

Dictionary 

+ Stemmer 
 Expansion 

Narrative 

Included? 

Inq-UM-EngAr X2, X6 INQUERY UMass English+Arabic no 

Inq-TREC-EngAr X2, X6 INQUERY TREC English+Arabic no 

LM-UM-Ar X6 LM UMass Arabic no 

LM-UM-Eng X6 LM UMass English no 

LM-TREC-Ar X6 LM TREC Arabic no 

LM-TREC-Eng X6 LM TREC English no 

Inq-UM-EngAr-Nar X2n, X6n INQUERY UMass English+Arabic yes 

Inq-TREC-EngAr-Nar X2n, X6n INQUERY TREC English+Arabic yes 

LM-UM-Ar-Nar X6n LM UMass Arabic yes 

LM-UM-Eng-Nar X6n LM UMass English yes 

LM-TREC-Ar-Nar X6n LM TREC Arabic yes 

LM-TREC-Eng-Nar X6n LM TREC English yes 

1.5.   Cross-Language Results 

Table 2 summarizes the results of our official submissions.  Combination of results based on different resources 

improved performance.  Inclusion of narrative words also improved performance a great deal.   UMassX6n had the 

highest mean average precision of all the officially submitted cross language runs in TREC 2002. 

Table 2: Monolingual and Cross-language Results: official runs  

Name of Run 
Official Mean 

Average Precision 

Number of Queries at or Above Median  

Average Precision        Rel Ret in top 1000 

Post hoc 

Average 

Precision 

UMassM .3619 34/50 44/50 .3619 

UMassX2 .3538 30/50 40/50 .3589 

UMassX6 .3658 36/50 42/50 .3801 

UMassX2n .3900 35/50 37/50 .3941 

UMassX6n .3996 39/50 41/50 .4107 

1.6.  Post hoc Cross-Language Experiments 

Post hoc experiments were performed first, to correct some errors in our official submissions, second, to provide a 

“standard resources” run, and third, to explore the role of acronyms, proper names, and stemming of the UN parallel 

corpus. 

1.6.1. Fixing Errors 

We discovered two problems after submitting our results.  First, the Porter stemmer used in processing the BBN 

bilingual corpus was different from our version of the Porter stemmer, so that many English words were not found 

in the probabilistic dictionary.  For example, contrary was stemmed to contrari by the BBN Porter stemmer, but to 



contrar by our Porter stemmer.  Money became monei under the BBN Porter stemmer, but remained money under 

our Porter stemmer.  When we reran the sub-runs with compatible Porter stemming, results on those sub-runs 

improved, as did the combinations that included them.   

A second problem resulted from a procedural error, in which the language model runs (but not the INQUERY runs) 

using the UMass resources were run with an older, smaller version of the dictionary.  We therefore reran the affected 

conditions with the correct dictionary, and obtained the results shown in the last column of Table 2. 

Overall, the greater coverage of the dictionaries and the use of compatible versions of the Porter stemmer improved 

performance. The overall patterns remained the same - combination of resources improved performance, and 

retrieval was more effective when the narrative portion was included in the query. 

1.6.2. Standard Resources Run 

Although we did not submit an official standard resources run we ran one later for this report.  Recall that one of the 

two sub-runs that made up UMassX2 and UMassX2n, and three of the six sub-runs that made up UMassX6 and 

UMassX6n, used the standard parallel corpus dictionary and stemmer.  The Standard Resources column of Table 3 

shows the results when the sub-runs based on the UMass resources and acronym expansion were excluded.  Only the 

sub-runs based on the standard resources were included.  Thus, in the Standard Resources column, the UMassX2 

and UMassX2n rows show the results of a single sub-run, and UMassX6 and UMassX6n rows each show results 

based on a combination of three, rather than six, sub-runs. Relative to these three way combinations, the additional 

resources increased average precision 3 percentage points for title+description queries, and 4 points for 

title+description+narrative queries.   

1.6.3. Acronym expansion 

Because this was the first time acronym expansion was used in the TREC cross-lingual track, we assessed its contri-

bution separately.  We reran the UMassX6 and UMassX6n runs without expanding acronyms.  The results, shown 

in the No Acro column of Table 3, revealed that acronym expansion added almost nothing.  Analysis of individual 

queries containing acronyms revealed that while acronym expansion helped on some queries, it hurt on others.    

1.6.4. Importance of Proper Names 

It had struck us in informal query analyses that proper names were extremely important in these queries.  We 

hypothesized that successful retrieval depended upon having these proper names in the lexicon.  In order to test this, 

we identified all the proper names (people, places, organizations, acronyms) in our queries and in our expanded 

English queries, and made special versions of the UMass and BBN dictionaries from which these names had been 

removed.  The column labeled No Names in Table 3 gives the results.  Performance dropped more than 50% when 

names were not available in the dictionaries.  We speculate that one reason dictionaries derived from parallel 

corpora work so well is that they cover so many more proper names than do static dictionaries. 

Table 3:  Post hoc average precision: Cross Language runs 

Name of Run Official Errors 

Corrected 

Standard 

Resources 

No Acro No 

Names 

Reprocessed 

UN Corpus 

UMassX2 .3538 .3589 .3141 .3577 .1561 .3668 

UMassX6 .3658 .3801 .3508 .3795 .1629 .3948 

UMassX2n .3900 .3941 .3337 .3936  .3983 

UMassX6n .3996 .4107 .3724 .4104  .4189 

 

1.6.5. Reprocessing the UN Corpus 

Although the standard parallel corpus dictionary as processed by BBN was a very valuable resource, we found it 

awkward to fit into the rest of our system because of the Porter stemming used on the English words, and because of 

the small differences between the standard Arabic stemmer and the UMass light stemmer.  We reprocessed the UN 

corpus, obtained from LDC, using the same configuration Alex Fraser used at BBN, except we used different 

preprocessing in preparing the English and Arabic input to GIZA++.  English words were lower cased, and stop 

words were removed.  Arabic words were stemmed and stop words removed using the UMass (light10_stop) 

stemmer.  Retrieval results comparing the two versions of the parallel corpus dictionary can be seen in Table 4.  

Table 4 contains only sub-runs and combinations that used the parallel corpus dictionary.  It does include any runs 



that used the UMass dictionary.  The improvement in the official runs that include all the resources can be seen in 

Table 3, above, in the Reprocessed UN Corpus column. 

Table 4: Mean average precision using two dictionaries made from the UN parallel corpus.  

Type of Run 

TREC 

Standard 

Dictionary 

Reprocessed 

UN Corpus 

INQUERY title+description .3161 .3413 

LM title+description .3464 .3637 

INQ + LM title+description .3520 .3678 

INQUERY title+desc+narrative .3350 .3614 

LM title+desc+narrative .3605 .3804 

INQ+LM title+desc+narrative .3734 .3880 

 

2. Novelty Track 
Our attempts to find relevant and novel information focused on variants of techniques that have been employed for 

other problems [1] [3] [4].  Basically, we looked for relevant sentences by comparing them to the query, and we 

looked for redundancy by estimating whether a sentence was dissimilar from all prior (relevant) sentences.  We 

found that the task of recognizing relevant sentences was the major challenge and that our errors there account for 

poor overall performance. 

One notable feature of the CIIR’s participation in the novelty track is our creation of additional training data.  We 

hired students to annotate 48 topics in addition to the handful provided by NIST.  Details on that process are 

discussed below. 

2.1. Creating additional training topics 

For the purpose of this evaluation we built our own collection of documents and sentence level relevance judgments.  

We randomly chose 48 topics from the TREC-7 and TREC-8 ad-hoc retrieval tracks (topics 300-450)—though we 

were careful not to use the topics set aside for the novelty track evaluation.  For each of the 48 topics, we used the 

INQUERY search engine to find the top-ranked documents in a subset of TREC volumes 4 and 5 (Federal register 

1994, LA Times 1989-90, and FBIS 1996).  We selected the top 25 known-relevant documents (based on TREC 

judgments) for each topic. 

We followed the same methodology defined by the novelty track to collect relevance and novelty assessments.  We 

hired undergraduate students, who were otherwise unaffiliated with our research, to read the relevant documents for 

each topic in rank order.  They extracted relevant and novel sentences from each topic in a two step process.  First, 

the assessors were told to read a printed copy of the relevant documents and highlight the relevant sentences.  

Second, they read the sentences marked as relevant again and flagged the ones that contained novel information.  

For this process, order is very important.  By definition, a sentence is novel if it provides totally new information or 

further details on previously seen information.  Instances that summarize details seen earlier in the document stream 

were not considered novel. 

Some statistics for the constructed training data are presented in Figure 1 and Table 5.  These statistics are consistent 

with the NIST-provided training topics as well as the evaluation topics.  Interestingly, for the average topic less than 

5% of the sentences contain relevant material.  Further, more than 80% of the relevant sentences on average contain 

novel information.  That is, most of the material is non-relevant and most of the relevant material is novel.  The 

material for reconstructing our data and some additional statistics about the data are available at 

[http://ciir.cs.umass.edu/downloads/access.html].   That material assumes that TREC volumes 4 and 5 are available 

to the user. 

 

 

 

 



Table 5: Collection statistics summary for training set 

TOPICS # ASSESSORS DOCS SENT NOVEL REL REL/SENT NOVEL/REL 

48 6 1122 84588 2759 3400   

 AVERAGE/TOPIC 23.38 1762 57.48 70.83 4.6% 81.6% 

 σ  3.923 797.22 46.217 55.63 3.64% 12.74% 

 

Percentage of Relevant Sentences in a Topic - 

Histogram

0

2

4

6

8

10

12

14

16

18

2% 4% 6% 8% 10% 12% 14% 16%

F
re

q
u

e
n

c
y

  

Percentage of Novel over Relevant Sentences 

in a Topic - Histogram

0

1

2

3

4

5

6

7

8

9

10

60% 65% 70% 75% 80% 85% 90% 95% 100%

F
re

q
u

e
n

c
y

 

Figure 1: Histograms of distribution of (a) the percentage of relevant sentences over the total number of 

sentences and, (b) the percentage of novel sentences in terms of the number of relevant sentences. 

We were curious about the impact of time on a person's conception of novelty.  For instance, we were interested in 

answering question like the following:  How far could an assessor go without losing track of the mental representa-

tion of a novel sentence with respect to a particular topic? What is the behavior of the novelty rate as more docu-

ments are added to the knowledge base?  To answer this questions, one of the assessors was told to read through a 

bigger set of documents (75 documents) carrying out the relevance and novelty judgments steps as they were ex-

plained before.  The topic chosen for this experiment was 422 (Figure 2). The results are presented in Table 6.   

 

Figure 2: Topic 422’s description. 

Table 6: Annotation information for topic 422.  The first row presents statistics for an assessor who was 

asked to annotate 75 documents rather than just 25. 

TOPICID ANNOT DOCS SENT NEW REL REL/SENTS NEW/REL 

422 D 75 3593 164 181 5.0% 90.6% 

422 D 25 2065 89 94 4.6% 94.7% 

422 C 25 2065 75 77 3.7% 97.4% 

 

The assessor in charge of this task reported that it was not difficult to assess the relevance or novelty of a sentence 

even with this many documents, because it was fairly easy to maintain a clear sense of the topic definition and when 

new information about the topic was appearing.   

 

Table 6 shows an increase for the percent of relevant sentences across different assessors and different evaluation 

set sizes.  The difference is presumably accounted for by normal inter-annotator disagreement.  Interestingly, 

though, the proportion of new material decreases with more sentences judged.  Our intuition tells us that as more 

<top> 

  <num> Number: 422  

  <title> art, stolen, forged 

  <desc> Description:  

  What incidents have there been of stolen or forged art? 

  <narr> Narrative:  

  Instances of stolen or forged art in any media are relevant.  Stolen mass-  produced 

things, even though they might be decorative, are not relevant (unless they are mass-

produced art reproductions). Pirated software, music, movies, etc. are not relevant. 
</top> 



documents are processed and our knowledge base about the topic increases, the tendency to find new sentences 

should be greatly reduced: the topic should be fully covered.  The results from trying one topic in more detail might 

be explained by a lack of redundancy in the collection or by the intrinsic property of the topic to constantly generate 

new events related to the same topic (and thus novel sentences).  Topics defined the way topic 422 is defined admit 

constant generation of new events that must create new relevant and novel sentences. 

 

We were also concerned by the low number of relevant sentences and wondered if this was the result of the 

annotation instructions.  We told one of our assessors to read the relevant documents for topic 327 and topic 417 

(Figure 3) and identify the sentences that do not provide any relevant information whatsoever in relation to the topic. 

The results are presented in Tables 7 and 8. 

 

Figure 3: Topic description for topic 327 and topic 417 

 

Table 7: Comparison of assessor results when one assessor located relevant sentences and the other locates 

non-relevant sentences.  Upper right and lower left portions of each table represent disagreement 

 ASSESSOR D   ASSESSOR D 

 TOPIC 327 NOT 

JUDGED NOT REL 

  TOPIC 417 NOT 

JUDGED NOT REL 

RELEVANT 19 4.2% 40 8.8%  RELEVANT 20 0.9% 9 0.4% 
ASSES. 

F 
NOT 

JUDGED 
8 1.8% 389 85.3% 

 
ASSES. 

A 
NOT 

JUDGED 
103 4.4% 2215 94.4% 

 

Table 8: Comparison of sentences judged by two assessors in selected topics 

TOPICID ASSESSOR * */S  TOPICID ASSESSOR * */S 

A 59  Relevant 12.9%  F 29  Relevant 1.2% 
327 

D 429  Not Relevant 94.1%  
417 

D 2224  Not Relevant 94.8% 

Documents: 11  Sentences: 456  Documents: 25  Sentences: 2347 

 

Table 7 shows the inconsistencies between two assessors, one finding relevant and one finding non-relevant.  For 

topic 327, for example, the upper-right cells indicate that 40 sentences were explicitly identified as relevant and as 

non-relevant.  Presumably those reflect inter-annotator disagreement, though we have not adjudicated the results to 

see whether there are errors.  Nineteen of the sentences were judged relevant by both approaches, and almost 86% of 

the sentences were consistently judged non-relevant. 

Table 8 shows for topic 327 that an assessor finding relevant sentences found that 12.9% of the sentences were 

relevant, whereas an assessor looking for non-relevant implicitly found only 5% of the sentences relevant.  The 

difference is surprising, particularly since we were expecting that the “find non-relevance” assessor would “find” 

<top> 

<num> Number: 327 

<title> Modern Slavery  

<desc> Description:  

Identify a country or a city where there 

is evidence of human slavery being 

practiced in the eighties or nineties. 

<narr> Narrative:  

A relevant document would present 

evidence of current slavery practices 

being carried out.  It would identify a 

specific country or city and give some 

information on who the slaves are, or who 

was buying or selling them, and for what 

purposes they were being used.  

References to slavery being carried out 

several years ago would not be relevant. 

</top> 

<top> 

<num> Number: 417  

<title> creativity  

<desc> Description:  

Find ways of measuring creativity. 

<narr> Narrative:  

Relevant items include definitions of 

creativity, descriptions of 

characteristics associated with 

creativity, and factors linked to 

creativity.  
</top> 



substantially more relevant material.  On the other hand, for topic 417 we obtained a more reasonable result with a 

very low 0.4% of inter-annotator disagreement. These differences among topics may be explained by the 

information need that the topic describes, which for topic 327 seems to be pretty ambiguous. 

Similar experiments on a larger collection of topics might make clearer what is happening. 

2.2. Experiments finding relevant sentences 

In order to extract the sentences with relevant information, we used the traditional IR ranking approach with three 

different retrieval models.  Pseudo-relevance feedback (PRF) was used with each approach and executed depending 

on the retrieval model being used. 

1. TFIDF.  Here, we tried the traditional TFIDF approach.  Given a query q and sentence s: 
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qttf , and sttf , are the number of times term t occurs in the query and sentence, respectively, tsf is the 

number of sentences in which term t appears, and n is the number of sentences in the collection. 

2. Simple Language Modeling (KLD).  Given smoothed language models of a query q and a sentence s, the 

score is given by the Kullback-Leibler divergence (KLD) between the two mass distributions: 
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3. Two-Stage Smoothing in Language Modeling.  The two-stage smoothing method allows the use of 

different smoothing techniques for the query and the sentence language models.  This is used in order to 

differentiate the two roles that smoothing plays in the retrieval process.  For the sentence, smoothing 

assigns non-zero probabilities to words not present in the sentence.  For the query, smoothing “explains 

away” the common non-topic words in the query.  This approach is extensively explained in [15]. 

 

Multiple runs were carried out on our training topics in order to tune the multiple parameters in the different 

retrieval models.  Results from the best runs are presented in Figure 4.  Although TFIDF with PRF had the best 

average precision, its performance is not significantly different (student’s t-test) from the other models.  For all 

models, performance of the retrieval process at sentence level was poor and very hard to improve. 

 

Precision - Recall

0.20

0.24

0.28

0.32

0.36

10% 20% 30% 40%

Sentences

P
re

c
is

io
n

TF-IDF

TF-IDF + PRF

KLD

KLD + PRF

TSS + PRF

 

Figure 4:  Results for sentence relevance retrieval on the training topics 

We also explored the influence of query length on performance.  We used “short” queries and “long” queries.  For 

every case, we tried using only some portion of the topic description.  For short queries we tried using only the topic 

title or the topic title and description.  As long queries, we tried using the topic title, description, and narrative.  Our 



results were consistent with the results reported in [15].  On average, it is better to use the complete topic text as 

opposed to using only portions of it.   

Some additional experiments were carried out, without much success, to try to improve performance by means of 

query preprocessing.  A standard ad-hoc query algorithm [2] was run on the query text (topic text) for the different 

topics.  The goal of this algorithm was to get rid of what we believed were query stop words and stop phrases.  We 

believed that words like “narrative” and “description” as well as phrase patterns such as “A document that 

discusses word [word … word] is considered non-relevant” should not be present in the query.  Contrary to our 

intuition, the use of this algorithm did not improve the retrieval performance significantly.    

2.3. Looking for novelty 

Our novelty detection systems take as input the ranked list of relevant sentences for each topic (i.e., the output of the 

previous step).  We decided to use the vector space retrieval model with TFIDF weighting and pseudo-relevance 

feedback as we found that it was the method that worked best with our training data. Both of our systems 

(CIIR02tfkl and CIIR02tfnew) use this method to identify the relevant sentences. We determined through trial and 

error on the training data that our results were best if we used the top 10 percent of relevant sentences, even though 

we know from the training topics that only about 5% of the sentences are likely to be relevant. These top relevant 

sentences are re-indexed using Lemur.
1
 No stopping or stemming is used at this stage. 

Our two systems assign novelty scores to sentences in different ways: 

CIIR02tfkl.  The CIIR02tfkl system uses the KL-divergence between two language models as its scoring method. 

For each topic, the documents are considered in the order given by the task and novelty scores are assigned using the 

following method. The first relevant sentence of the first relevant document is assigned a maximum score. For the 

remaining sentences we calculate a collection language model and a sentence language model in Lemur: 

collLM(i) (the collection language model for sentence i) is a maximum likelihood model built on sentences 1 to (i-

1), smoothed using linear interpolation against a maximum likelihood model built on sentences 1 to i. 

sentLM(i) (the sentence language model for sentence i) is a maximum likelihood model built on sentence i, 

smoothed using linear interpolation against a maximum likelihood model built on sentences 1 to i. 

Sentence i's score is the KL-divergence between its collection and sentence language models, KLD(sentLM(i) || 

collLM(i)). 

We set the smoothing parameters for both language models so that almost no smoothing occurs. These parameter 

settings were chosen because they achieved the best results on our training data. 

CIIR02tfnew.  The CIIR02tfnew system assigns novelty scores in a very simple way. For each topic, it considers 

the documents in the order specified by the task. Each sentence is treated as a set of words and a sentence's score is 

equal to the number of new words in the set (i.e., words that have not appeared so far in the sentences for that topic).  

We observed that in our training data, approximately 80 percent of the sentences judged relevant by the annotators 

were also judged new. Therefore, both of our systems return the top 80 percent of the ranked list of novelty scores as 

new. 

Interestingly, for both the training and test data, when we ran our two systems on the collection of known relevant 

sentences (i.e., we cheated), CIIR02tfkl performed better than CIIR02tfnew. However, when we ran these systems 

on our own relevance results (i.e., relevance results with errors), CIIR02tfnew performed better than CIIR02tfkl.  

We hypothesize that non-relevant sentences are likely to be identified as novel and that CIIR02tfkl models novelty 

better than CIIR02tfnew and therefore tends to pull those non-relevant sentences towards the top of the novelty 

rankings.  We have not sufficiently investigated this issue, however.  It may, for example, be nothing more than a 

statistical anomaly. 

The following graphs show the effectiveness of the two techniques when only relevant sentences are ranked.  Note 

that even a random ranking of these sentences does quite well, because about 80% of them are novel. 

                                                           

1 Lemur is a toolkit from CMU and UMass Amherst intended to support the use of language modeling techniques 

for information retrieval.  It is freely available for research purposes at http://www.cs.cmu.edu/~lemur. 
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Test Data (49 topics)
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The next graphs provide the same information for when the “relevant” sentences are chosen using one of the 

approaches described above—i.e., generated by a system.  Overall performance drops substantially because the 

quality of the initial retrieval is poor (the scale of the axes is dramatically different). 
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Test Data (49 topics)

System Relevance Results

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

c
is

io
lm - kl

new

random

 

This final graph shows how the results of our official submissions compared to other submissions of the TREC and 

shows on a query-by-query basis how our two approaches stacked up.2 

                                                           

2 This graph compares systems based on precision * recall, the evaluation measure used at the TREC workshop. 

After the workshop, the evaluation metric was changed to the F measure.  
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