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1. Introduction

The University of Massachusetts took on the TREC10 cross-language track with no prior experience with
Arabic, and no Arabic speakers among any of our researchers or students. We intended to implement
some standard approaches, and to extend a language modeling approach to handle co-occurrences. Given
the lack of resources – training data, electronic bilingual dictionaries, and stemmers, and our unfamiliarity
with Arabic, we had our hands full carrying out some standard approaches to monolingual and cross-lan-
guage Arabic retrieval, and did not submit any runs based on novel approaches.

We submitted three monolingual runs and one cross-language run. We first describe the models, tech-
niques, and resources we used, then we describe each run in detail. Our official runs performed moder-
ately well, in the second tier (3rd or 4th place). Since submitting these results, we have improved normali-
zation and stemming, improved dictionary construction, expanded Arabic queries, improved estimation
and smoothing in language models, and added combination of evidence, increasing performance by a sub-
stantial amount.

2. Information Retrieval Engines

We used INQUERY [2] for two of our three monolingual runs and our cross-language run, and language
modeling (LM) for one monolingual run. The processing was carried out using in-house software which
implemented both engines, to insure that the stop lists, tokenization, and other details were identical. The
same tokenization was used in indexing the Arabic corpus and processing Arabic queries. In fact, except
for one minor difference in tokenization, Arabic strings were treated exactly like English strings – as a
simple string of bytes, regardless of how they would be rendered on the screen. For both English and
Arabic, text was broken up into words at any white space or punctuation characters. The minor difference
in Arabic tokenization consisted of five additional Arabic punctuation characters included in the defini-
tion of punctuation. Words of one-byte length (in CP1256 encoding) were not indexed.

2.1. Inquery

Two of the three monolingual runs and the cross-language run used a version of INQUERY as the search
engine. This version computes the belief function reported in UMass’s TREC9 report [1]. The main
difference between this version and “real” INQUERY is that proximity information is not stored in the
index, so that INQUERY operators requiring proximity information are not implemented.

2.2. Language Modelling (LM)

2.2.1. Monolingual

In language modeling, documents are represented as probability distributions over a vocabulary. Docu-
ments are ranked by the probability of generating the query by randomly sampling the document model.
The language models here are simple unigram models, similar to those of [7] and [9]. Unigram



probabilities in our official run were estimated as a mixture of maximum likelihood probability estimates
from the document and the corpus, as follows:
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where P(Q/Doc) is the probability of generating the query from the document model, q are the words in
the query, λ is a mixture parameter, P(q/BG) is the probability of the query word in the background
model, and P(q/DOC) is the probability of the query word in the document. Normally, the maximum
likelihood probabilities are estimated as:

( )
Doc

tf
DocqP

Docq,
| =

where tfq,Doc is the number of occurrences of term q in document, and |Doc| is the length of document, that
is, the number of total term occurrences in the document. In an analogous manner, the background prob-
abilities are estimated from a collection C which may or may not be the collection in which the document
resides, as:
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where tfq,C is the number of occurrences of term q in the collection C, and |C| is the number of total oc-
currences of all terms in C.

For our official run, we estimated background probabilities as above, and we estimated λ via the Witten
Bell method [10], in which
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=λ where NDoc is the number of different terms in the document.

Posthoc work on Arabic and other data has shown improvements in monolingual LM retrieval by modi-
fying how λ, the mixture parameter, is calculated. For long (expanded) queries, we set λ to a constant
value of .4. For short (unexpanded) queries we use Dirichlet smoothing [11], that is,
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We have also found better LM performance on Arabic and other data if we use document frequencies
rather than term frequencies for background models, as in [3], that is:
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| where dfq,C is the number of documents in C containing term q, and the

summation is over all the terms in the collection.

3. The Arabic Corpus

The AFP ARB corpus of 383,872 documents in Arabic was converted to CP1256 encoding and normal-
ized in the manner described above. The corpus was indexed in two different ways. For the non-
stemmed conditions (UMass4), the corpus was normalized, tokenized using the Arabic tokenizer, and
every token longer than one byte in length was indexed. For the stemmed conditions (UMass1, UMass2,
and UMass3), stemmed tokens longer than one byte in length were indexed.



4. Arabic Resources and Techniques

4.1. Normalization of Arabic

In order to handle the variations in the way text can be represented in Arabic, we performed several kinds
of normalization on text in the corpus and in the queries. The normalized form of the corpus was used for
indexing (in the non-stemmed conditions), and queries were normalized before they were submitted to the
search engine. Dictionaries were also normalized, so that their output would match the forms found in the
queries and the corpus.

In our official runs, normalization consisted of the following steps:

• Convert to Windows Arabic encoding (CP1256), if necessary

• Remove punctuation

• Remove diacritics (mainly weak vowels) Most of the corpus did not contain weak vowels.
Some of the dictionary entries contained weak vowels. This made everything consistent.

• Remove non letters

• Replace initial إ or أ with bare alif .ا
• Replace آ with ا
• Replace the sequence ىء withئ
• Replace finalى withي
• Replace final ة with ه

The definitions of punctuation, diacritics, and non-letters came from the Khoja stemmer, below.

We later improved normalization substantially via two minor changes – replacing إ or أ with bare alif ا
regardless of position in the word, and removing tatweel. The label norm refers to the original normaliza-
tion. Norm2 refers to the modified normalization, and includes stop word removal.

4.2. Stemming

We obtained a stemmer from Shereen Khoja of the Computing Department at Lancaster University [4],
which we modified to suit our needs. The stemmer included several useful data files such as a list of all
diacritic characters, punctuation characters, definite articles, and 168 stop words, etc. We used some of
these files in our normalization algorithm above. This stemmer attempts to find roots for Arabic words,
which are far more abstract than stems. It first removes definite articles, prefixes, and suffixes, then at-
tempts to find the root for the stripped form. If no root is found, then the word is left intact. The stemmer
also removes stop words. We know both that roots are too abstract for effective information retrieval, and
that the overall approach of not stripping any affixes at all is faulty. Although this stemmer made many
mistakes, it improved performance immensely, nevertheless.

The changes we made to the Khoja stemmer were (1) If a root were not found, the normalized form was
returned, rather than returning the original unmodified word. (2) We added the list of place names des-

cribed in section 4.3.4 as “unbreakable” words exempt from stemming.

In addition to the Arabic stop word list included in the Khoja stemmer, we applied a script to remove stop
phrases, which were translations of the stop phrases we had in our English stop-phrase removal script.

After TREC we developed a light stemmer which strips definite articles فال آال، بال، وال، ال، and و
(and) from the beginnings of normalized words and strips 10 suffixes from the ends of words ( ات، ان، ها،
ي ة، ه، ية، يه، ين، ون، ) [6]. With stop word removal this stemmer yielded higher performance than the
khoja stemmer. In the Results sections below, khoja refers to the original Khoja stemmer, khoja-u refers
to the version where words on city and country list are considered unbreakable and exempt from stem-
ming. Light refers to the light stemmer.



4.3. Dictionaries

Our structural approach to query translation for cross-language retrieval required that we look up each
individual English word in each query (including words added by query expansion), and get all available
translations into Arabic words or phrases. We put together several different sources of translations for
English words into Arabic, using free resources from the web as much as possible.

4.3.1. The Ectaco dictionary

The Ectaco dictionary is available online, at http://www.ectaco.com/online. We could not query
this dictionary under program control, so we collected entries manually from the web site. For each Eng-
lish query term and expanded query term, we collected entries by cutting and pasting all the Arabic
translations that were available. If an English word were not found, we searched for the word as stemmed
by the kstem stemmer.

4.3.2. The Sakhr multilingual dictionary

The Sakhr multilingual dictionary is found at http://dictionary.ajeeb.com/en.htm. We were
able to harvest entries from this dictionary under the control of a Java program which repeatedly queried
the English to Arabic page with English words. We collected all available definitions for query words
and expansion words. In addition, we collected Arabic-English entries for all available Arabic words in
the AFP_ARB corpus.

4.3.3. Sakhr SET machine translation

The Sakhr SET machine translation engine was made available to TREC participants by Mark Meinke at
http://217.52.128.36/set/English/. This was not used to translate queries. We used it only to
look up individual words that we did not find in either of the two dictionaries. This MT engine has a
transliteration component, which converts the English word into Arabic characters if a translation is not
found. We used this as a substitute for a transliteration algorithm, which we did not yet have available.

4.3.4. Place name lexicon

A small bilingual lexicon of country and city names was derived from a list of world cities we found on
the web at http://www.fourmilab.ch/earthview/cities.html. This list had 489 entries, and
listed the names of most countries of the world, their capitals, and a few other major cities. To get the
Arabic translations, we used the Sakhr SET engine, which performed machine translation from English to
Arabic. Many of these translations were transliterations. This list of place names (and only this list,
which was made independently of the queries) was hand corrected by an Arabic speaking consultant.

4.3.5. Small and large lexicons

Two bilingual lexicons were built. The first (small) consisted of the place names plus all the English-
Arabic translations found for all of the English query words, including the additional query words added
via expansion of the English query for the cross-language run. The second (large) lexicon consisted of all
the entries from the small lexicon, plus the all the inverted Arabic-English entries. For convenience, we
built stemmed versions of the lexicons for each stemmer that we tested. The small normalized English to
Arabic lexicon contained 28,868 English words, 269,526 different Arabic translations, for an average of
9.3 different translations per word. The large normalized lexicon contained 50,358 English words,
1,692,408 translations, for an average of 33.6 different translations per word.



5. Other Resources and Techniques

5.1. Stop words and phrases

English stop words (used only for cross-language retrieval) are from INQUERY’s standard list of 418
stop words. English stop phrases are defined by regular expressions in a script we have used before in
TREC (in English). We built a list of Arabic stop phrases from this by translating the phrases. Arabic
stop words are from the Khoja stemmer’s list of 168 stop words.

5.2. Query Expansion

We expanded English queries in our official cross-language run, using the AP news articles from 1994
through 1998 in the Linguistic Data Consortium’s NA News corpus. This corpus was indexed without
stemming, but normalized to lower case. We retrieved the top 20 documents for each query, and ranked
the terms from these documents using the ratio method described in Ponte’s thesis, chapter 5 [8]. The
five top ranked new English terms were then added to the query. Each term in the query received a final
weight of 2wo + we where wo is the original weight in the unexpanded query, and we is the score the term
received by the ratio method expansion.

After submitting the official runs, we changed the expansion method. Terms from the top 10 documents
received an expansion score which was the sum across the ten documents of the Inquery belief score for
the term in the document. The 5 terms with the highest expansion score were added to the query. Final
weights were set to 2wo + we where wo is the original weight in the unexpanded query and we=1.

Due to technical problems involving the interaction of Arabic stemming with query expansion, and lack
of time we did not submit any official runs in which the Arabic queries (monolingual, or translated for
cross-language) had been expanded.

After TREC, we added Arabic query expansion, performed as follows: retrieve the top 10 documents for
the Arabic query, using LM retrieval if the expanded query would be run in an LM condition, and using
Inquery retrieval if the expanded query would run in an Inquery condition. Terms from the top ten docu-
ments were ranked using the same expansion score used in the post-hoc English expansion. The top 50
terms that were not already part of the original query were added. For Inquery conditions, the added
terms were added to the original query as additional terms under the top level #wsum operator. For both
Inquery and LM conditions, the weights on original terms were doubled, and the new terms received a
weight of 1.

6. Monolingual Runs

6.1. Description of Runs

We entered three monolingual runs, which differed in stemming and in retrieval algorithms:

1. Inquery Baseline. (UMass4) : normalized but not stemmed

2. Inquery Stemmed (UMass1): stemmed using Khoja-u stemmer

3. LM Stemmed (UMass2): stemmed using Khoja-u stemmer. LM as described in section

2.2.1.

The following steps were carried out in processing all monolingual runs.

1. Convert queries to CP1256 encoding.

2. Remove all but the title and description fields.

3. Remove stop phrases from Arabic queries.



4. Normalize or stem the query, depending on the condition.

5. Rank the documents using either INQUERY or LM, depending on condition.

6.2. Results

Without stemming our system performed very poorly. With stemming it performed quite well, as sum-
marized in Table 1. The table shows average precision for each run, and summarizes a query-by-query
comparison with the median performance over 20 monolingual manual and automatic runs, with respect
to average precision and the number of relevant documents returned in the top 1000.

As the table shows, stemming improves the results immensely. With stemming, average precision im-
proved 49% over the INQUERY baseline. The LM stemmed condition was not as good as the Inquery
stemmed condition. A striking pattern apparent in the table is a recall bias due to stemming. In both
stemmed conditions the number of queries above the median in relevant documents returned in the top
1000 is larger than the number of queries above the median in average precision.

Table 1: Monolingual Results - official runs with normalization and khoja-u stemmer

CONDITION Name of Run Average Precision Number of Queries at or Above Median

Average Precision Rel Ret in top 1000

Inquery baseline UMass4 .2104 10/25 10/25

Inquery stemmed UMass1 .3129 18/25 24/25

LM baseline not submitted .1858

LM stemmed UMass2 .2597 16/25 20/25

6.3. Posthoc Monolingual Experiments

We compare the official results with runs using improved normalization, stemming, and with query ex-
pansion, and better language modeling. Table 1 shows the old and new conditions including the official
runs, which are asterisked. Raw means that no stemming or stop word removal was applied. Norm,

norm2, khoja-u, khoja, and light are defined in section 4.2 above. Since roots and lightly stemmed words
are quite different representations of Arabic words, we reasoned that they could be productively com-
bined. Light+khoja is a combination of evidence run, where the ranked lists from the light and khoja runs
were averaged without any normalization of scores. Shaded cells were conditions that were not run.

Table 2: Monolingual results with improved normalization, stemming, and language modeling, with and

without query expansion

Raw Norm Norm2 Khoja-u Khoja Light Light+

Khoja

Inquery .1935 .2104* .2408 .3129* .3410 .3894 .4088

Inquery + Query Expansion .2709 .3002 .3303 .3595 .3778 .4274 .4408

LM .1858 .2597*

LMnew .1879 .2020 .2431 .3189 .3479 .3736 .3981

LMnew+Query Expansion .2629 .2990 .3335 .3490 .3772 .4130 .4465

* official runs

It is apparent from these runs that the light stemmer is superior to the khoja stemmer. Although it seemed
like a good idea to have the list of unbreakable place names as part of the Khoja stemmer, performance



was better without it. These results also show that the changes in background model estimation and
smoothing bring language model performance to a level comparable to that of Inquery.

7. Cross Language Retrieval

7.1. Description

Our official cross language run (UMass3) used the INQUERY search engine, the Khoja stemmer (with
unbreakables) for Arabic, the kstem stemmer for English [5], and query expansion of the English query,
dictionary lookup of query terms in the small dictionary. The steps were as follows:

1. Remove stop phrases from English queries.

2. Remove stop words from English queries

3. Expand the English query

4. For each English word:

a. Look for a set of translations in all of the English to Arabic lexicons described above

b. If not found, stem the English word using the kstem stemmer and look it up again. Use
all translations found in the dictionary.

c. Stem the Arabic translations

d. If any of the translations consist of an Arabic phrase rather than a single word, enclose
the phrase in a #filreq operator. #filreq is like a Boolean and. If this version of
INQUERY had proximity information, we would have used phrase or ordered window
operators instead, but these were not available.

e. If a set of translations was found, enclose all the alternatives in a #syn (synonym)
operator

5. Build a weighted sum query out of all the stemmed translations of the query terms by subsumimg
all the synonym sets under a #wsum (weighted sum) operator. Each synonym set was given the
weight described above in the query expansion section.

6. Submit the weighted sum query to Inquery to retrieve Arabic documents.

7.2. Results

Table 3: Cross Language Results – official run – Inquery, expanded English, unexpanded Arabic

CONDITION Name of Run Average Precision Number of Queries at or Above Median

Average Precision Rel Ret in top 1000

Inquery baseline not submitted .1691

Inquery stemmed UMass3 .2795 20/25 20/25

Table 3 shows the results for the Cross Language run in the same format as the Table 1. In this case,
query-by-query performance is compared with the median of 28 cross language runs, which include 2
French to Arabic, and 1 manual run. In 20 out of 25 queries, we performed at or above the median in
both average precision and in the number of relevant documents returned in the top 1000.



Subsequent experiments showed improved results using the same general approach, but with the light
stemmer, the large dictionary, and Arabic query expansion as well as English.

We compared the small and large dictionaries, described in Section 4.3.5.

Table 4: Comparison of small and large English-to-Arabic lexicons.

Unexpanded cross-language retrieval

norm khoja-u light8

Small lexicon .1660 .2069 .3655

Large lexicon .2624 .2514 .3794

Table 4 shows that the large dictionary performed substantially better than the smaller dictionary, in spite
of the large number of translations for each word in the large dictionary.

The final set of experiments, summarized in Table 5, show that expanding both English and Arabic quer-
ies with the large dictionary and the light8 stemmer give the most effective cross-language retrieval. Raw

means that no normalization or stemming were applied, norm, khoja-u, khoja, and light conditions refer to
normalization only, Khoja stemmer with unbreakables, Khoja stemmer without unbreakables, and light
stemming, respectively. Light+khoja is a combination of evidence run, in which scores from the light and
khoja runs were averaged. Combination of evidence improves performance, but only slightly.

Table 5: Cross-language retrieval using large lexicon, different stemmers, and query expansion

raw norm khoja-u khoja light light+khoja

No query expansion .1128 .2624 .2514 .2598 .3794 .3830

Expanded English .1389 .3056 .2934 .3077 .4222 .4348

Expanded Arabic .1544 .3371 .2917 .2931 .4106 .4189

Expanded English and Arabic .1690 .3480 .3516 .3589 .4502 .4629
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