
Predicting Query Performance

Steve Cronen­Townsend

crotown@cs.umass.edu

Yun Zhou

yzhou@cs.umass.edu

W. Bruce Croft

croft@cs.umass.edu

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts, Amherst, MA 01003

ABSTRACT

We develop a method for predicting query performance by
computing the relative entropy between a query language
model and the corresponding collection language model. The
resulting clarity score measures the coherence of the lan-
guage usage in documents whose models are likely to gen-
erate the query. We suggest that clarity scores measure the
ambiguity of a query with respect to a collection of docu-
ments and show that they correlate positively with average
precision in a variety of TREC test sets. Thus, the clarity
score may be used to identify ineffective queries, on average,
without relevance information. We develop an algorithm
for automatically setting the clarity score threshold between
predicted poorly-performing queries and acceptable queries
and validate it using TREC data. In particular, we com-
pare the automatic thresholds to optimum thresholds and
also check how frequently results as good are achieved in
sampling experiments that randomly assign queries to the
two classes.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation

General Terms

Algorithms, Experimentation, Theory

Keywords

ambiguity, clarity, information theory, language models

1. INTRODUCTION
Dealing effectively with poorly-performing queries is a

crucial issue in information retrieval systems. Even what
a user believes to be well-formulated queries may, in fact,
perform poorly depending on the nature of the collection.
Since no user knows the full nuances of the documents in
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the collection they are searching, all queries are poorly for-
mulated, to varying degrees.

For example, suppose a user interested in the competitors
in the 1988-1989 soccer World Cup issues the query “World
Cup” against the TREC AP88 collection of news articles. If
those two words are the only evidence the system has about
what the user means, it is simply impossible for the system
to return the soccer articles consistently higher in the ranked
list than the articles about World Cup chess tournaments.
Articles about World Cup chess tournaments are predom-
inant, in fact, in the chosen collection among the articles
that use the query terms frequently. Despite the fact that
the user might not have known that there was a World Cup
in anything other than soccer, he or she would get a ranked
list with chess articles predominating and with soccer arti-
cles interspersed sporadically throughout.

As highlighted in the above example, the degree of ambi-
guity of a query with respect to the collection of documents
being searched is often closely related to query performance.
Thus we seek to measure the degree of ambiguity of a query
with respect to a collection of documents. Specifically, we
measure the degree of dissimilarity between the language
usage associated with the query and the generic language of
the collection as a whole.

A query whose highly ranked documents are about a single
topic (high coherence) has a model characterized by unusu-
ally large probabilities for a small number of topical terms.
On the other hand, a query returning a mix of articles about
different topics (low coherence) has a model that is smoother
and more like the model of the collection as a whole. Hence
the high-coherence query would get a high score (since its
associated language is very different from the overall collec-
tion language), while the low-coherence query would get a
low score. Thus, this measure is closely related to the lack
of ambiguity, and we call it the clarity score.

There is a strong correlation between the clarity score of a
test query with respect to the appropriate test collection and
the performance of that query. We believe this is due to the
fact that a low-coherence retrieval is likely to contain many
irrelevant documents in the top ranks and a high-coherence
retrieval often contains many relevant documents in the top
ranks. Hence it is possible to predict, to some degree, the
performance of a query without relevance information. We
show how to set the clarity score threshold optimally to
predict whether a test query falls in to the upper or lower
half of a set of test queries. Finally, we suggest a way to set
the threshold without relevance information, making these
techniques applicable to real systems.



2. COMPUTING CLARITY
Throughout this work we use a language modeling ap-

proach, similar to the approach first used in information re-
trieval by Ponte and Croft[16]. Language models, long used
in speech recognition, capture statistical aspects of the gen-
eration of language[9]. In information retrieval they are of-
ten applied in a simple manner, modeling term occurrences
at the document level with little or no regard to sequen-
tial effects. In the computations of this paper, a “language
model” refers to a probability distribution over all single
terms (morphologically-normalized words) and may be esti-
mated based on a single document, or a query and collection
of documents. Thinking about language models more gener-
ically, however, is often fruitful since simple language models
can often be replaced by more sophisticated models in future
work.

2.1 Definition
The first step in computing a clarity score is estimating

a query language model. We have investigated both of the
methods put forward by Lavrenko and Croft[13] for estimat-
ing such models1. Here we use Lavrenko and Croft’s Method
1. In this approach one assumes, in effect, that the query
terms and the terms in the documents are sampled iden-
tically and independently from the query model unigram
distribution. This results in high probability estimates for
terms that occur frequently in documents containing many
query terms.

The query language model (unigram distribution over terms)
is given by

P (w|Q) =
∑

D∈R

P (w|D)P (D|Q), (1)

where w is any term, Q the query, D is a document or the
model estimated from the corresponding single document,
and R is the set of documents that contain at least one
query term.

As weights P (D|Q) in Equation (1) we estimate the likeli-
hood of an individual document model generating the query[19]
as

P (Q|D) =
∏

q∈Q

P (q|D), (2)

and obtain P (D|Q) by Bayesian inversion with uniform prior
probabilities for documents in R and a zero prior for docu-
ments that contain no query terms.

We estimate P (w|D) and P (q|D) in (1) and (2) by relative
frequencies of terms linearly smoothed[14] with collection
frequencies as

P (w|D) = λPml(w|D) + (1 − λ)Pcoll(w), (3)

where Pml(w|D) is the relative frequency of term w in doc-
uments D, Pcoll(w) is the relative frequency of the term in
the collection as a whole, and λ = 0.6 throughout this study.
Figure 1 shows example query and collection language mod-
els.

The clarity score for the query is simply the relative en-
tropy, or Kullback-Leibler divergence[4], between the query
and collection language models (unigram distributions),

1Lavrenko and Croft refer to these as relevance models.
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Figure 1: The query language model for query A,
“Show me any predictions for changes in the prime
lending rate and any changes made in the prime
lending rates” in TREC disk 1 and the collection
language model for that collection. The top 50 terms
are plotted in order by their collection probabilities.

given by

clarity score =
∑

w∈V

P (w|Q) log2

P (w|Q)

Pcoll(w)
, (4)

where V is the entire vocabulary of the collection.
The efficiency of clarity score computation with Equation

(4) is dominated by the estimation of the query language
model by Equation (1), since the collection model can be
precomputed at index-time. The query model is estimated
most efficiently by sampling documents using standard tech-
niques[10]. Throughout this paper we estimate query models
by sampling until reaching a limit of 500 unique documents.
Alternatively to (4), one can compute the divergence with
the roles of the query language model and the collection
language model reversed. The method shown in Equation 4
consistently performs slightly better in TREC evaluations of
clarity score correlation with average precision (see section
4) and is used throughout this paper.

One can use Lavrenko and Croft’s Method 2 models as
an alternative to Equation (1). The weaker independence
assumptions employed in this method result in high proba-
bility estimates for terms that commonly co-occur in docu-
ments with individual query terms, but not necessarily many
query terms at once. Except in AP88+89 tests, the Method
1 models used in this section result in slightly better correla-
tion between clarity score and average precision (see section
4) and are used unless otherwise noted.
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query A: “Show me predictions for changes
in the prime lending rate and any changes
made in the prime lending rate”

query B: “What adjustments should be
made once federal action occurs?”

Figure 2: A clear versus a vague query in TREC
disk 1 with the top 40 contributions plotted term-
by-term. The top six contributions, in order, for
query A are for the terms “bank”, “hong”, “kong”,
“rate”, “lend” and “prime” while the top six for
query B are “adjust”, “federal”, “action”, “land”,
“occur” and “hyundai”

2.2 Examples
Consider two queries, A and B. A is “Show me any predic-

tions for changes in the prime lending rate and any changes
made in the prime lending rates” and B is “What adjust-
ments should be made once federal action occurs?”

Figure 1 shows the language models used in computing
the clarity score for query A, which is 2.85 bits. In terms
of these figures, the clarity score is the top graph minus the
bottom graph, times 2 to the power of the top graph and
summed over terms. The difference between the two graphs
makes a function with spikes at the most topical words and
the final step of taking the expectation value of this quantity
using the top distribution enhances the peaks further still.
This procedure can also be interpreted as the number of
bits wasted on average when one encodes term-occurrence
events sampled from the query language model with a code
optimally designed for the collection language model.

The best way to visualize the difference between clear and
vague queries is to plot the clarity contributions on a term-

by-term basis as in Figure 2. Here P (w|Q) ∗ log( P (w|Q)
Pcoll(w)

) is

plotted for each of the top 40 contributing terms w, sorted
in descending order of contribution. For example, the left-
most gray bar in Figure 2 shows that the term “bank” made
the biggest contribution (0.416) to the clarity score of the
query A. This term is prominent in the query model (Equa-
tion (1)) because it occurs frequently in documents whose
models are likely to generate the query. Note that “bank”
does not, itself, occur in the query. This term makes a high
contribution to the clarity score (Equation (4)) because its
estimated probability is much higher in the query model
than in the collection model. Visually, compare its value
in the top graph of Figure 1 (the biggest spike) to the cor-
responding value directly below it on the collection model
graph. Similarly, the small black bar in the leftmost position
indicates that term “adjust” made the highest contribution
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Figure 3: Clarity scores for some related queries
against the TREC-7 collection. The scores are com-
puted using Equation (4) and Method 1 query mod-
els (Equation 1), with scores using Method 2 models
in parenthesis. Arrows indicate the addition of a
query term.

to the clarity score of query B at 0.015. In this represen-
tation, the clarity score for a query is the total of all the
heights of the corresponding bars, or the total area of the
bars. The clarity score of query B is the total area of all
the black bars (the tallest 40 of which are show in Figure
2) and is 0.37 as compared to the total of 2.85 for query A

(grey bars). This representation makes the contrast evident
between high and low clarity score queries.

3. CLARITY AND AMBIGUITY
Clarity scores were invented in an attempt to quantify

the ambiguity of a query. Looking at the entropy of the
query language model is a natural approach since entropy
measures how strongly a distribution specifies certain val-
ues, in this case terms. Refining to the relative entropy of
the model as compared to the collection model, allows the
method to ignore large and fluctuating contributions due to
generic terms.

The clarity scores for a series of related queries is shown
in Figure 3. The left and right edges of this figure represent
two distinct meanings starting with the term “train”. The
left side refers to training of dogs and the right side refers to
railroad cars. The lowest central query “railroad train dog”
is an ambiguous combination of the two meanings. With
Method 1 models this ambiguous query is far lower scoring
than its more specific neighbors to the left and right but
comparable to the two two-term queries up one level. In-
terestingly, though, with Method 2 models (scores in paren-
theses in Figure 3) the score of this query is not only lower
than the more specific three term queries, but is even lower
than the score of the original one-term query “train.” Clar-
ity scores from Method 2 models seems to “punish” more
harshly the addition of a term that does not co-occur with
the other query terms in documents in the collection. Clarity
scores computed this way correlate less strongly with aver-
age precision in evaluations of the type we describe next.
More detailed discussion of clarity scores as a measure of
ambiguity appear in [6].

4. CLARITY AND AVERAGE PRECISION

4.1 TREC Ad Hoc Track Evaluations
To lay the groundwork for using clarity scores to predict

the performance of a query, we measure the correlation be-
tween clarity scores and average precision scores for various
TREC Ad Hoc Track test collections and queries. The re-



Collection Queries Num. R P-value
AP88+89 101 − 200 100 0.368 1.2 × 10−4

TREC-4 201 − 250 50 0.490 3.0 × 10−4

TREC-5 251 − 300 50 0.459 6.5 × 10−4

TREC-7 351 − 400 50 0.577 2.7 × 10−5

TREC-8 401 − 450 50 0.494 2.7 × 10−4

TREC-7+8 351 − 450 100 0.536 4.8 × 10−8

Table 1: The correlation of clarity scores with aver-
age precision in several TREC test collections. The
queries are the titles of the TREC topics (usually a
few words), except for TREC-4 where the descrip-
tion field is used due to a lack of titles, resulting in
queries of 16.1 words, on average.

trieval is done with a simple multinomial language modeling
approach[19]2.

Since the score distributions are unknown, an appropri-
ate test is the Spearmann rank correlation test[8]. As a first
step, each list of scores is replaced by the corresponding
ranks (e.g. the lowest score is replaced with 1, the sec-
ond lowest score with 2, et cetera, and the highest score is
replaced with the number of queries). Then one computes
what appears to be a correlation coefficient from elementary
statistics between the two rankings. A score of 1 indicates
perfect agreement in the rankings and a score of −1 indi-
cates opposite rankings. This is a distribution-free statistic
whose null distribution (the distribution if the two rankings
are unassociated) is well-approximated by a normal for sam-
ple sizes as large as 50, our smallest sample size. Thus it
is straightforward to estimate the p-values, or probabilities
that results as extreme or more extreme occur by chance.

The results (Table 1) show a strong positive association
between the clarity score of a query and the average preci-
sion of that query. The first row shows, for example, that
with AP88 and AP89 TREC test collections combined and
using the titles of the TREC topics numbered 101 − 200
as queries (of which there 100), there is a rank correlation
of 0.368 between clarity score and average precision. The
corresponding p-value of 1.2× 10−4 indicates the estimated
probability that an apparent correlation as extreme, or more
extreme, would occur by chance if clarity scores and average
precision scores were actually unassociated.

Query length does not seem to effect the correlation re-
sults much since the rank correlation coefficient for TREC-4,
where the average query length is 16.1, is similar to the other
entries farther down the table, where the queries are a few
words. The fact that the correlation persists at about the
same level when TREC-7 and TREC-8 queries are combined
into one set3 results in a drastically lowered p-value, since
such a correlation is much less likely to occur by chance with
twice as many queries.

4.2 TREC Query Track Evaluations
We also show correlation results for the TREC-9 Query

Track (see Table 2). In this evaluation, we check the corre-
lation with precision among different queries for the same
TREC topic. The queries, submitted by the 6 research
groups that participated in the Query Track, include a vari-

2Standard TF.IDF retrieval gives similar correlation results.
3This is legitimate since the collections are the same.

Queries Num. R P-value
aggregate 1804 0.39 2.2 × 10−61

by topic 36.1 ± 3.7 0.247 ± 0.244 2.0 × 10−21

Table 2: The correlation of clarity scores with av-
erage precision in the TREC Query track. “Ag-
gregate” indicates all queries taken together while
“topic ave.” values are the averages over each of the
50 query track topics.

ety of very short and one or two sentence queries[2]. There
are 43 versions of queries for each of the 50 topics numbered
51 − 100 for TREC disk 1, giving us 50 different values for
the rank correlation coefficient. This evaluation is the most
relevant our measure’s ability to distinguish between user
queries that are likely to work well and ones that are likely
to perform poorly for the same information need.

Once queries are stopped and stemmed[11] there are quite
a few duplicates, resulting in 36.1 queries per topic, on aver-
age, and 1804 queries for the 50 topics in total. The Spear-
mann rank correlation coefficients and associated p-values
are computed as explained previously. The p-value listed in
the “by topic” results is the probability estimate for a result
more extreme than the particular set of 50 rank correlation
coefficients seen in that experiment.

It is interesting to note that, for a few individual topics,
the rank correlation coefficient is actually negative. This
is reflected in the entry showing R = 0.247 ± 0.244 in Ta-
ble 2. Examination of several of these poorly-correlating
topics show that such topics have some high clarity queries
that have low average precision, as well as some low clarity
queries with high average precision.

For example, in topic 57, about the long term financial
health of the company MCI, the queries “Future of MCI”
and “MCI’s profit” are low ranking in clarity but happen to
have high ranking average precision (essentially, they place
relevant documents near the top of the ranked list by luck)
while there are some queries, like “Multiport Communica-
tions Interface” that are high ranking in clarity score but low
ranking in average precision (this query actually receives
a perfect zero in average precision). The query “Multi-
port Communications Interface” is in fact fairly specific and
should get a reasonably high clarity score in the TREC disk
1 collection but clearly will not retrieve documents about
the telecommunication company MCI. This query seems to
have been generated by automatic (and mistaken) expan-
sion of the acronym MCI. In this case and others like it, the
failure of the clarity score ranking to predict the average
precision ranking is clearly not a fault of our method; the
query is essentially a high-clarity score query for a differ-
ent information need. Since clarity scores are not computed
with any reference to the underlying information need, clar-
ity scores can not predict the poor performance of such off-
topic queries or, indeed, any queries that specify a coherent
set of documents that just happen to be about the wrong
topic.

We believe that the slightly lower value of R = 0.247
(average) on a per-topic basis is the result of the presence
of extremely low quality queries, such as the one mentioned
in the previous paragraph. However, the persistence of the
correlation over so many queries still results in an extremely



Collection Queries Num. R P-value
AP88+89 101 − 200 100 0.409 2.4 × 10−5

TREC-4 201 − 250 50 0.298 0.019
TREC-5 251 − 300 50 0.289 0.022
TREC-7 351 − 400 50 0.467 5.4 × 10−4

TREC-8 401 − 450 50 0.474 4.5 × 10−4

TREC-7+8 351 − 450 100 0.449 4.0 × 10−6

Table 3: The correlation of the average IDF of query
terms with average precision in several TREC test
collections. The queries are the titles of the TREC
topics (usually a few words), except for TREC-
4 where the description field is used, resulting in
queries of 16.1 words, on average.

low p-value since such an apparent correlation is extremely
unlikely to occur by chance over such a large data set.

5. ALTERNATIVE PREDICTORS
In order to better assess the significance of the clarity

measure, we compare it to various other predictors of query
performance. In particular, we evaluate the average and to-
tal term weights of query terms as predictors of performance
using the methods of Kwok[12] and Wong[21], as well as the
standard inverse document frequency measure given by

IDF (w) = log10

number of docs

number of docs containing w
. (5)

The results for the average IDF of query terms are given
in Table 3. Average Kwok score of query terms is less cor-
related with performance than average IDF and average
Wong weight performs similarly to IDF . Using the sum of
weights performs worse with all methods.

The results in Table 3 seem to show the average IDF

of query terms as predicting the performance of queries to
some degree, though not as well as clarity scores, in general
(cf. Table 1). On TREC-7 plus 8, for example, the results
with average IDF are about 83 times as likely to occur by
chance as the correlations with clarity scores.

It is important, however, to look at the correlations of the
term-weight-based predictors on the query track, the largest
and most diverse test query set currently available. Table 4
shows the best performance, which is for the average IDF

predictor.
All three term-weight-based methods show near random

performance on the aggregate data. When looking at the
correlations on a topic-by-topic basis the average IDF mea-
sure does much better than it does on the aggregate. The
clarity results (Table 2, second row) are still about a million
times less likely to occur by chance, however. The disparity
between the aggregate and by-topic performance of average
IDF of query terms as a performance predictor seems to
indicate that it is particularly poor at comparing queries
across topics.

In addition to the term-weight based predictors we con-
sider the negative of the entropy of P (D|Q) as a predictor
of query performance. For this predictor we find no appre-
ciable rank correlation with average precision, except at ex-
tremely high and low values of the entropy. This correlation
makes sense, for example, since the highest values of this en-
tropy indicate the most uniform distributions P (D|Q) which

Queries Num. R P-value
aggregate 1804 0.025 0.14
by topic 36.1 ± 3.7 0.220 ± 0.224 2.0 × 10−15

Table 4: The correlation of the average IDF of query
terms with average precision in the TREC Query
track. “Aggregate” indicates all queries taken to-
gether while “topic ave.” values are the averages
over each of the 50 query track topics.
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Figure 4: Average precision versus clarity score for
the 100 title queries from the TREC-7 and TREC-8
adhoc tracks. The 0.162 threshold in average pre-
cision divides the estimated probability density in
half (see Figure 5). The threshold of 1.09 in clar-
ity score is the Bayes optimal level for classifying
queries as high or low precision based on their clar-
ity scores, based on the estimated probability den-
sities(see Figure 6). The threshold of 1.21 is the au-
tomatic threshold set without relevance information
at level where 80% of one-term queries have lower
clarity scores (see Figure 7).

never leads to a high average precision since documents are
valued nearly evenly in such a case. Moreover, the over-
all lack of correlation in this case shows that our inclusion
in clarity score computation of language statistics from the
documents beyond just their likelihood of generating query
terms is necessary for good prediction performance.

6. THRESHOLDING
We plan to use clarity scores to make a binary decision

about each user query, namely, whether should it be singled
out for special treatment on the basis of predicted poor per-
formance, or not. We frame this task, in test collections, as
classifying whether the query is likely to score better than a
certain average precision threshold, or worse. We show how
to set the optimal threshold in order to use clarity scores
to make this classification. For the general case where no
relevance information is available, we develop a heuristic for
setting a clarity score threshold that is reasonable and per-
forms nearly as well as the optimal method in various test
collections.



�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂

50%

P

0.162 average precision

2.5

3

3.5

4

0 0.2

2

0.4
0

0.6 0.8 1

1.5

1

0.5

Figure 5: The kernel-estimated probability density
for average precision based on the 100 title queries
from the TREC-7 and TREC-8 adhoc tracks. The
shaded area (average precision less than 0.162) is
one half of the total area. So, based on the kernel
estimated density for these queries, there is a 50%
chance that a query is below this level and a 50%
chance it is above this level in performance.

6.1 Optimal Thresholding
When relevance information is available for the queries, we

set the threshold for clarity scores optimally using standard
Bayes decision theory[7]. The feasibility of this approach
for the combined Ad Hoc Tracks of TREC-7 and TREC-8
is evident in Figure 4, where the strong positive association
between clarity score and average precision can be seen.

We seek to divide the test queries into two classes, “good”
(above a certain average precision threshold) and “bad” (be-
low the same threshold). We set this threshold by per-
forming kernel density estimation with automatic setting
of the degree of smoothing[1]. Kernel density estimation
is a smoothing technique that allows us to estimate the un-
derlying probability density by summing gaussians centered
at each observed data point. We require half of the es-
timated probability density to be below the threshold, as
shown in Figure 5. That is to say, we pick the average pre-
cision threshold so the estimated probability of a good test
query is 50%, and the probability of a bad test query is 50%.
This is the horizontal line in Figure 4.

With the high and low average precision classes thus de-
fined, we estimate the probability density functions for the
clarity scores of queries as shown in Figure 6, again using
kernel density estimation. Since the probability that a test
query is in either class is 50%, the Bayes optimal decision
boundary is simply where the two class-conditional distri-
butions intersect. Put another way, we predict a query to
be good if the estimated likelihood of its clarity score would
be greater if it were known to be good than if it were known
to be bad. This setting of the threshold is optimal in that
it minimizes error rate, where the error of predicting a good
query to be bad and the error of predicting a bad query
to be good are scored equally. Optimal threshold settings
for several collections are shown in Table 5, along with the
automatically-set thresholds that we discuss next.

6.2 General Thresholding
In the general case there is no relevance information avail-

able for the queries. Our approach is to use the scale of pos-
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Figure 6: The class-conditional probability den-
sities for the clarity scores of “bad” queries
(below the 50% average precision threshold of
0.162) and “good” queries (above the same thresh-
old) in the TREC-7 and TREC-8 adhoc tracks.
P(bad) = P(good) = 0.5. The minimum Bayes error
is obtained using the indicated decision boundary of
1.09 as a threshold to predict the whether queries
fall in the high or low average precision classes.

sible clarity scores for the collection at hand to heuristically
set the clarity score threshold.

To obtain information about the possible clarity scores for
a given collection we sample single terms randomly from the
vocabulary and evaluate their clarity scores as single term
queries. We only consider terms that appear in at least
100 documents to avoid estimation problems in the query
language models (we have observed that models estimated
from too few documents result in clarity scores that are too
high).

After estimating the probability density over single term
queries with kernel density estimation, we set the threshold
heuristically so that 80% of the probability density is be-
low threshold (Figure 7). Simply put, a query is deemed
“clear enough” if an estimated 80% or more of single term
queries would have a lower clarity score. Since the automatic
threshold can be computed when the collection is indexed,
the decision takes no additional time once the clarity score
of the query is computed.

Table 5 shows the results for several test collections. The
bottom row, for example, represents the TREC-5 test col-
lection and queries that are the titles of the topics numbered
251-300 (of which there are 50). Here the optimal threshold
is 1.27 with a crudely-estimated p-value of 5.2× 10−3 while
the automatically set threshold (80%-rule) is 0.99 with a
crudely-estimated p-value of 2.6 × 10−3. The crudely esti-
mated p-values are the relative frequencies of results as good
or better in sampling experiments of 108 samples. In these
sampling experiments queries are randomly assigned to the
two classes with probabilities estimated from the observed
number of test queries in the two classes.

The automatically set threshold performs nearly as well in
the test collections as the optimal threshold (see Table 5).
The clarity score thresholds for the TREC-4 and TREC-
5 data, which were computed after the 80% rule was de-
veloped, do not agree as well as others, but the similarly
low likelihood of classification results as good by chance in-



Collection Queries Number Optimal Automatic
AP88+89 101 − 200 100 0.84(6 × 10−4) 0.68(6.2 × 10−5)

TREC-7+8 351 − 450 100 1.09(2 × 10−5) 1.21(1.2 × 10−5)
Query(Aggregate) 51 − 100 var. 1804 0.96(0) 1.07(0)

TREC-4 201-250 50 1.49(2.1 × 10−3) 0.95(5.4 × 10−3)
TREC-5 251-300 50 1.27(5.2 × 10−3) 0.99(2.6 × 10−3)

Table 5: Bayes Optimal and automatic clarity thresholds for a few test collections. The values in parentheses
are relative frequencies of classification results as good or better in 108 samples where the test queries are
randomly assigned to the two classes. The assignment probabilities are estimated to be the observed relative
frequencies of queries in the two classes in the set of test queries.

�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

80%

clarity score, c1.21

P

1

1.2

1.4

1.6

1.8

2

0 0.5

0.8

1
0

1.5 2 2.5 3 3.5

0.6

0.4

0.2

Figure 7: The kernel-estimated probability density
for the clarity scores of queries whose single terms
occur in at least 100 documents in the TREC-7 and
TREC-8 adhoc collection. The shaded area is 80%
of the total area under the curve, indicating an es-
timated 80% chance that an one-term query has a
clarity score less than 1.21).

dicate that the automatic thresholds are still reasonable.
We believe this variation is caused by the quality of the
test queries, since queries of very low average precision (and
average clarity scores) tend to push the optimal threshold
higher, obtaining more correct classifications of these low-
quality queries.

7. RELATED WORK
Prediction of query performance has long been of inter-

est in information retrieval, though previous attempts have
met with little success. This state of affairs is implicit in
the emphasis on combination in information retrieval[5], for
example, to combine the results from various versions of a
query for the same information need. Without the abil-
ity to predict the performance of such multiple versions of a
query, all one can do is combine their results equally. Several
studies closely related to ours have been published recently,
however.

In work on automatic query expansion, Carpineto, de
Mori, Romano, and Bigi[3] use a weight very similar to the
individual term contributions to the clarity score of a query
(as shown in Figure 2, for example) to rank and weight terms
within Rocchio query expansion. Also focussed on auto-
matic query improvement, Pirkola and Jarvelin[15] examine
individual term contributions to the retrieval effectiveness

of queries and have some success at identifying the most im-
portant query term when there is no information as to the
actual relevance of the documents to the query. In seek-
ing to classify questions as easy or hard, Sullivan[20] models
very long question text directly and compares questions in
a sophisticated way to an existing set of questions whose
effectiveness at retrieving relevant documents (when viewed
as information retrieval-style queries) has been measured.
The later two studies rely on relevance information to vari-
ous degrees, though Pirkola and Jarvelin’s work seeks to be
free of this reliance.

Additionally, speculation has been made about using the
dispersion of the top documents as a measure of query dif-
ficulty[18], and a nearly identical mathematical framework
has been used to model selectional preferences in natural
language[17].

8. FUTURE WORK
We plan to incorporate our methodology into a full infor-

mation retrieval system. The planned system will compute
the clarity score of a user query, before showing the user
any results, and attempt to predict whether the query is
going to be high- or low- performing. For a predicted high-
performing query a normal ranked list will be presented to
the user, but for a predicted low-performing query the re-
trieval results will be clustered by word usage and the user
given a choice of seeing one of the cluster’s members, or
adding words to the query in an attempt to improve it. To
return to the initial example, if the user issued the query
“World Cup” against the AP88 collection, we would like
the system to return representations of a clusters of docu-
ments related World Cup Soccer, World Cup Chess, perhaps
several other topics, and a miscellaneous category. The user
would be asked to choose a cluster that seems to correspond
to their actual information need, or to add words to the
query in an attempt to improve it.

As part of this system we have begun to investigate a
novel language-model-based clustering method. The docu-
ments associated with a query (top-ranked documents, say)
are modeled individually and each document defines a point
in the space of all possible language models (i.e. the space
of all unigram probability distributions, in our case). Ker-
nel density estimation techniques are then applied to es-
timate the continuous probability density from which the
documents are sampled. Alternatively, one can think of
this as a smoothing technique. The coordinates of peaks
in the estimated density represent cluster language models,
which we loosely think of as topic language models, and the
nearest peak to a given document point is that document’s



cluster. The degree of smoothing determines the granular-
ity and the number of clusters found. With a high degree
of smoothing, there is one cluster corresponding to the col-
lection language model and lower amounts of smoothing re-
sult in greater numbers of clusters, with possible numbers of
clusters determined by the data itself. To help deal with the
high dimensionality of the problem in a sensible way, we plan
to restrict the dimensions considered to be the probabilities
of top-contributing terms to the query language model (i.e.
For query B, the terms with the tallest bars in Figure 2).

We also plan to explore the use of clarity scores of vari-
ous possible translations of a query to improve effectiveness
in cross-lingual information retrieval and see possible appli-
cations of clarity score contributions (Figure 2) in selecting
documents for retrieval and other core information retrieval
technologies.

9. CONCLUSIONS
We have established that the query clarity score, as de-

fined, correlates well with average precision in test collec-
tions, even for multiple versions of queries for the same in-
formation need. This indicates the possibility of predict-
ing query performance using this measure. We have further
grounded these results by comparing the clarity score cor-
relations with the weaker correlations between the average
IDF of query terms and performance. To facilitate appi-
cations, we have proposed a simple method of setting the
threshold in clarity scores that does not require relevance
information. We have validated this method by comparison
with minimum Bayes error rate thresholds in a variety of
test collections, in conjunction with sampling experiments
that randomly classify documents. We believe that these
strong results will open up interesting research pathways in
information retrieval.
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