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Abstract. We explore the use of Optimal Mixture Models to represent topics. We

analyze two broad classes of mixture models: set-based and weighted. We provide

an original proof that estimation of set-based models is NP-hard, and therefore

not feasible. We argue that weighted models are superior to set-based models,

and the solution can be estimated by a simple gradient descent technique. We

demonstrate that Optimal Mixture Models can be successfully applied to the task

of document retrieval. Our experiments show that weighted mixtures outperform

a simple language modeling baseline. We also observe that weighted mixtures are

more robust than other approaches of estimating topical models.

1 Introduction

Statistical Language Modeling approaches have been steadily gaining popularity in the

field of Information Retrieval. They were first introduced by Ponte and Croft [18],

and were expanded upon in a number of following publications [4, 15, 24, 8, 9, 11, 14].

These approaches have proven to be very effective in a number of applications, includ-

ing ad-hoc retrieval [18, 4, 15], topic detection and tracking [26, 10], summarization

[5], question answering [3], text segmentation [2], and other tasks. The main strength

of Language Modeling techniques lies in very careful estimation of word probabilities,

something that has been done in a heuristic fashion in prior research on Information

Retrieval [21, 19, 20, 25].

A common theme in Language Modeling approaches is that natural language is

viewed as a result of repeated sampling from some underlying probability distribution

over the vocabulary. If one accepts that model of text generation, many Information

Retrieval problems can be re-cast in terms of estimating the probability of observing a

given sample of text from a particular distribution. For example, if we knew a distri-

bution of words in a certain topic of interest, we could estimate the probability that a

given document is relevant to that topic, as was done in [26, 21, 14]. Alternatively, we

could associate a probability distribution with every document in a large collection, and

calculate the probability that a question or a query was a sample from that document

[18, 4, 15].

1.1 Mixture Models

Mixture models represent a very popular estimation technique in the field of Language

Modeling. A mixture model is simply a linear combination of several different distri-

butions. Mixture models, in one shape or another, have been employed in every major



Language Modeling publication to date. For example, smoothing [6, 12, 17], a critical

component of any language model, can be interpreted as a mixture of a topic model

with a background model, as highlighted in [15, 13, 16].

This paper will be primarily concerned with the use of mixtures to represent se-

mantic topic models. For the scope of this paper, a topic model will be defined as a

distribution, which gives the probability of observing any given word in documents that

discuss some particular topic. A popular way to estimate the topic model is by mixing

word probabilities from the documents that are believed to be related to that topic. In

the next section we will briefly survey a number of publications exploring the use of

mixture models to represent topical content.

1.2 Related Work on Mixture Models

Hoffman [9] described the use of latent semantic variables to represent different topical

aspects of documents. Hoffman assumed that there exist a fixed number of latent topical

distributions and represented documents as weighted mixtures of those distributions.

Hoffman used an expectation-maximization algorithm to automatically induce topical

distributions by maximizing the likelihood of the entire training set. It is worthwhile to

point out that the nature of the estimation algorithm used by Hoffman also allows one to

re-express these latent aspect distributions as mixtures of individual document models.

Berger and Lafferty [4] introduced an approach to Information Retrieval that was

based on ideas from Statistical Machine Translation. The authors estimated a semantic

model of the document as a weighted mixture of translation vectors. While this model

does not involve mixing document models, it is still an example of a mixture model.

In the context of Topic Detection and Tracking [1], several researchers used un-

weighted mixtures of training documents to represent event-based topics. Specifically,

Jin et.al. [10] trained a Markov model from positive examples, and Yamron et.al. [26]

used clustering techniques to represent background topics in the dataset (a topic was

represented as a mixture of the documents in the cluster).

Lavrenko [13] considered topical mixture models as a way to improve the effec-

tiveness of smoothing. Recall that smoothing is usually done by combining the sparse

topic model (obtained by counting words in some sample of text) with the background

model. Lavrenko hypothesized that by using a zone of closely related text samples he

could achieve semantic smoothing, where words that are closely related to the origi-

nal topic would get higher probabilities. Lavrenko used an unweighted mixture model,

similar to the one we will describe in section 3.1. The main drawback of the approach

was that performance was extremely sensitive to the size of the subset he called the

zone. A similar problem was encountered by Ogilvie [16] when he attempted to smooth

document models with models of their nearest neighbors.

In two very recent publications, both Lafferty and Zhai [11], and Lavrenko and Croft

[14] proposed using a weighted mixture of top-ranked documents from the query to

represent a topic model. The process of assigning the weights to the documents is quite

different in the two publications. Lafferty and Zhai describe an iterative procedure, for-

malized as a Markov chain on the inverted indexes. Lavrenko and Croft estimate a joint

probability of observing the query words together with any possible word in the vocab-

ulary. Both approaches can be expressed as mixtures of document models, and in both



cases the authors pointed out that performance of their methods was strongly dependent

on the number of top-ranked documents over which they estimated the probabilities.

1.3 Overview

The remainder of this paper is structured as follows. In section 2 we formally define

the problem of finding an Optimal Mixture Model (OMM) for a given observation. We

also describe a lower bound on solutions to any OMM problem. Section 3 describes un-

weighted optimal mixture models and proves that finding such models is computation-

ally infeasible. Section 4.1 defines weighted mixture models, and discusses a gradient

descent technique for approximating them. Section 5 describes a set of retrieval exper-

iments we carried out to test the empirical performance of Optimal Mixture Models.

2 Optimal Mixture Models

As we pointed out in section 1.2, a number of researchers [13, 16, 11, 14] who employed

mixture models observed that the quality of the model is strongly dependent on the sub-

set of documents that are used to estimate the model. In most cases the researchers used

a fixed number of top-ranked documents, retrieved in response to the query. The num-

ber of documents turns out to be an important parameter that has a strong effect on

performance and varies from query to query and from dataset to dataset. The desire to

select this parameter automatically is the primary motivation behind the present paper.

We would like to find the optimal subset of documents and form an Optimal Mixture

Model. Optimality can be defined in a number of different ways, for instance it could

mean best retrieval performance with respect to some particular metric, like precision or

recall. However, optimizing to such metrics requires the knowledge of relevance judg-

ments, which are not always available at the time when we want to form our mixture

model. In this paper we take a very simple criterion for optimality. Suppose we have

a sample observation:
�✂✁☎✄✆✄✆✄✝�✟✞

, which could be a user’s query, or an example docu-

ment. The optimal mixture model ✠☛✡✌☞✝✍ is a model which assigns the highest probability

to our observation.

2.1 Formal Problem Statement

Suppose
�✏✎✒✑✔✓✕✄✖✄✆✄✌✗✙✘

is our vocabulary, and
� ✁ ✄✖✄✆✄✚� ✞

is a string over that vocab-

ulary. Let ✛ ✜ be the simplex of all probability distributions over
�

, that is ✛ ✜ ✎✢✑✤✣✦✥
✛ ✧✩★✢✪ ✣☛✫☛✬✮✭✰✯ ✣✱✯✲✎✳✓✴✘ . In most cases we will not be interested in the whole simplex ✛ ✜ ,

but only in a small subset ✛ ✜✶✵✸✷✢✛ ✜ , which corresponds to the set of all possible mix-

ture models. Exact construction of ✛ ✜✹✵ is different for different types of mixture models,

and will be detailed later. The optimal model ✠☛✡✺☞✻✍ is the element of ✛ ✜ ✵ that gives the

maximum likelihood to the observation
�✼✁✙✄✆✄✖✄✚�✽✞

:

✠✼✡✺☞✻✍ ✎✿✾✤❀❂❁✽❃❄✾✰❅❆❄❇✲❈ ❉❋❊ ✜❍● �✂✁✙✄✆✄✖✄✚�✽✞■✯ ✠✢❏ (1)

In Information Retrieval research, it is common to assume that words
�❑✁☎✄✆✄✖✄✚�✽✞

are mutually independent of each other, once we fix a model ✠ . Equivalently, we can



say that each model ✠ is a unigram model, and
� � represent repeated random sam-

ples from ✠ . This allows us to compute the joint probability ✜❍● �✼✁☎✄✆✄✆✄✝�✟✞ ✯ ✠✢❏ as the

product of the marginals:

✠ ✡✌☞✝✍ ✎✿✾ ❀ ❁✽❃❄✾✰❅❆❄❇✲❈ ❉ ❊
✞✁
�✄✂ ✁ ✜❍● � � ✯ ✠✢❏ (2)

Now we can make another assumption common in Information Retrieval: we de-

clare that
� ✁ ✄✆✄✖✄❂� ✞

are identically distributed according to ✠ , that is for every word☎
we have ✜❍● � ✁ ✎ ☎ ✯ ✠✢❏ ✎ ✄✆✄✖✄✕✎ ✜❍● � ✞ ✎ ☎ ✯ ✠✢❏ . Assuming

� � are identically

distributed allows us to re-arrange the terms in the product above, and group together

all terms that share the same ☎ :

✠✼✡✌☞✻✍ ✎ ✾✤❀❂❁✟❃❄✾✤❅❆❍❇✲❈ ❉ ❊ ✁
✆ ❇✞✝ ✜❍● ☎ ✯ ✠✢❏✠✟ ✆☛✡ ✝✌☞✎✍✏✍✏✍ ✝✒✑✎✓

(3)

Here the product goes over all the words ☎ in our vocabulary, and ✔ ☎ ● �❑✁✕✄✆✄✆✄✚�✟✞ ❏
is just the number of times ☎ was observed in our sample

�❑✁✙✄✆✄✖✄✚�✽✞
. If we let ✕ ✆ ✎

✟ ✆☛✡ ✝✌☞✖✍✏✍✏✍ ✝ ✑ ✓✞
, use a shorthand ✠ ✆ for ✜❍● ☎ ✯ ✠✢❏ , and take a logarithm of the objective

(which does not affect maximization), we can re-express ✠ ✡✺☞✻✍ as follows:

✠ ✡✺☞✻✍ ✎✿✾✤❀❂❁✽❃❄✾✰❅❆❄❇✲❈ ❉❋❊✌✗✆ ❇✞✝ ✕ ✆✙✘✛✚ ❁ ✠ ✆ (4)

Note that by definition, ✕ is also a distribution over the vocabulary, i.e. ✕ is a mem-

ber of ✛ ✜ , although it may not be a member of our subset ✛ ✜✹✵ . We can think of ✕ as

an empirical distribution of the observation
� ✁ ✄✖✄✆✄❂� ✞

. Now, since both ✠ and ✕ are

distributions, maximization of the above summation is equivalent to minimizing the

cross-entropy of distributions ✕ and ✠ :

✠❑✡✺☞✻✍ ✎✦✾✤❀❂❁✦❃✢✜✛✣❆❄❇✲❈ ❉❋❊✥✤ ●✦✕ ✯ ✠✢❏ (5)

Equation (5) will be used as our objective for forming optimal mixture models in all

the remaining sections of this paper. The main differences will be in the composition of

the subset ✛ ✜✶✵ , but the objective will remain unchanged.

2.2 Lower Bound on OMM solutions

Suppose we allowed ✛ ✜✶✵ to include all possible distributions over our vocabulary, that

is we make ✛ ✜✶✵ ✎ ✛ ✜ . Then we can prove that ✕ itself is the unique optimal solution of

equation (5). The proof is detailed in section A.1 of the Appendix.

This observation serves as a very important step in analyzing the computational

complexity of finding the optimal model ✠ out of the set ✛ ✜✹✵ . We proved that any solu-

tion ✠ will be no better than ✕ itself. This implies that for every set ✛ ✜✹✵ , determining

whether ✕ ✥ ✛ ✜ ✵ is no more difficult than finding an optimal mixture model from that

same set ✛ ✜ ✵ . The reduction is very simple: given ✛ ✜✹✵ and ✕ , let ✠ be the solution of

equation (5). Then, according to section A.1, ✕ ✥ ✛ ✜✹✵ if and only if ✠ ✎ ✕ . Testing



whether ✠ ✎ ✕ can be done in linear time (with respect to the size of our vocabulary),

so we have a polynomial-time reduction from testing whether ✕ is a member of ✛ ✜ ✵ to

solving equation (5) and finding an optimal mixture model.

This result will be used in the remainder of this paper to prove that for certain sets

✛ ✜ ✵ , solving equation (5) is NP-hard. In all cases we will show that testing whether✕ ✥ ✛ ✜ ✵ is NP-hard, and use the polynomial-time reduction from this section to assert

that solving equation (5) for that particular ✛ ✜✹✵ is NP-hard as well.

3 Set-based Mixture Models

The most simple and intuitive type of mixture models is a set-based mixture. In this

section we describe two simple ways of constructing a mixture model if we are given a

set of documents. One is based on concatenating the documents in the set, the other –

on averaging the document models. Very similar models were considered by Lavrenko

[13] and Ogilvie [16] in their attempts to create unweighted mixture models. Estimating

either of these models from a given set of documents is trivial. However, if we try to

look for the optimal set of documents, the problem becomes infeasible, as we show in

section 3.3.

3.1 Pooled Optimal Mixture Models

First we define a restricted class of mixture models that can be formed by “concatenat-

ing” several pieces of text and taking the empirical distribution of the result. To make

this more formal, suppose we are given a large collection
�

of text samples of vary-

ing length. In this paper we will only consider finite sets
�

. For Information Retrieval

applications
�

will be a collection of documents. For every text sample ✁ ✥ �
we can

construct its empirical distribution by setting ✁ ✆ ✎ ✟ ✆☛✡✄✂ ✓☎ ✂ ☎ , just as we did in section 2.1.

Here,
✯ ✁ ✯ denotes the total number of words in ✁ . Similarly, for every subset ✆✼✷ �

, we

can construct its empirical distribution by concatenating together all elements ✁ ✥ ✆ ,

and constructing the distribution of the resulting text. In that case, the probability mass

on the word ☎ would be:

✆ ✆ ✎✞✝ ✂ ❇✠✟ ✔ ☎ ●✡✁ ❏
✝ ✂ ❇✠✟ ✯ ✁ ✯ (6)

Now, for a given collection of samples
�

, we define the pooled mixture set ✛ ✜☞☛✍✌ ☞✆✡ ✡✏✎
to be the set of empirical distributions of all the subsets ✆ of

�
, where probabilities

are computed according to equation (6). We define the Pooled Optimal Mixture Model

(POMM) problem to be the task of solving equation (5) over the set ✛ ✜ ☛✍✌ ☞✆✡❂✡✑✎ , i.e. finding

the element ✠ ✥ ✛ ✜ ☛✍✌ ☞✆✡ ✡✏✎ , which minimizes the cross-entropy ✤ ● ✕ ✯ ✠✢❏ with a given

target distribution ✕ .

3.2 Averaged Optimal Mixture Models

Next we consider another class of mixture models, similar to pooled models described

in the last section. These models are also based on a collection
�

of text samples, and



can be formed by “averaging” word frequencies across several pieces of text. To make

this formal, let
�

be a finite collection of text samples. Let
�

be the corresponding

collection of empirical distributions, that is for each observation ✁✂✁ ✥ �
, there exists

a corresponding distribution ✠✄✁ ✥ � , such that ✠☎✁ ✌ ✆ ✎ ✟ ✆☛✡ ✂ ✓☎ ✂ ☎ . For a subset ✆ ✵ ✷�
, we can construct its distribution by averaging together the empirical distributions

of elements in ✆ ✵ . Let ✆ ✵ be a set of text samples, let ✆ be the set of corresponding

empirical models, and let ✔ ● ✆ ❏ denote the number of elements in ✆ . The probability

mass on the word
☎

is:

✆ ✆ ✎ ✓
✔ ● ✆ ❏ ✗❆✝✆✆❇✠✟ ✠ ✁ ✌ ✆ (7)

For a given collection of samples
�

, we define the averaged mixture model set

✛ ✜ ☛✍✌ ✞✠✟☛✡ to be the set of averaged distributions of all subsets ✆ ✵ of
�

, with probabilities

computed according to equation (7). We define the Averaged Optimal Mixture Model

(AOMM) problem to be the task of solving equation (5) over the set ✛ ✜ ☛✍✌ ✞✠✟☛✡ .

3.3 Finding the Optimal Subset is Infeasible

We outlined two possible ways for estimating a mixture model if we are given a set of

documents. Now suppose we were given a target distribution ✕ and a collection
�

, and

wanted to find a subset ✆❑✷ �
which produces an optimal mixture model with respect to✕ . It turns out that this problem is computationally infeasible. Intuitively, this problem

involves searching over an exponential number of possible subsets of
�

. In section A.3

of the Appendix we prove that finding an optimal subset for pooled models is NP-hard.

In section A.4 we show the same for averaged models. In both proofs we start by using

the result of section 2.2 and converting the optimization problem to a decision problem

over the same space of distributions. Then we describe a polynomial-time reduction

from 3SAT to the corresponding decision problem. 3SAT (described in A.2) is a well-

known NP-hard problem, and reducing it to finding an optimal subset of documents

proves our searching problem to be NP-hard as well.

It is interesting to point out that we were not able to demonstrate that finding an

optimal subset can actually be solved by a nondeterministic machine in polynomial

time. It is easy to show that the decision problems corresponding to POMM and AOMM

are in the NP class, but the original optimization problems appear to be more difficult.

4 Weighted Mixture Models

Now we turn our attention to another, more complex class of Optimal Mixture Models.

For set-based models of section 3, the probabilities were completely determined by

which documents belonged to the set, and no weighting on documents was allowed.

Now we consider the kinds of models where in addition to selecting the subset, we also

allow putting different weights on the documents in that subset. This flavor of mixture

models was used by Hoffman [9], Lafferty and Zhai [11], and Lavrenko and Croft [14]

in their research.



4.1 Weighted Optimal Mixture Models

Now if we want to find an optimal mixture model for some observation we not only need

to find the subset of documents to use, but also need to estimate the optimal weights to

place on those documents. At first glance it appears that allowing weights on documents

will only aggravate the fact that finding optimal models is infeasible (section 3.3), since

we just added more degrees of freedom to the problem. In reality, allowing weights to

be placed on documents actually makes the problem solvable, as it paves the way for

numerical approximations. Recall that both POMM and AOMM are essentially combi-

natorial problems, in both cases we attempt to reduce cross-entropy (equation (5)) over

a finite set of distributions: ✛ ✜ ☛✍✌ ☞✻✡❂✡✏✎ for POMM, and ✛ ✜ ☛✍✌ ✞✠✟☛✡ for AOMM. Both sets are

exponentially large with respect to
�

, but are finite and therefore full of discontinuities.

In order to use numerical techniques we must have a continuous space ✛ ✜ ✵ . In this sec-

tion we describe how we can extend ✛ ✜ ☛✍✌ ☞✻✡❂✡✏✎ or equivalently ✛ ✜ ☛✠✌ ✞ ✟☛✡ to a continuous

simplex ✛ ✜ ☛✍✌ � . We define the Weighted Optimal Mixture Model problem (WOMM) to

be the optimization of equation (5) over the simplex ✛ ✜ ☛✍✌ � . We argue that a WOMM so-

lution will always be no worse than the solution of a POMM or AOMM for a given
�

,

although that solution may not necessarily lie in ✛ ✜ ☛✠✌ ☞✆✡❂✡✑✎ or ✛ ✜ ☛✍✌ ✞✠✟☛✡ . We look at a simple

gradient descent technique for solving WOMM. The technique is not guaranteed to find

a globally optimal solution, but in practice converges quite rapidly and exhibits good

performance.

WOMM Definition Let
�

be our set of text samples and let
� ☛ be the corresponding

set of of empirical models ✠ ✂ for each sample ✁ ✥ �
. For an arbitrary set of weights✁ ✥ ✛ ✧ ✟ ✡ ☛ ✓ we can define the corresponding model ✠ � to be the average of all the

models in
� ☛ , weighted by

✁
:

✠ � ✌ ✆ ✎ ✗✂ ❇ ☛
✁ ✂ ✠ ✂ ✌ ✆ (8)

It is easy to verify that equation (8) defines a valid distribution, as long as
✯ ✁ ✯■✎ ✓

.

Now we can define ✛ ✜ ☛✍✌ � to be the set of all possible linear combinations of models in� ☛ , i.e. ✛ ✜ ☛✍✌ � ✎ ✑ ✠ � ✪ ✁ ✫✳✬■✭✴✯ ✁ ✯ ✎ ✓✴✘
. WOMM is defined as solving equation (5)

over ✛ ✜ ☛✍✌ � .

Relationship to Set-based Models It is important to realize that there is a strong con-

nection between WOMM and set-based models from section 3. The simplex ✛ ✜ ☛✍✌ � in-

cludes both sets ✛ ✜ ☛✠✌ ☞✆✡❂✡✑✎ and ✛ ✜ ☛✍✌ ✞✠✟☛✡ , since:

(i) equations (7) and (8) imply that an AOMM model of a set ✆ is the same thing as a

WOMM model ✠ � where
✁ ✂ ✎ ✁

✟ ✡ ✟✞✓ when ✁ ✥ ✆ , and
✁ ✂ ✎✿✬

for ✕✄✂✥ ✆
(ii) equations (6) and (8) imply that a POMM model of a set ✆ is equivalent to a

WOMM model ✠ � where
✁ ✂ ✎ ☎ ✂ ☎☎✝✆✟✞✡✠ ☎ ✂ ☎ when ✁ ✥ ✆ , and

✁ ✂ ✎✦✬
for ✕✄✂✥ ✆

This implies that every element of either ✛ ✜ ☛✍✌ ✞✠✟☛✡ or ✛ ✜ ☛✍✌ ☞✻✡❂✡✏✎ is also an element of ✛ ✜ ☛✍✌ � .

Therefore, a weighted optimal mixture model will be as good, or better than any set-

based mixture model, as long as we are dealing with the same collection
�

.



4.2 Iterative Gradient Solution

Since ✛ ✜ ☛✍✌ � is a continuous simplex, we can employ numerical techniques, to iteratively

approach a solution. We describe a gradient descent approach, similar to the one advo-

cated by Yamron et.al. [26]. Recall that our objective is to minimize the cross-entropy

(equation (5) of the target distribution ✕ over the simplex ✛ ✜ ☛✍✌ � . For a given collection�
, every element of ✛ ✜ ☛✍✌ � can be expressed in terms of

✁
, the vector of mixing weights,

according to equation (8). We rewrite the objective function in terms of the mixing

vector
✁

:

✤ � ● ✕ ✯ ✑ ✠ ✂ ✘ ❏ (9)✎ � ✗ ✆ ✕ ✆ ✘✛✚ ❁ ✗ ✂ ● ✁ ✂ ✁✄✂ ✂ ✁ ✂ ❏✮✠ ✂ ✌ ✆
✎ � ✗ ✆ ✕ ✆ ✘✛✚ ❁ ✗ ✂

✁ ✂ ✠ ✂ ✌ ✆✆☎ ✘✄✚ ❁ ✗ ✂
✁ ✂

Note that in equation (10), we used the expression
� ✆☎✝✆ � ✆ instead of

✁ ✂ . Doing this

allows us to enforce the constraint that the mixing weights should sum to one without

using Lagrange multipliers or other machinery of constrained optimization. In other

words, once we made this change to the objective function, we can perform uncon-

strained minimization over
✁

. In order to find the maximum of equation (10) we take

the derivative with respect to the mixing weight of each element ✝ :

✞ ✤ �✞ ✁ ✞ ✎ � ✗ ✆
✕ ✆ ✠ ✞ ✌ ✆

✝ ✂ ✁ ✂ ✠ ✂ ✌ ✆ ☎
✓

✝ ✂ ✁ ✂ (10)

After setting the derivative equal to zero, and re-arranging the terms, we see that the

extremum is achieved when for every ✝ ✥ �
we have:

✓ ✎ ✗ ✆
✕ ✆ ✠ ✞ ✌ ✆

✝ ✂ ● ✁ ✂ ✁✟✂ ✂ ✁ ✂ ❏✮✠ ✂ ✌ ✆ (11)

We can take this equation and turn it into an incremental update rule. Suppose
✁ ★ ✞

is the mixing weight of element ✝ after
✗

iterations of the algorithm. Then at the next

iteration the weight should become:

✁ ★✡✠
✁✞ ☛ � ✗ ✆

✕ ✆ ✠ ✞ ✌ ✆ ✁ ★ ✞
✝ ✂ ● ✁ ✂ ✁✄✂ ✂ ✁ ✂ ❏✮✠ ✂ ✌ ✆ (12)

It is easy to see that when the extremum is achieved, equation (11) holds, and the

value
✁ ✞

will not change from one iteration to another, so the procedure is convergent.

In practice, it is sufficient to run the procedure for just a few iterations, as it converges

rapidly. Every iteration of update (12) requires on the order of ● ✔ ● � ❏✌☞ ✔ ● � ❏ ❏ , and

the number of iterations can be held at a constant.



Local Minima It is important to realize that the iterative update in equation (12) is not

guaranteed to converge to the global minimum of equation (10). The reason for that is

that the objective function is not convex everywhere. We can see that clearly when we

take the second derivative of the objective with respect to the mixture weights:

✞ � ✤ �
✞ ✁ ✞ ✞ ✁ ✎

✎ ✗ ✆
✕ ✆ ✠ ✞ ✌ ✆ ✠ ✎ ✌ ✆✁

✝ ✁
✁

✁✖✠ ✁ ✌ ✆✄✂ � �
✓

✁
✝ ✁

✁
✁ ✂ � (13)

It is not obvious whether left-hand side of the equation above is positive or negative,

so we cannot conclude whether the function is globally convex, or whether it has local

minima. In practice we found that the incremental algorithm converges quite rapidly.

5 Experimental Results

In this section we discuss an application of Optimal Mixture Models to the problem of

estimating a topic model from a small sample. The experiments were carried out in the

following setting. Our collection
�

is a collection of approximately 60,000 newswire

and broadcast news stories from the TDT2 corpus [7]. For this dataset, we have a col-

lection of 96 event-centered topics. Every topic is defined by the set ✧ ✷ �
of stories

that are relevant to it. The relevance assessments were carried out by LDC [7] and are

exhaustive.

For every topic, our goal is to estimate ✠✆☎ , the distribution of words in the doc-

uments relevant to that topic. We assume that the relevant set ✧ is unknown, but we

have a single example document ✁ ✥ ✧ . The goal is to approximate the topic model

✠✝☎ as closely as possible using only ✁ and
�

. We formulate the problem as finding the

optimal weighted mixture model, and use the iterative update detailed in section 4.2 to

estimate the optimal mixture. Since we do not know ✧ , we cannot optimize equation

(5) for ✠✞☎ directly. We hypothesize that optimizing for ✕ ✎ ✠ ✂ is a good alternative.

This hypothesis is similar to the assumptions made in [14]. Note that this assumption

may be problematic, since effectively ✁ is an element of
�

. This means that our gradi-

ent solution will eventually converge to ✠ ✂ , which is not what we want, since we want

to converge to ✠ ☎ . However, we hope that running the gradient method for just a few

iterations will result in a reasonable mixture model.

We carry out three types of experiments. First we demonstrate that the gradient

procedure described in section 4.2 indeed converges to the target. Second we look at

how well the resulting mixture model approximates the real topic model ✠✟☎ . Finally,

we perform a set of ad-hoc retrieval experiments to demonstrate that our mixture model

can be used to produce effective document rankings.

5.1 Convergence to Target

Figure 1 shows how quickly the weighted mixture model converges to the target dis-

tribution ✠ ✂ . On the y-axis we plotted the relative entropy (equation (14) in the Ap-

pendix) between the mixture model and the target model, as a function of a number of

gradient updates. Relative entropy is averaged over all 96 topics. The solid line shows



the mean value, while the bars indicate one standard deviation around the mean. We

observe that relative entropy rapidly converges to zero, which is understandable, since

✁ ✥ �
. Eventually, the iterative procedure will force the mixing vector

✁
to have zeros

in all places except
✁ ✂ , which would be driven to one.

Fig. 1. Convergence of the Weighted Optimal Mixture Model to the target distribution. Target is a

single document discussing the topic of interest. Mixture Model estimated using iterative gradient

updates.

5.2 Convergence to True Topic Model

In the next set of experiments, we measure relative entropy of our mixture model with

respect to ✠✞☎ , which is the true topic model. ✠✞☎ is estimated as an averaged mixture

model from ✧ , the set of documents known to be relevant to the topic. Note that since

the solutions were optimized towards ✠ ✂ and not towards ✠✞☎ , we cannot expect rel-

ative entropy to continue decreasing with more and more iterations. In fact, once the

solution is very close to ✠ ✂ , we expect it to be “far” from ✠ ☎ . What we hope for is

that after a few (but not too many) iterations, the solution will be sufficiently close to

✠ ☎ . Figure 2 shows the performance with respect to ✠ ☎ for 0, 1, 2 and 5 iterations.

We show relative entropy as a function of how many documents we include in our col-

lection
�

. The documents are ranked using ✁ as query, and then some number
✗

of

top-ranked documents is used. This is done to highlight the fact that even with gradient

optimization, the model shows strong dependency on how many top-ranked documents

are used to estimate the probabilities. For comparison, we show the lower bound, which

is what we would obtain if we used
✗

documents that are known to be in ✧ .



Fig. 2. Convergence of the mixture model to the true topic model: running the gradient update for

two iterations is promising.

We observe that running the gradient algorithm for two iterations moves the solution

closer to ✠ ☎ , but doing more iterations actually hurts the performance. Running it

for five iterations results in higher relative entropy than not running it at all. We also

note that with more iterations, performance becomes less sensitive to the number of

documents in
�

. Overall, we can conclude that running the gradient algorithm for very

few iterations is promising.

5.3 Retrieval Experiments

Finally, we consider an application of Optimal Mixture Models to the problem of docu-

ment retrieval. We start with a single relevant example and estimate a mixture model as

was described above. Then, for every document in our dataset we compute the relative

entropy (equation (14) in the Appendix) between the model of that document and the

estimated mixture model. The documents are then ranked in increasing order of rel-

ative entropy. This type of ranking was first proposed by Lafferty and Zhai [11] and

was found to be quite successful in conjunction with Query Models [11] and Relevance

Models [14].

Figure 3 shows the retrieval performance when a mixture model is estimated over a

set of 10 top-ranked documents using two iterations of the gradient update. To provide

a baseline, we replace the estimated mixture model by the model of the single training

example, and perform retrieval using the same ranking function. For comparison we

also show the performance unweighted mixture model formed from the same set of 10

top-ranked documents.
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Fig. 3. Document retrieval: mixture model (top) outperforms a baseline of single training example
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Fig. 4. Optimal Mixture Models exhibit less dependency on the number of top-ranked documents

used in the estimation. Two or more iterations with any number of documents outperforms the

baseline.



We observe that our weighted mixture noticeably outperforms the baseline at all

levels of recall. The improvement is statistically significant at all levels of recall, except

at zero. Significance was determined by performing the sign test with a � value of 0.05.

The magnitude of the improvement is not very large, partly due to the fact that the base-

line performance is already very high. Baseline has non-interpolated average precision

of 0.7250, which is very high by TREC standards. Such high performance is common in

TDT, where topic definitions are much more precise than in TREC. Weighted mixture

model yields average precision of 0.7583, an improvement of 5%. Note that unweighted

mixture model constructed from the same set of documents as the weighted model per-

forms significantly worse, resulting in a 9% drop from the baseline. This means that

document weighting is a very important aspect of estimating a good topic model.

Finally, we re-visit the issue that motivated this work, the issue of sensitivity to

the number of top-ranked documents used in the estimation. We repeated the retrieval

experiment shown in Figure 3, but with varying numbers of top-ranked documents.

The results are summarized in Figure 4. We observe that Weighted Optimal Mixture

Model with two or more iterations of training is fairly insensitive to the number of top-

ranked documents that are used in the estimation. The performance is always above the

single-document baseline. In contrast to that, we see that unweighted models (uniform

weights) perform significantly worse than the baseline, and furthermore their perfor-

mance varies widely with the number of top-ranked documents used. We believe these

results to be extremely encouraging, since they show that weighted mixture models are

considerably more stable than unweighted models.

6 Conclusions and Future Work

In this paper we explored using Optimal Mixture Models to estimate topical models.

We defined optimality in terms of assigning maximum likelihood to a given sample of

text, and looked at two types of mixture models: set-based and weighted. We presented

an original proof that it is not feasible to compute set-based optimal mixture models.

We then showed that weighted mixture models are superior to set-based models, and

suggested a gradient descent procedure for estimating weighted mixture models. Our

experiments show weighted mixtures outperforming the baseline on a simple retrieval

task, and, perhaps more importantly, demonstrate that weighted mixtures are relatively

insensitive to the number of top-ranked documents used in the estimation.

In the course of this work we encountered a number of new questions that warrant

further exploration. We would like to analyze in detail the relationship between Optimal

Mixture Models proposed in this paper and other methods of estimating a topic model

from a small sample. The two obvious candidates for this comparison are query models

[11] and relevance models [14]. Both are very effective at estimating accurate topic

models starting with a very short (2-3 word) sample. Optimal Mixture Models appear

to be more effective with a slightly longer sample (200-300 words). Another question

we would like to explore is the use of tempered or annealed gradient descent to prevent

over-fitting to the target sample. Finally, we would like to explore in detail the impact

of the length of the training sample on the quality of the resulting model.



Acknowledgments

The author would like to thank Micah Adler and W. Bruce Croft for numerous discus-

sions which led to this work. This work was supported in part by the Center for Intel-

ligent Information Retrieval, in part by the National Science Foundation under grant

number EIA-9820309, and in part by SPAWARSYSCEN-SD grant number N66001-

99-1-8912. Any opinions, findings and conclusions or recommendations expressed in

this material are the authors and do not necessarily reflect those of the sponsors.

References

1. J. Allan, J.Carbonell, G.Doddington, J.Yamron, and Y.Yang. Topic detection and tracking

pilot study: Final report. In Proceedings of DARPA Broadcast News Transcription and Un-

derstanding Workshop, pp194-218, 1998.

2. D. Beeferman, A. Berger, and J. Lafferty. Statistical models for text segmentation. In Ma-

chine Learning, vol.34, pages 1–34, 1999.

3. A. Berger, R. Caruana, D.Cohn, D. Freitag, and V. Mittal. Bridging the lexical chasm: Sta-

tistical approaches to answer-finding. In Proceedings of SIGIR, pages 192–199, 2000.

4. A. Berger and J. Lafferty. Information retrieval as statistical translation. In Proceedings on

the 22nd annual international ACM SIGIR conference, pages 222–229, 1999.

5. A. Berger and V. Mittal. OCELOT: a system for summarizing web pages. In Proceedings of

SIGIR, pages 144–151, 2000.

6. S. F. Chen and J. T. Goodman. An empirical study of smoothing techniques for language

modeling. In Proceedings of the 34th Annual Meeting of the ACL, 1996.

7. C. Cieri, D.Graff, M.Liberman, N.Martey, and S.Strassel. The TDT-2 text and speech corpus.

In Proceedings of the DARPA Broadcast News Workshop, pp 57-60, 1999.

8. D. Hiemstra. Using language models for information retrieval. In PhD Thesis, University of

Twente, 2001.

9. T. Hoffmann. Probabilistic latent semantic indexing. In Proceedings on the 22nd annual

international ACM SIGIR conference, pages 50–57, 1999.

10. H. Jin, R. Schwartz, S. Sista, and F. Walls. Topic tracking for radio, TV broadcast and

newswire. In Proceedings of DARPA Broadcast News Workshop, pp 199-204, 1999.

11. J. Lafferty and C. Zhai. Document language models, query models and risk minimization

for information retrieval. In Proceedings on the 24th annual international ACM SIGIR con-

ference, pages 111–119, 2001.

12. J. Lafferty and C. Zhai. A study of smoothing methods for language models applied to

ad hoc information retrieval. In Proceedings on the 24th annual international ACM SIGIR

conference, pages 111–119, 2001.

13. V. Lavrenko. Localized smoothing of multinomial language models. In CIIR Technical

Report IR-222, 2000.

14. V. Lavrenko and W.B.Croft. Relevance-based language models. In Proceedings on the 24th

annual international ACM SIGIR conference, pages 120–127, 2001.

15. D. Miller, T. Leek, and R. Schwartz. A hidden markov model information retrieval system.

In Proceedings on the 22nd annual international ACM SIGIR conference, pages 214–221,

1999.

16. P. Ogilvie. Nearest neighbor smoothing of language models in ir. In unpublished, 2000.

17. J. Ponte. Is information retrieval anything more than smoothing? In Proceedings of the

Workshop on Language Modeling and Information Retrieval, pages 37–41, 2001.



18. J. Ponte and W. B. Croft. A language modeling approach to information retrieval. In Pro-

ceedings on the 21st annual international ACM SIGIR conference, pages 275–281, 1998.
19. S. Robertson and K. S. Jones. Relevance weighting of search terms. In Journal of the

American Society for Information Science, vol.27, 1977.
20. S. Robertson and S. Walker. Some simple effective approximations to the 2-poisson model

for probabilistic weighted retrieval. In Proceedings of the 17th annual international ACM

SIGIR conference, pages 232–241, 1996.
21. S. E. Robertson. The Probability Ranking Principle in IR, pages 281–286. Morgan Kauf-

mann Publishers, Inc., San Francisco, California, 1997.
22. M. Sipser. Time Complexity: The Cook-Levin Theorem, pages 254–260. PWS Publishing

Company, Boston, 1997.
23. M. Sipser. Time Complexity: The Subset Sum Problem, pages 268–271. PWS Publishing

Company, Boston, 1997.
24. F. Song and W. B. Croft. A general language model for information retrieval. In Proceedings

on the 22nd annual international ACM SIGIR conference, pages 279–280, 1999.
25. H. Turtle and W. B. Croft. Efficient probabilistic inference for text retrieval. In Proceedings

of RIAO 3, pages 644–651, 1991.
26. J. Yamron, I. Carp, L. Gillick, S.Lowe, and P. van Mulbregt. Topic tracking in a news stream.

In Proceedings of DARPA Broadcast News Workshop, pp 133-136, 1999.

A Appendix

A.1 Lower bound on cross-entropy

In this section we prove that ✕ itself is the unique optimal solution of equation (5). The

proof is rudimentary and can be found in many Information Theory textbooks, but is

included in this paper for completeness. Assuming ✕ is in ✛ ✜ , we have to show that:

(i) for every ✠ ✥ ✛ ✜ we have ✤ ●✦✕ ✯ ✕ ❏ � ✤ ●✦✕ ✯ ✠✢❏
(ii) if ✤ ● ✕ ✯ ✕ ❏ ✎ ✤ ● ✕ ✯ ✠✢❏ then ✠ ✎ ✕ .

To prove the first assertion we need to show that the difference in cross-entropies✤ ●✦✕ ✯ ✠✢❏ � ✤ ● ✕ ✯ ✕✩❏ is non-negative. This difference is sometimes referred to as relative

entropy or Kullback-Leiblar divergence. By definition of cross-entropy:

✤ ●✦✕ ✯ ✠✢❏ � ✤ ●✦✕ ✯ ✕ ❏ ✎ � ✗ ✆ ✕ ✆✙✘✛✚ ❁ ✠ ✆
✕ ✆ (14)

By Jensen’s inequality, for any concave function ✁ ●✄✂ ❏ we have ☎✝✆ ✁ ●✄✂ ❏✟✞ � ✁ ●✄☎✠✆ ✂✡✞ ❏ .
Since logarithm is a concave function, we obtain:

� ✗ ✆ ✕ ✆ ✘✛✚ ❁ ✠ ✆
✕ ✆ ✫ � ✘✛✚ ❁ ✗ ✆ ✕ ✆ ✠ ✆

✕ ✆ (15)

Now we note that right-hand side of the above equation is zero, which proves (i). In

order to prove (ii) we recall that Jensen’s inequality becomes an equality if and only if

✁ ●✄✂ ❏ is linear in ✂ . The only way ✘✛✚ ❁ ❆☞☛✌ ☛ can be linear in
❆✍☛✌ ☛ is when ✠ ✆ ✎ ✝ ✕ ✆ , for

some constant ✝ . But since ✠ and ✕ are both in ✛ ✜ , we must have:✓ ✎ ✗ ✆ ✕ ✆ ✎ ✗ ✆ ✠ ✆ ✎ ✗ ✆ ✝ ✕ ✆ ✎ ✝ ✗ ✆ ✕ ✆
Hence ✝ ✎✢✓ , and therefore ✠ = ✕ , which proves (ii).



A.2 3SAT Definition

3SAT is a problem of determining satisfiability of a logical expression. An instance of

3SAT is a logical formula
�

in conjunctive normal form, with clauses limited to contain

three primitives. The formula is a conjunction (an AND) of ✁ clauses, each of which

is a disjunction (an OR) of three variables from the set
✑ ✂ ✁✴✄ ✄ ✄ ✂ ★

✘
, or their negations✑✄✂ ✂ ✁✰✄ ✄ ✄☎✂ ✂ ★

✘
. An example of such formula may be:

� ✎ ● ✂ ✂ ✁✝✆ ✂ � ✆ ✂✟✞✴❏✡✠✼● ✂ ✂ ✁✝✆✂ ✂ � ✆☛✂ ✂✌☞✰❏ . Every formula of propositional calculus can be represented as a 3SAT

formula. The task is to determine whether
�

is satisfiable. The formula is satisfiable if

there exists an assignment of true/false values to the variables ✂ ✁✴✄ ✄ ✄ ✂ ★ , which makes the

whole formula true. In the given example, setting ✂ ✁ ✎✍�✏✎✒✑✔✓✖✕
and all other variables

to ✕✘✗✚✙ ✕ satisfies the formula.

A.3 POMM is NP-hard

In this section we will show that solving Pooled Optimal Mixture Model problem is NP-

hard. In order to do that, we define a corresponding decision problem EXACT-POMM,

prove EXACT-POMM to be NP-hard, and use the results in section 2.2 to assert that

POMM itself is NP-hard.

In a nutshell, EXACT-POMM is a problem of testing whether a target distribution✕ is a member of the pooled mixture model set ✛ ✜ ☛✍✌ ☞✆✡❂✡✑✎ induced by some collection�
of text samples. Let

�
denote the collection of integer-valued count vectors corre-

sponding to each text sample in
�

. Each element of
�

is a vector ✠ ✁ that specifies

how many times every word ☎ occurs in ✁ ✁ , the corresponding text sample in
�

, i.e.

✠ ✁ ✌ ✆ ✎ ✔ ☎ ●✡✁ ✁✰❏ . The task is to determine whether there exists a subset ✆✿✷ � , such

that vectors in ✆ , when added up, form the same distribution as ✕ :

✕ ✆ ✎ ✝ ❆ ✆ ❇✠✟ ✠☎✁ ✌ ✆
✝ ✆ ✝ ❆ ✆ ❇✠✟ ✠ ✁ ✌ ✆ ✁✜✛✚✗ ✎✒✑✢✑ ☎ ✥ �

(16)

We will prove that EXACT-POMM is NP-hard by reduction from 3SAT, a well-

known problem of the NP-complete class [22]. We describe a polynomial time reduction

that converts an instance of 3SAT into an instance of EXACT-POMM, such that 3SAT

instance is satisfiable if and only if EXACT-POMM instance has a positive answer.

The reduction we describe is very similar to the one commonly used to prove that

SUBSET-SUM problem is NP-hard. We are given a formula in conjunctive normal

form:
�✒✎ ● � ✁ ✌ ✁✣✆ � ✁ ✌ � ✆ � ✁ ✌ ✞ ❏✤✠ ✄✖✄✆✄ ✠✂● �✦✥ ✌ ✁✧✆ �✦✥ ✌ � ✆ �★✥ ✌ ✞✖❏ , where each proposition

� ✁ ✌ ✞ is either some variable ✂ � or its negation
✂ ✂ � . We want to construct a collection

of vectors
�

and a target distribution ✕ such that
�

is satisfiable if and only if there

exists a subset ✆ ✷ � of vectors which satisfies equation (16). Let
�

be the set of

rows of the matrix in Figure 5, let ✕ ✵ be the target row at the bottom, and set the target

distribution ✕ ✆ ✎ ✕ ✵✆ ✁ ✝ ✆ ✕ ✵✆ for all
☎

.

In Figure 5, ✛ ★✦✩✮★ denotes a
✗

by
✗

identity matrix. ✜✫✪ ✆ ★✦✩ ✥ is a
✗

by ✁ positive

variable-clause adjacency matrix, that is ✜✫✪ ✆ � ✌ ✁ ✎ ✓
when clause ✬ contains ✂ � , and

✜✫✪ ✆ � ✌ ✁ ✎ ✬
otherwise. Similarly, ✭ ☎✫✮ ★✦✩ ✥ is a

✗
by ✁ negative variable-clause

adjacency matrix: ✭ ☎✫✮ � ✌ ✁ is
✓

if clause ✬ contains
✂ ✂ � , and 0 if it does not.

✬ � ✥ ✩■★ is

just a ✯✰✁ by
✗

all-zero matrix.



�✂✁☎✄✆✁ ✝✟✞✡✠☛✁☎✄✆☞� ✁☎✄✆✁ ✌✎✍✑✏✒✁✓✄✔☞✕✗✖✘☞✟✄✆✁ � ☞✟✄✔☞�✂☞✟✄✔☞✙✛✚✂✚✂✚✜✙ ✢✣✚✜✚✂✚✤✢
Fig. 5. Matrix used in the proof that 3SAT is reducible to EXACT-POMM

Note that the matrix is identical to the one that is used to prove that the SUBSET-

SUM problem [23] is NP-hard by reduction from 3SAT. In line with the SUBSET-SUM

argument, it is easy to see that the formula
�

is satisfiable if and only if there exists

a subset ✆ ✷ �
of the rows such that ✕✩✵✆ ✎ ✝ ❆ ✆✝❇✠✟ ✠ ✁ ✌ ✆ for all

☎
. The first

✗
components of target ●✦✕✩✵✁ ✄✖✄✆✄ ✕ ✵★ ❏ ensure that for every variable ✥ either ✂ � is true or

✂ ✂ �
is true, but not both. The last ✁ components ●✦✕✩✵★ ✠ ✁ ✄✆✄✆✄ ✕ ✵★✡✠ ✥ ❏ ensure that every clause

has at least one proposition set to true.

To demonstrate that satisfiability of
�

reduces to EXACT-POMM, we just need to

show that: ✦✧
✕ ✵✆ ✎ ✗❆ ✆✝❇✠✟ ✠ ✁ ✌ ✆✛★✩✫✪✭✬ ✕ ✆ ✎ ✝ ❆ ✆ ❇✠✟ ✠ ✁ ✌ ✆

✝ ✆ ✝ ❆ ✆ ❇✠✟ ✠☎✁ ✌ ✆✡✮ (17)

The forward implication is trivial, since ✕✩✵✆ ✎ ✝ ❆ ✆✻❇✠✟ ✠ ✁ ✌ ✆ clearly implies that

✝ ✆ ✕ ✵✆ ✎ ✝ ✆ ✝ ❆ ✆ ❇✠✟ ✠ ✁ ✌ ✆ , and therefore

✕ ✆ ✎ ✕ ✵✆
✝ ✆ ✕ ✵✆ ✎ ✝ ❆ ✆ ❇✠✟ ✠ ✁ ✌ ✆

✝ ✆ ✝ ❆ ✆✝❇✠✟ ✠ ✁ ✌ ✆ (18)

The converse is not obvious, since the equality of two ratios in equation (18) does

not by itself guarantee that their numerators are equal, we have to prove that their de-

nominators are equal as well. The proof is as follows. Assume equation (18) holds. Let

✝ be a (constant) ratio of the denominators:

✝ ✎ ✝ ✆ ✝ ❆✝✆✝❇✠✟ ✠ ✁ ✌ ✆
✝ ✆ ✕ ✵✆ (19)

Then we can re-write equation (18) as follows:

✝ ✕ ✵✆ ✎ ✗❆ ✆✝❇✠✟ ✠ ✁ ✌ ✆ ✭ ✁✜✛✚✗ ✎✒✑ ✑ ☎
(20)

Now, for the left side of the matrix in Figure 5 (
☎ ✎ ✓✕✄✖✄✆✄ ✗

), we have ✕ ✆ ✎ ✓
,

and ✝ ✆ ✠ ✁ ✌ ✆ can be 0, 1 or 2. Therefore it must be that ✝ is either 1 or 2, otherwise

we cannot satisfy equation (20). Similarly, for the right side of the matrix ( ☎ ✎ ✗ ☎✓✕✄✆✄✖✄ ✗ ☎ ✁ ) we have ✕ ✆ ✎✰✯
, and ✝ ✆ ✠☎✁ ✌ ✆ can be 0, 1, 2, 3, 4 or 5. Therefore, to satisfy

equation (20), ✝ must take a value in the set
✑ ✁✞ ✭ �

✞ ✭ ✞✞ ✭ ☞ ✞ ✭✆✱✞ ✘ . Since equation (20) must

be satisfied for all ☎ , ✝ must take a value in the intersection
✑✔✓ ✭ ✯ ✘✑✲✟✑ ✁✞ ✭ �

✞ ✭ ✞ ✞ ✭ ☞ ✞ ✭ ✱✞ ✘ .



Therefore ✝ ✎ ✓
, which means that the denominators in equation (18) are equal, and

the converse implication holds.

The matrix in Figure 5 is of size ●✔✯ ✗ ☎ ✯✰✁ ❏ by
✗ ☎ ✁ , therefore we have a

polynomial-time reduction from an instance of 3SAT to an instance of EXACT-POMM,

such that a 3SAT formula is satisfiable if and only if a corresponding instance of

EXACT-POMM is satisfiable. Accordingly, if a polynomial-time algorithm exists for

solving EXACT-POMM problems, this algorithm could be used to solve 3SAT in poly-

nomial time. Thus EXACT-POMM is NP-hard.

We have just demonstrated that EXACT-POMM is NP-hard. In section 2.2 we

demonstrated a reduction from decision problems (like EXACT-POMM) to optimiza-

tion problems (like POMM). Therefore POMM is NP-hard.

A.4 AOMM is NP-hard

In this section we will prove that solving AOMM problem is NP-hard. The proof fol-

lows the same outline as the proof in section A.3. We define a corresponding decision

problem EXACT-AOMM, prove it to be NP-hard by reduction from 3SAT, then use the

result of section 2.2 to assert that AOMM is NP-hard.

AOMM is defined as an optimization problem over ✛ ✜ ☛✍✌ ✞✠✟☛✡ with respect to a given

target ✕ . Correspondingly, EXACT-AOMM is a problem of determining whether ✕ it-

self is an element of ✛ ✜ ☛✍✌ ✞✠✟☛✡ . An instance of EXACT-AOMM is a target distribution✕ ✥ ✛ ✜ , and a finite collection of empirical distributions
� ✎ ✑ ✠✄✁

✥ ✛ ✜ ✘ correspond-

ing to a set of text samples
�

. The task is to determine whether there exists a subset

✆ ✥ �
, such that the average of elements in ✠ ✁

✥ ✆ is exactly the same as ✕ :

✕ ✆ ✎ ✓
✔ ● ✆ ❏ ✗❆ ✆✝❇✠✟ ✠ ✁ ✌ ✆ ✁✜✛✚✗ ✎✒✑ ✑ ☎ ✥ �

(21)

We now present a reduction from 3SAT to EXACT-AOMM. We are given
�

, an

instance of 3SAT, and want to construct a set of distributions
�

together with a target✕ , such that
�

is satisfiable if and only if there exists a subset ✆ ✥ �
which satisfies

equation (21). The construction of EXACT-AOMM is similar to EXACT-POMM, but

the proof is complicated by the fact that we are now dealing with distributions, rather

than count vectors. We cannot directly use the matrix constructed in Section A.3 (Figure

5), because the rows may have varying numbers of non-zero entries, and if we normalize

them to lie in ✛ ✜ , the proof might fail. For example, suppose we normalize the rows of

the matrix in Figure 5. Then a
✓

in a row from the upper half of that matrix becomes
✓ ✁ ✁

(where ✁ is the the number of non-zero entries in that row, which will be greater than✓
for any variable ✂ � that occurs in any of the clauses in

�
). At the same time, a

✓
in the

lower half of the matrix remains a
✓
, since every row in the lower half contains exactly

one non-zero entry. To alleviate this problem, we augment the matrix from Figure 5 in

such a way that every row has the same number of non-zero entries. This is non-trivial,

since we have to augment the matrix in such a way that satisfiability of 3SAT is not

violated.

Let
� ✵ be the set of rows of the matrix in Figure 6, and let ✕✩✵ be the target (bottom)

row. Here sub-matrices ✛ ,
✬
, ✜✫✪ ✆ and ✭ ☎✫✮ have the same meaning as in Section



�✂✁✓✄✔✁ ✝✟✞✡✠ ✁✓✄✔☞ � ✝✟✞✡✠ ✁✓✄✔☞ ✕� ✁✓✄✔✁ ✌✎✍✑✏✒✁✓✄✆☞ � ✌✎✍✑✏✒✁✓✄✆☞� ☞✟✄✆☞ ✕�✂☞✟✄✆☞✕ � ☞✟✄✆☞ ✁✕ � ☞✟✄✆☞� ☞✟✄✆☞✙ ✚✜✚✂✚✂✙ ✢ ✚✂✚✂✚ ✢ ✂ ✚✂✚✜✚✄✂ ✢☎✁ ✖
Fig. 6. Matrix used in the proof that 3SAT is reducible to EXACT-AOMM

A.3. In addition,
✂ ✜✫✪ ✆ is a logical negation of ✜✫✪ ✆ , i.e.

✂ ✜✫✪ ✆ � ✌ ✁
✎ ✓

whenever

✜✫✪ ✆ � ✌ ✁
✎✦✬

, and vice-versa. Similarly,
✂ ✭ ☎✫✮ is a negation of ✭ ☎✫✮ . The last column

of the matrix contains zeros in the top ✯ ✗ rows and ✁ in the bottom
✯ ✁ rows. Note that

the new matrix contains the tableau constructed in Section A.3 as a sub-matrix in the

upper-left corner. The columns to the right of the original tableau ensure that the sum

of every row in the matrix is exactly ✁ ☎ ✓
. The first

✗ ☎ ✁ positions of the target row

are also identical to the target row for the POMM problem.

We define a corresponding instance of EXACT-AOMM by setting ✕ ✎ ✕ ✵ ✁ ● ✗ ☎✯ ✁ ☎ ✗ ✁ ☎ ✯ ✁ � ❏ , and
� ✎✒✑ ✠ ✵✁ ✁ ●✢✁ ☎ ✓ ❏ ✪ ✠ ✵✁ ✥ � ✵ ✘ , dividing each row by the

sum of its elements to ensure that the result is in ✛ ✜ . Now we want to prove that
�

is

satisfiable if and only there exists a subset ✆✼✷ �
which satisfies equation (21).

Let ✆ ✷ �
be the subset that satisfies equation (21). We assert that ✔ ● ✆ ❏ , the size

of ✆ , must be ● ✗ ☎ ✯ ✁ ❏ . The proof is as follows:

(i) The sum of the first column over ✆ can be either

✁
✥
✠
✁

or
�✥
✠
✁
, and the target is✕ ✁ ✎ ✁✡ ★✡✠ ✞ ✥ ✓ ✡ ✥ ✠ ✁ ✓ . Therefore ✔ ● ✆ ❏ can be either ● ✗ ☎ ✯ ✁ ❏ or ✯■● ✗ ☎ ✯ ✁ ❏ .

(ii) The sum of the last column over ✆ can be any one of
✥✥
✠
✁ ☞ ✑✮✓✤✭ ✯ ✭✜✯■✭✆✄✖✄✆✄✚✭ ✁ ✭✆✄✖✄✆✄✻✭✝✆ ✁ ✘ ,

while the target is
✞ ✥✟✞✡ ★ ✠ ✞ ✥ ✓ ✡ ✥ ✠ ✁ ✓ . Therefore ✔ ● ✆ ❏ can be any one of ★✡✠ ✞ ✥✞ ✥ ☞✑✔✓ ✭ ✯ ✭✂✯✮✭✖✄✆✄✆✄✝✭ ✁ ✭✖✄✆✄✖✄✻✭✠✆ ✁ ✘ .

Since ✆ must satisfy equation (21) for all ☎ , we must have ✔ ● ✆ ❏ satisfy both (i) and (ii),

and therefore it must be that ✔ ● ✆ ❏ ✎ ● ✗ ☎ ✯ ✁ ❏ . Now, since by definition ✠ ✁ ✌ ✆ ✎ ❆ ❊✆☛✡ ☛✥
✠
✁

and ✕ ✆ ✎ ✌ ❊☛✡ ★ ✠ ✞ ✥ ✓ ✡ ✥ ✠ ✁ ✓ , we can claim that:✦✧
✕ ✆ ✎ ✓

✔ ● ✆ ❏ ✗❆ ✆ ❇✠✟ ✠ ✁ ✌ ✆✛★✩ ✪ ✦✧
✕ ✵✆ ✎ ✗❆ ❊✆ ❇✠✟ ❊ ✠ ✵✁ ✌ ✆ ★✩ (22)

Here ✆ ✵ is a subset of the rows that corresponds to ✆ . It remains to show that
�

(an instance of 3SAT) is satisfiable if and only if there exists a subset ✆ ✵ ✥ � ✵ which

satisfies the right hand side of equation (22).

●☛☞☛❏ If such ✆ ✵ exists, columns
✑✮✓✕✄✆✄✖✄ ✗✙✘

of
� ✵ guarantee that we have a proper truth

assignment, and columns
✑✴✗ ☎ ✓✕✄✆✄✖✄ ✗ ☎ ✁ ✘ guarantee that every clause of

�
has

at least one true proposition, thus
�

is satisfied.



● � ❏ If
�

is satisfiable, it is clear that right hand side of equation (22) holds for columns✑✔✓✕✄✖✄✆✄ ✗ ☎ ✁ ✘
(e.g. by the the SUBSET-SUM argument). Each one of the columns✑✴✗ ☎ ✓✕✄✆✄✖✄ ✗ ☎ ✁ ✘

contained 1, 2, or 3 non-zero entries (in the first ✯ ✗ rows),

and therefore required 2, 1 or 0 “helper” variables to add up to 3. Because columns✑✴✗ ☎ ✁ ☎ ✓ ✄✆✄✆✄ ✗ ☎ ✁ ☎ ✁ ✘
represent a logical negation of columns

✑✴✗ ☎ ✓✕✄✖✄✆✄ ✗ ☎ ✁ ✘
,

they will contain ● ✗ � ✓ ❏ , ● ✗ � ✯✲❏ or ● ✗ � ✯ ❏ non-zero entries respectively and may

require 1, 2, or 3 “helper” variables to sum to
✗

. Finally, the last column will reflect

the total number of “helpers” used for each of the ✁ clauses, which will always be✯
for every clause: either ● ✯ ☎ ✓ ❏ , or ● ✓ ☎ ✯ ❏ , or ● ✬ ☎ ✯ ❏ . Since there are ✁ clauses,

the last column will sum up to
✯ ✁ ☞ ✁ .

This proves that
�

is satisfiable if and only if the right hand side of equation (22)

is satisfiable, which in turn holds if and only if left-hand side (EXACT-AOMM) is

satisfiable. The matrix in Figure 6 is of size ● ✯ ✗ ☎ ✆ ✁ ❏ by ● ✗ ☎ ✯✄✁ ☎ ✓ ❏ , thus we

have a polynomial-time reduction from an instance of 3SAT to an instance of EXACT-

AOMM. Thus EXACT-AOMM is NP-hard, and by the result in section 2.2, AOMM is

NP-hard as well.


