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ABSTRACT

In this paper the score distributions of a number of text search en-

gines are modeled. It is shown empirically that the score distri-

butions on a per query basis may be fitted using an exponential

distribution for the set of non-relevant documents and a normal dis-

tribution for the set of relevant documents. Experiments show that

this model fits TREC-3 and TREC-4 data for not only probabilistic

search engines like INQUERY but also vector space search engines

like SMART for English. We have also used this model to fit the

output of other search engines like LSI search engines and search

engines indexing other languages like Chinese.

It is then shown that given a query for which relevance infor-

mation is not available, a mixture model consisting of an exponen-

tial and a normal distribution can be fitted to the score distribution.

These distributions can be used to map the scores of a search engine

to probabilities. We also discuss how the shape of the score distri-

butions arise given certain assumptions about word distributions in

documents. We hypothesize that all ’good’ text search engines op-

erating on any language have similar characteristics.

This model has many possible applications. For example, the

outputs of different search engines can be combined by averaging

the probabilities (optimal if the search engines are independent) or

by using the probabilities to select the best engine for each query.

Results show that the technique performs as well as the best current

combination techniques.

�
This material is based on work supported in part by the Na-

tional Science Foundation, Library of Congress and Department
of Commerce under cooperative agreement number EEC-9209623,
in part by the National Science Foundation under grant num-
bers IRI-9619117 and IIS-9909073, in part by NSF Multimedia
CDA-9502639 and in part by SPAWARSYSCEN-SD grant num-
ber N66001-99-1-8912. Any opinions, findings and conclusions or
recommendations expressed in this material are the author(s) and
do not necessarily reflect those of the sponsor(s).

submitted to ACM SIGIR’01 New Orleans, Louisiana, USA

Categories and Subject Descriptors

[Formal Models, Fusion/Combination, Modeling of score dis-

tributions]

1. INTRODUCTION
In this paper we model score distributions of text search engines

using a novel approach. We first show that the score distributions

for a given query may be modeled using an exponential distribution

for the set of non-relevant documents and a normal distribution for

the set of relevant documents. We further show that when relevance

information is not available, these distributions can be recovered by

fitting a mixture model with a Gaussian and an exponential com-

ponent to the output scores of search engines on a per query ba-

sis. This novel approach to score modeling is then used to map the

scores to probabilities using Bayes’ Rule. Note that no training is

required for this approach and in addition no assumption is made on

the kind of search engine used. The model has been shown to work

for a large number of search engines on TREC-3 and TREC-4 data

including probabilistic search engines like INQUERY and vector

space search engines like SMART. This model has also been shown

to work for other engines like the LSI search engine and the score

distributions of TREC-6 INQUERY and SMART data on Chinese.

To our knowledge, this is the first attempt at recovering the rele-

vant and non-relevant distributions when no relevance information

is available.

The probabilities of relevance obtained from this model have

many possible applications. For example thresholds for filtering

may be selected using this approach or the probabilities may be

used to combine the search from many distributed databases or

multi-lingual or multi-modal databases. Here, we will focus on

using them to combine the outputs of different search engines (the

meta-search problem).

Most combination methods proposed in the literature are ad-hoc

in nature and often involve the linear combination of scores [6].

This is unsatisfactory as scores from different search engines can

be very different since they are often the result of computing some

metric (or non-metric) distance over sets of features. Both the dis-

tance and the features may vary from engine to engine. In fact

even the distributions of scores of different search engines could

vary widely - for example, the scores of relevant documents may

be clumped together for one engine while for those of a second en-

gine may be distributed in a much more uniform manner. A linear

combination of results in such cases could lead to misleading re-

sults. The problem is more acute when search engines operating

on different media have to be combined for then the scores really



mean different things.
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approach proposed here allows us to combine the outputs

of search engines using the probabilities derived from the model

of score distributions. In this paper we examine two approaches to

combination. The first involves averaging the probabilities which

is optimal in the sense of minimizing the Bayes’ error if the search

engines are treated as independent classifiers [18]. The second ap-

proach involves using the probabilities to discard “bad” engines

while keeping the “good” ones. We show that the combination ap-

proaches proposed using these techniques do as well as the best

combination techniques proposed in the literature. In addition, our

technique is less ad-hoc and easier to justify. The technique can

also be extended to multi-lingual and multi-modal combination.

The rest of the paper is divided as follows. Section 2 discusses

prior work in modeling score distributions as well as in the area

of combination. This is followed by Section 3 which discusses the

modeling of score distributions of relevant and non-relevant docu-

ments and how these distributions may be recovered in the absence

of relevance information by using a mixture model. Solving for

the mixture model using Expectation-Maximization (EM) is also

discussed. Finally, Bayes’ Rule is used to map the scores to prob-

abilities of relevance. Section 4 discusses the theoretical intuition

behind using such models. Section 5 discusses how the model and

the probabilities derived from it can be used for evidence combina-

tion. Finally, Section 6 concludes the paper.

2. PRIOR WORK
Note that it is not obvious that the non-relevant data should be

fitted with an exponential and the relevant data with a Gaussian.

A number of researchers in the 60’s and 70’s starting with Swets

[17] proposed fitting both the relevant and non-relevant scores us-

ing normal distributions and then using statistical decision theory

to find a threshold for deciding what was relevant. Bookstein [3]

pointed out that Swets implicitly relied on an equal variance as-

sumption. Bookstein also raised the issue of whether it might be

more appropriate to model the score distributions using Poissons.

This modeling does not appear to have been done. van Rijsbergen

[19] commented that for search engines like SMART there was no

evidence that the distributions were similarly distributed let alone

normally. We observe here that the empirical data for a large num-

ber of search engines clearly shows that the two distributions are

not similar. All of the previous work here assumes that relevance

information is available. To our knowledge, there is no literature

on recovering the relevant and non-relevant distributions when no

relevance information is available and ours is the first attempt to do

this.

A recent and extensive survey of evidence combination in infor-

mation retrieval is provided by Croft [6]. Tumer and Ghosh [18]

discuss past work in a related area - the combination of classifiers.

They show that for classifiers which are statistically independent,

the optimal combination is obtained by averaging the probabilities.

They define optimality as equivalent to minimizing the Bayes’ er-

ror.

Fox and Shaw [9] proposed a number of combination techniques

including operators like the MIN and the MAX. Other techniques

included one that involved setting the score of each document in

the combination to the sum of the scores obtained by the individual

search engines (COMBSUM), while in another the score of each

document was obtained by multiplying this sum by the number of

engines which had non-zero scores (COMBMNZ). Note that sum-

ming (COMBSUM) is equivalent to averaging while COMBMNZ

is equivalent to weighted averaging. Lee [12, 13] studied this fur-

ther with six different engines. His contribution was to normalize

each engine on a per query basis improving results substantially.

Lee showed that COMBMNZ worked best, followed by COMB-

SUM while operators like MIN and MAX were the worst. Lee also

observed that the best combinations were obtained when systems

retrieved similar sets of relevant documents and dissimilar sets of

non-relevant documents. Vogt and Cottrell [20] also verified this

observation by looking at pairwise combinations of systems. A

probabilistic approach using ranks rather than scores was proposed

last year by Aslam and Montague [1]. This involved extensive

training across about 25 queries to obtain the probability of a rank

given a query. Their results for TREC-3 were close to but slightly

worse than Lee’s COMBMNZ technique 1. Aslam and Montague

were able to demonstrate that rank information alone can be used

to produce good combination results. The main difficulty with this

technique seems to be the extensive training required of every en-

gine on a substantial number of queries.

A number of people have also looked at the problem of combin-

ing outputs of systems which search overlapping or disjoint databases.

Voorhees et al [21] experimented with combination using a set of

learned weights. Callan [4] gave a value to each database. He

showed that weighting the scores by this value was substantially

better than interleaving ranks. Some researchers have also inves-

tigated the notion of combining search engines over multiple me-

dia. QBIC [8] combined scores from different image techniques

using linear combination. Fagin [7] used standard logical operators

like MIN and MAX to combine scores in a multimedia database.

However, Lee’s experiments showed (at least for text) that these

operators perform significantly worse than averaging).

3. MODELING SCORE DISTRIBUTIONS OF

SEARCH ENGINES
In this section we describe how the outputs of different search en-

gines were modeled using data from the text retrieval conferences

(TREC). TREC data provides the scores and relevance information

for the top 1000 documents for different search engines. For the

experiments here data from the ad hoc track of the TREC-3 and

TREC-4 for a number of different search engines was used. We

will show examples of the modeling on queries from INQUERY

and SMART from TREC-3. INQUERY is a probabilistic search

engine from the University of Massachusetts, Amherst while Smart

is a vector space engine from Cornell University.

Our modeling begins with TREC-3 data for INQUERY. There

are 50 queries available with document scores and relevance infor-

mation for each query. We examine the relevant and non-relevant

data separately. The data are first normalized so that the minimum

and maximum score for a query are 0 and 1 respectively. Figure

1 shows a histogram of scores for query 151 from TREC-3 for the

relevant data. The histogram approximates a normal distribution.

The plot also shows a maximum-likelihood fit using a Gaussian

with mean 0.466 and variance 0.042. The maximum-likelihood fit

involves setting the mean and variance of the Gaussian to the sam-

ple mean and sample variance respectively of the data [2]. The

Kolmogorov-Smirnov (KS) test for significances shows that we

cannot eliminate the null hypothesis that the distribution is a Gaus-

sian. In other words, a Gaussian is not inconsistent with the data.

Figure 2 shows a histogram of scores for the set of non-relevant

documents for the same query. The histogram clearly shows the

rapid fall in the number of non-relevant documents with increasing

score. A maximum-likelihood fit of an exponential curve to this

data is also shown. For the purposes of fitting the exponential, the

origin is shifted to the document with the lowest score. It can be✂
The graph for Lee’s technique in [1] is incorrect.
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Figure 1: Histogram and Gaussian fit to relevant data for query

151 INQUERY (inq101)

shown that the maximum-likelihood for an exponential is obtained

by setting the mean of the exponential to the sample mean of the

data [2].
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Figure 2: Histogram and shifted exponential fit to non-relevant

data for query 151 INQUERY (inq101)

The same process was repeated for all 50 queries in this track and

in most of those cases it was found possible to fit the non-relevant

data with exponentials and the relevant data using Gaussians. The

relevant data can be fitted with a Gaussian reasonably well when

there is a sufficient number of relevant documents. Usually more

than 60 relevant documents were needed. When the number of

relevant documents was small, the fit was bad. However, we believe

this is not because the Gaussian was a bad fit but because we don’t

have enough relevant documents to compute the statistics in these

cases. The exponential was also a good fit to the non-relevant data.

We have so far been able to fit parametric forms to the score dis-

tributions given relevance information. When running a new query,

however, relevance information is not available. Clearly, it would

be useful to fit the score distributions of such data. A natural way to

do this is to fit a mixture model of a shifted exponential and a Gaus-

sian to the combined score distribution. This approach is discussed

in the next section.

3.1 Mixture Model Fit
Consider the situation where a query is run using a search en-

gine. The search engine returns scores but there is no relevance in-

formation available. We show below that in this situation, a mixture

model consisting of an exponential and a Gaussian may be fitted to

the score distributions. We can then identify the Gaussian with the

distribution of the relevant information in the mixture and the ex-

ponential with the distribution of the non-relevant information in

the mixture. Essentially this allows us to find the parameters of the

relevant and non-relevant distributions without knowing relevance

information apriori.

The density of a mixture model ☎✝✆✟✞✡✠ can be written in terms of

the densities of the individual components ☎✝✆✟✞☞☛ ✌✍✠ as follows: [2,

14]

☎✝✆✟✞✡✠☞✎✑✏✓✒✕✔✖✆✗✌✍✠✘☎✙✆✟✞☞☛ ✌✍✠ (1)

where j identifies the individual component, the ✔✖✆✗✌✍✠ are known as

mixing parameters and satisfy ✚✑✛✒✢✜ ✂ ✔✖✆✗✌✍✠✣✎✥✤✧✦✩★✫✪✬✔✖✆✗✌✍✠✭✪✑✤ . In

the present case, there are two components, an exponential density

with mean ✮
☎✙✆✟✞☞☛ ✤✯✠☞✎✑✮✱✰✳✲✵✴✡✆✷✶✸✮✹✞✡✠ (2)

and a Gaussian density with mean ✺ and variance ✻ ✛
☎✙✆✟✞☞☛ ✼✽✠☞✎ ✤✾ ✼✧✿❀✻ ✰✳✲✵✴✡✆✷✶ ✆✟✞❁✶❂✺✝✠ ✛✼✯✻ ✛ ✠ (3)

A standard approach to finding the mixing parameters and the

parameters of the component densities is to use Expectation Max-

imization (EM) [2, 14]. This is an iterative procedure where the

Expectation and Maximization steps are alternated.

The EM procedure leads to the following update equations for

the parameters:

✺❄❃✧❅✷❆ ✎ ✚ ❃ ✔❈❇✩❉❋❊●✆❍✼✵☛ ✞ ❃ ✠■✞ ❃✚ ❃ ✔ ❇✩❉❋❊ ✆❍✼❏☛ ✞ ❃ ✠ (4)

✆✟✻ ❃❑❅✷❆ ✠ ✛ ✎ ✚ ❃ ✔ ❇✩❉❋❊ ✆❍✼✵☛ ✞ ❃ ✠✳☛▲☛ ✞ ❃ ✶▼✺ ❃✧❅✷❆ ☛▲☛ ✛✚ ❃ ✔ ❇✩❉❋❊ ✆❍✼❏☛ ✞ ❃ ✠ (5)

✮ ❃❑❅◆❆ ✎ ✚ ❃ ✔ ❇✩❉❋❊ ✆✷✤●☛ ✞ ❃ ✠✚ ❃ ✔ ❇✩❉❋❊ ✆✷✤✽☛ ✞ ❃ ✠■✞ ❃ (6)

✔✖✆✗✌✍✠ ❃✧❅✷❆ ✎ ✤❖ ✏
❃
✔ ❇P❉❋❊ ✆✗✌◗☛ ✞✡✠ (7)

The procedure needs an initial estimate of the component den-

sities and mixing parameters. Given that, it rapidly converges to

a solution. Using EM to fit the data gives the mixture fit shown

in Figure 4. The figure plots the mixture density as well as the

component densities for the exponential and Gaussian fits. The ad-

jacent figure (Figure 3) shows the exponential and Gaussian fits to

the non-relevant and relevant data. Comparing the two figures, it

appears that the strategy of interpreting the Gaussian component

of the mixture with the relevant distribution and the exponential

component of the mixture with the non-relevant distribution is a

reasonable one. We should note that the correspondence between

the mixture components and the fits to the relevant/non-relevant

data is not always as good as that shown here but in general it is a

reasonable fit.

The same technique was used to model the result of query 151

for the Cornell Smart vector space engine. Similar results were

obtained as shown in Figures 5 and 6.

This model has been fitted to a large number of search engines

on TREC-3 and TREC-4 data including probabilistic engines like

INQUERY and CITY and a vector space engine (SMART) as well

as Bellcore’s LSI engine. The fit appears to be better for “good”



search engines (engines with a higher average precision in TREC-

3) and❘ worse for those with a lower average precision. The model

has also been able fitted to document scores for searches on IN-

QUERY and SMART indexing a Chinese database.
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Figure 3: Exponential fit to non-relevant data and Gaussian fit

to relevant data for query 151 INQUERY (inq101)

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

n
o

rm
a

liz
e

d
 f

re
q

u
e

n
cy

✄

normalized score

inq101: query 151 (cnt(r/n): 83/917)

mixture fit
Gaussian component of mixture

exponential component of mixture

Figure 4: Mixture model fit showing exponential component,

Gaussian component and the combined mixture for query 151

INQUERY (inq101). Compare with Figure3

3.2 Computing Posterior Probabilities
Using Bayes’ Rule one can compute the probability of relevance

given the score as

❙❯❚✘❱❳❲❳❨❍❩ ❬P❭✩❪❳❱❳❲❳❫❵❴ ❙❯❚❛❬P❭✩❪❳❱✳❲✽❩ ❱❳❲✳❨❜❫❝❙❯❚❜❱✳❲❳❨✘❫❙❯❚❛❬P❭✩❪❳❱❳❲❑❩ ❱❳❲❳❨✘❫❍❙❯❚✘❱❳❲✳❨❜❫✍❞❡❙❯❚✟❬✩❭✩❪❳❱❳❲✽❩ ❢❏❪❳❢✹❱✳❲❳❨✘❫❍❙❯❚✘❢✹❪❳❢❏❱❳❲❳❨✘❫
(8)

where ✔✖✆✟❣❑❤✓✐✷☛ ❥❳❦✳❧✯❣✧❤❑✠ is the probability of relevance of the document

given its score, ✔✖✆❍❥❳❦✳❧✯❣✧❤✵☛ ❣✧❤✓✐❝✠ and ✔✖✆❍❥♠❦✢❧✧❣✧❤✍☛ ♥✡❧✯♥❀❣❑❤✓✐❝✠ are the proba-

bilities of score given that the document is relevant and score given

that the document is non-relevant respectively. P(rel) and P(nonrel)

are the prior probabilities of relevance and non-relevance.

In our model, ✔✖✆❍❥❳❦✳❧✯❣❑❤✍☛ ❣✧❤✯✐✟✠ is given by the Gaussian component

of the mixture while ✔✖✆❍❥❳❦✳❧✯❣❑❤✍☛ ♥❀❧✧♥❀❣✧❤✓✐❝✠ is given by the exponential

part of the mixture. P(rel) and P(nonrel) may be obtained by using

the mixing parameters. Thus, ✔✖✆✟❣✧❤✯✐◆☛ ❥❳❦✢❧✧❣✧❤✧✠ can be computed in a

simple manner.
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Figure 5: Exponential fit to non-relevant data and Gaussian fit

to relevant data for query 151 SMART (crnlea).
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Gaussian component and the combined mixture for query 151

SMART (crnlea). Compare with Figure 5

Figure 7 shows the posterior probability obtained for SMART

for query 164 using the fits shown in Figures 5 and 6. The figure

shows the posterior probabilities obtained from the separate Gaus-

sian and exponential fits when relevance information is available

and also the posterior probabilities obtained from the Gaussian and

exponential part of the mixture. P(rel) and P(nonrel) are taken to be

the mixing parameters in this case. Note that the differences in the

two curves reflect fitting errors both for the mixture fit as well as

the separate Gaussian and exponential fits obtained when relevance

information is available.

In general we expect the posterior probabilities to be a mono-

tonic function of the score. In other words as the score increases

so should the posterior probability. In some cases we may have the

situation depicted in Figure 8 where the posterior seems to decrease

with increasing scores. The figure depicts the posterior probabili-

ties for INQUERY for query 154 using TREC-3 data. This situation

arises because the Gaussian density falls much more rapidly than

the exponential and hence the two densities intersect twice. Note

that in this case the posterior probabilities obtained both from the

mixture fit (no relevance information available) as well as that ob-

tained using relevance data show this problem. One solution would

be not to use a Gaussian density but to use another function which

has the same form (like a Gamma distribution) but decreases less
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Figure 8: Posterior probability for query 154 for the INQUERY

engine for TREC-3 data. The bold dotted line is obtained from

the separate Gaussian and exponential fits computed using rel-

evance information. The solid line is obtained from the mixture

fits. The dotted line joins the maximum point of the mixture to

the point(1,1). The final posterior mapping follows the solid line

up to the maximum point and then the straight line curve thus

preserving monotonicity

rapidly. As we discuss below the problem with this approach is

that the mixture model does not converge to a reasonable solution.

Instead we force the posterior probability to be monotonic by draw-

ing a straight line from the point where the posterior is maximum to

the point (1,1). The final posterior probability curve is given by the

portion of the posterior probability computed using Bayes’ rule up

to the maximum portion of the curve and the straight line thereafter.

We have assumed that the priors P(rel) and P(nonrel) may be es-

timated using the mixing parameters. When there are few relevant

documents the mixing parameters provide a poorer estimate of the

priors. In a normal retrieval the number of relevant documents is

small and hence estimates of the mixing parameters are less ac-

curate. Extensive experiments have shown that P(nonrel) is best

estimated using the following procedure. Let P(1) be the mixing

parameter corresponding to the exponential. Then

✔✖✆✟♥❀❧✧♥❀❣✧❤✓✐❝✠☞✎q♣ ✔✖✆✷✤✓✠sr◆t✉✔✖✆✷✤✯✠✈✪✬★✵✇ ①★✍✇ ① ❧✯②✷③✹❤✓❣✯④✱r◆❥♠❤ (9)

and P(rel) = 1 - P(nonrel). This approach to estimating the priors

improves the average precision results slightly when we combine

results.

3.3 Comments on Fitting Distributions and
Mixture Models

There is a large family of densities which could possibly have fit

the data. For example, the Poisson and Gamma distributions ap-

proximate the Gaussian for appropriate parameter choices. How-

ever, using a Poisson/Poisson (non-relevant/relevant) or an expo-

nential/ Poisson combination did not fit the data well. On the other

hand, while an exponential/Gamma fit the non-relevant and rele-

vant data when separately fitted, a mixture fit with exponential and

Gamma components did not converge to the right answer. In this

case the Gamma component also converged to an exponential (the

exponential density is a special case of the Gamma function). Thus

our choice of distributions - exponential for the non-relevant and

Gaussian for the relevant - is dictated by the consideration that the

functions fit the data well and by the consideration that they can be

recovered using a mixture model when relevance information is not

available.

Like any non-linear equation solver, EM may find solutions aris-

ing from local maxima and is sometimes sensitive to initial condi-

tions [14]. Different approaches to picking initial conditions were

tried.

1. The first involved picking arbitrary initial conditions.

2. A second approach involved fitting an initial exponential to

all the document scores (relevant and non-relevant). This is

reasonable since there are far more non-relevant documents

than relevant documents. Thus, the distribution of the scores

of the combined documents essentially resembles that of the

of scores of the non-relevant documents i.e. its an exponen-

tial. Scores of documents which do not fit the exponential are

removed and fitted with a separate Gaussian. The exponen-

tial and Gaussian provide initial estimates of the parameters.

Some sensitivity to initial conditions was noticed but usually for

the poorer search engines (search engines much lower down in a

TREC-3 ranking by average precision).

4. SHAPE OF DISTRIBUTIONS
We will now attempt to give some insight into the shape of the

score distributions.

Given a term (or word) assume that the distribution of this term

in the set of relevant documents is given by a Poisson distribution

with parameter ✮◗⑤ . That is,

✔✝⑤✽✆✟✞✡✠☞✎ ✮◗⑥⑤ ✰✳✲✵✴✙✆✷✶✸✮◗⑤✓✠✞✙⑦ (10)

where x is the number of times that the term occurs in a particular

document and ✔✝⑤❑✆✟✞✡✠ is the probability of x occurrences of the term

in the set of relevant documents. Also assume that its distribution

in the set of non-relevant documents is given by another Poisson

distribution with the parameter ✮ ❃ . That is,

✔ ❃ ✆✟✞✡✠☞✎ ✮ ⑥❃ ✰✢✲❏✴✡✆✷✶✸✮ ❃ ✠✞❄⑦ (11)



where ✔ ❃ ✆✟✞❀✠ is the probability of x occurrences of the term in the

set of⑧ non-relevant documents. In general, ✮ ❃ will be much smaller

than ✮◗⑤ .
Numerous attempts have been made to model word distributions

in the past. Harter [11] used a mixture of 2 Poissons to model the

distributions of words in a document. Our model in this section

is closely related to his model. It has been argued by some re-

searchers that the 2 Poisson model is not a good approximation and

that other distributions like the negative binomial are better mod-

els of the distributions of words in documents [15]. A mixture of

a large number of Poissons has also been used to fit the data [5].

Since we would like to fit a distribution to the relevant and another

to the non-relevant, it is much more convenient for us to assume

the 2-Poisson model here. Additionally, the main purpose of this

section is to provide some insight and not a rigorous derivation.

Given a query consisting of 1 term and assuming that the score

given to a document is proportional to the number of matching

words in the document, the distribution of the scores of relevant

documents is then given by the Poisson distribution:

✔✝⑤✧✆✟✞✡✠☞✎ ✮ ⑥⑤ ✰✳✲✵✴❄✆✷✶✸✮◗⑤✓✠✞✙⑦ (12)

and the distribution of the scores of non-relevant documents is given

by the Poisson distribution:

✔ ❃ ✆✟✞✡✠☞✎ ✮ ⑥❃ ✰✳✲✵✴✙✆✷✶✸✮ ❃ ✠✞✙⑦ (13)

The actual scores for many search engines is weighted by some

function of the term frequency and the inverse document frequency.

However, empirical evidence [10] shows that the score may be

reasonably approximated as being proportional to the number of

matching words.

For the set of relevant documents, ✮◗⑤ will usually be large. For

large values of ✮ , the Poisson distribution tends to a normal dis-

tribution (see Figure 9). On the other hand for small values of ✮ ,

the Poisson distribution will tend towards a distribution which is

falling rapidly (see Figure 9). The shape of these curves is con-

sistent with the experimental modeling of scores for TREC-3 and

TREC-4 data (see the previous section). The experiments showed

us that the normal distribution is a good fit for the score distribu-

tions of the relevant data. For non-relevant data, the experiments

show that the exponential distribution is a good fit. For small ✮ ❃ ,

the Poisson distribution shows a decreasing distribution. Although,

this is not the same as an exponential distribution, it does have the

same general shape as an exponential (rapid monotonic decrease).

It is much harder to derive the score distributions if the query

consists of two or more terms. This is because the actual scores of

search engines are complicated functions. However, there is empir-

ical evidence that the major contribution to the scores is provided

by the number of matching terms [10]. We also note that Robert-

son and Walker [16] motivated a ②✷t⑨✶✫r❍⑩◆t scoring function from the

2-Poisson model. We assume first that the score is proportional to

the number of matching words and provide an intuitive argument

for queries with two or more terms. For simplicity we will con-

sider the case where the query has just two terms but the argument

applies in general. In this case we can assume that the two terms

say “oil” and “spill” can be clubbed together to create a single term

- “oil spill”. Then the ✮◗⑤ (the average frequency of a term over

relevant documents) for joint occurrences of this term “oil spill” is

much lower than the ✮◗⑤ for either “oil” or “spill”. In other words

the chances that the terms “oil spill” occur together is much less

than that of finding “oil” or “spill”. When the query contains two

terms, it is reasonable to assume that the ✮ ❃ (i.e. the average fre-
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Figure 9: The Poisson distribution for different values of ✮ .

quency over non-relevant documents) does not change much as it

essentially reflects the background probabilities of the word.

The Poisson model for the shape of the relevant and non-relevant

distributions that we have derived applies to both probabilistic en-

gines like INQUERY and vector space engines like SMART. For

vector space engines the number of matching terms is given by

the dot product of two vectors - one representing the query and

the other the document. Further, this model is language indepen-

dent (as long as word frequencies in any language have an approx-

imately 2-Poisson like distribution). Thus, we predict that a mix-

ture of exponential and Gaussian distributions will fit a much larger

class of text search engines operating on different languages.

The model in this section although intuitive can be used to make

a prediction. The model predicts that on a statistical basis as the

number of query terms is increased the overall ✮ should decrease

and hence the mean and variance of the Gaussian fitting the relevant

documents should also decrease. Note that for any particular query

the mean score can be arbitrary. However when a large enough

sample of queries is considered, the mean query should decrease

with the number of query terms.

It is a well known fact in information retrieval that with query

expansion the score of the relevant documents decreases and the

range also decreases which is consistent with this prediction. For

the 50 queries from TREC-3 for INQUERY (inq101) and SMART

(crnlea), we plotted the mean scores of the relevant data versus the

number of query terms (including expanded queries). A small sta-

tistical decrease with the number of query terms was observed for

INQUERY and SMART. The figures are not produced here because

of a lack of space.

5. COMBINING SEARCH ENGINES
The posterior probabilities obtained by using the model discussed

above has many possible applications. For example the probabil-

ities could be used to select a threshold for filtering documents or

for combining the outputs in distributed retrieval. Here we discuss

one possible application which involves combining the outputs of

different search engines on a common database to improve results.

It would be of considerable use to combine the output of dif-

ferent search engines. In this section we discuss how the score of

search engines may be combined while taking into account the ac-

tual score distributions.

In general the range of search engine scores may vary quite a bit -



for example, one engine may have scores ranging from 0 to 1 while

another
✁

can have scores ranging from -20 to 150. Other approaches

to combining score distributions have focused on normalizing the

range of the scores and then combining them by simple techniques

like linear combination or by taking the minimum and maximum

scores. However, range normalization does not take into account

the actual distribution of the scores. Consider, for example, the

model of the scores discussed previously where the scores of the

relevant documents follow a normal distribution and the scores of

the non-relevant follow an exponential distribution. Also consider

two different search engines which have different parameter values

for these distributions. A simple (linear) range normalization and

combination does not clearly suffice.
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Figure 10: Recall precision graphs for combining inq101 and

crnlea using different techniques (see text). Data from TREC-3

There are a number of possible ways the probabilities can be

used to combine the search engines. We propose two alternative

schemes for combination. The first involves averaging the prob-

abilities. This is optimal in the sense of minimizing the Bayes’

error if the search engines are independent [18]. Of course the

outputs of search engines are not necessarily independent. In the

following figures and discussions, data are taken from TREC-3.

inq101 and crnlea denote runs of the INQUERY and SMART en-

gines, META200 denotes combination by averaging the posteri-

ors obtained using the mixture model, while META900 denotes

the combination by averaging the posterior probabilities using the

Gaussian and exponential fits assuming relevance is given. Thus,

any difference between META200 and META900 is caused by the

errors in performing a mixture fit to the model. LEE denotes Lee’s

COMBMNZ technique while the manual engine selection tech-

nique involves selecting and discarding the best engine (or engines)

on a per query basis using the average precision for that query.

Manual engine selection provides an indication of the best combi-

nation result we can achieve. Note that both META900 and manual

engine selection require relevance information and are only plotted

to provide a baseline for understanding the limits of combination.

Figure 10 shows recall-precision plots for combining INQUERY

and SMART on TREC-3 data. Precision is defined as the fraction

of retrieved documents which are relevant while recall is the frac-

tion of relevant documents which have been retrieved. The recall-

precision graph is usually created by averaging over a certain num-

ber of queries - in this case 50. As the figure shows META200 per-

forms considerably better than either INQUERY and SMART - in

fact about 6% better than INQUERY and 13% better than SMART.

LEE is slightly better (about 1%) than META200 although the dif-

ference is not significant. META900 has an average precision about

10% better than INQUERY and clearly performs better than either

META200 or LEE’s implying that if the mixture fit could be im-

proved the technique would perform even better. Finally, the plot

for manual engine selection clearly indicates that both META200

and LEE’s are close to obtaining the best performance possible

from combination.

Figure 11 describes combination results for the top five engines

in TREC-3. The x-axis is the number of engines combined while

the y-axis is the average precision. As the plot clearly shows com-

bination clearly improves the results. There are four graphs in the

figure. The first curve is the average precision of the individual

search engines. The second plot META200 shows the combina-

tion method applied to 1, 2, 3, 4 or 5 engines. As can be clearly

seen there is a considerable improvement over using even the best

search engine and overall the improvement seems to increase with

the number of search engines combined. With the top 2 engines,

META200 shows an improvement of 6% over the best single en-

gine and using the top 3 engines, META200 shows an improve-

ment of almost 12%. LEE’s COMBMNZ technique is also shown

in the same graph. It’s average precision is seen to be slightly

worse than META200 but the difference is not really significant.

The performance obtained using META900 (i.e. combination with

the posterior probabilities obtained with relevance information) is

15% better than the best single engine. Again this indicates that if

the mixture fit were improved we could do even better.
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Figure 11: Recall precision graphs for combining the best five

techniques from TREC-3.

Figure 12 demonstrates that this approach also works for other

languages. The figure shows the combination results for INQUERY

and SMART when indexing a Chinese database. The data in this

case is from TREC-6. As can be clearly seen, combination us-

ing both META200 and LEE’s COMBMNZ show an improvement

over either engine. However, in this particular case the improve-

ment is much less than that for English. Also the difference be-

tween META900 and META200 is small indicating that perhaps

we are close to the limit of what can be achieved.

Combination of “good” search engines usually improves the scores.
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Figure 12: Recall precision graphs for combining inq4ch1 and

crnlch1 with Chinese queries and Chinese databases. Data

from TREC-6

Partly this reflects the fact that the score distribution models fit

“good” search engines better than “poor” search engines. How-

ever, the combination of two search engines when the performance

of one is substantially worse than the others leads to a result which

can be worse than that of the best engine. This partly reflects the

well known observation that combining a bad classifier with a good

classifier can lead to a result which may not be better than the best

individual classifier. Two search engines INQUERY (inq101) and

XEROX (xerox4) were picked. On the basis of average precision,

inq101 is ranked 4th while xerox4 is ranked 35th among 40 engines

in TREC-3. The average precision of inq101 is more than twice

that of xerox4. Figure 13 clearly shows that INQUERY (inq101)

performs much better than the XEROX engine (xerox4). The com-

bination META200 is much better than XEROX but worse than

INQUERY. LEE’s is slightly better than META200 is still worse

than INQUERY. Clearly the best option in such cases is to avoid

combination.

5.1 Automatic Engine Selection
The previous example shows that if we could have somehow fig-

ured out that we need to pick INQUERY as the best possible engine

for every query then the performance would improve considerably.

The ability to model and compute the relevant and non-relevant

distributions allows us to develop techniques to automatically se-

lecting engines on a per query basis. Here, we examine two such

approaches.

The first approach essentially tries to ensure that the distance be-

tween the mean of the normal distribution and the point at which

the densities intersect is large (all distributions are obtained using

the mixture model). The idea is that if this distance is large then it

will be easier to separate the relevant and non-relevant documents.

If the distance is less than a threshold, the engine is discarded for

that query. The posterior probability of all engines selected (i.e.

not discarded) for a particular query are averaged to obtain docu-

ment probabilities as before. If all engines for a particular query are

below the threshold, then the one with the highest posterior proba-

bility is selected. The threshold is selected based on empirical data

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n
 %❶

recall %

Recall-Precision Plot

META200
inq101
xerox4

LEE
META900

Manual engine selection

Figure 13: Recall precision graphs for combining inq101 and

xerox4 using different techniques. Data from TREC-3.

to be 0.16. The results for this technique are labelled as META206

in Figure 14

The second approach uses the posterior probabilities obtained

using Bayes’ rule from the mixture components. In some situa-

tions the maximum of the posterior probability is quite small. A

posterior of 0.5 indicates that the relevant and non-relevant distri-

butions weighted by the priors are of equal magnitude. In other

words a posterior of 0.5 indicates the point at which the exponen-

tial and Gaussian densities intersect after weighting by the prior. It

is clear that a “good” engine should preferably have a higher pos-

terior. Empirically if the posterior for a particular engine and a

particular query was less than 0.7 then that engine was regarded as

poor and discarded for that particular query. If both engines had

maximum posteriors greater than 0.7 then they were averaged. If

neither engine had a maximum posterior greater than 0.7 both were

again averaged and combined. The results for this technique are

plotted as META207.

Figure 14 shows the results of combining two engines whose

performance is very different. We again use inq101 and xerox4. As

is clear from Figure 14, META206 and META207 perform about

equally well and and both are better than META200 (straight aver-

aging of posterior probabilities). The average precision of META206

and META207 are essentially the same as LEE’s. We have also car-

ried out other experiments with other engines all of which demon-

strate that engine selection can be done using the models of score

distributions discussed here. We note that both META206 and

META207 are still worse than using INQUERY alone indicating

that there is further scope for improving the engine selection pro-

cedure. Of course, this also implies that when one search engine

performs much worse than another it may be best not to use the

“poor” search engine.

5.2 Discussion of Combination Results
The results above show that the mixture modeling performs as

well as the best current techniques (Lee’s) available for combina-

tion. There is scope for a slight improvement in estimating the

mixture parameters as well using that for obtaining better combi-

nation. Of course it is also clear that we are approaching the limits
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xerox4 by automatically selecting the best engine using proba-

bilities and distributions.

of the best performance we can achieve.

Lee’s COMBMNZ technique performs surprisingly well. In the

case where INQUERY and SMART are combined we note that for

many queries INQUERY and SMART have distributions which are

very similar. In such a situation, their posterior distributions will

also look remarkably similar and hence averaging is a good strat-

egy. Since COMBSUM involves computing a document score by

just adding the scores for all engines which find that document, it

will produce the same ranking as averaging and hence it will also

be good. COMBMNZ involves multiplying COMBSUM by the

number of engines which found that document and hence it will

also produce good results. In this particular situation COMBMNZ

involves essentially combining the posterior probabilities without

having to do the mixture modeling. However, in the more general

case, the good performance of COMBMNZ is hard to explain.

The model for combination proposed here is more intuitively sat-

isfying for a number of reasons. First, it combines engines in a

natural way using probabilities and is therefore easier to explain.

Second, it indicates where improvements can be made for better

performance. Third, the same technique may be used for combin-

ing multi-lingual engines. It will also extend to multi-modal en-

gines provided the distributions of scores behave in a similar way

for search engines indexing other media.

6. CONCLUSION
We have demonstrated how to model the score distributions of a

number of text search engines. Specifically, it was shown empiri-

cally that the score distributions on a per query basis may be fitted

using an exponential distribution for the set of non-relevant docu-

ments and a normal distribution for the set of relevant documents.

It was then shown that given a query for which relevance infor-

mation is not available, a mixture model consisting of an exponen-

tial and a normal distribution may be fitted to the score distribution.

These distributions were used to map the scores of a search engine

to probabilities.

The model of score distributions was used to combine the results

from different search engines to produce a meta-search engine. The

results were substantially better than either search engine provided

no “search engine” performed really poorly. Different combination

techniques were proposed including averaging the posterior prob-

abilities of the different engines as well as using the probabilities

and distributions to selectively discard some engines on a per query

basis.

Future work will include attempts to further improve the model-

ing for better performance. Other possible applications of modeling

score distributions like filtering will also be examined. Finally we

will also examine the possibility that search engines indexing other

media like images can also be modeled in the same way.
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