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Abstract

We present a statistical model of vocabulary growth for

applications involving large volumes of text. Vocabulary

growth is modeled as repeated sampling of words from

some underlying distribution. We derive general expres-

sions for the expected number of unique words and the

confidence interval around the expected value. We sug-

gest a parametric form of word probabilities that leads to

a closed form estimate of the expected vocabulary size.

The proposed parametric distribution also fits empirical

word frequencies better than the popular formula of Zipf.

The main result is that under reasonable assumptions the

vocabulary growth follows Gauss’ hypergeometric func-

tion.

1 Introduction

In many text-related applications it is important to

estimate how many distinct words will be observed if

we are dealing with a text of size � . In Information

Retrieval, it could be useful to guess how many inverted

lists would be required to index a 10Gb collection. In

speech recognition, vocabulary size will provide a bound

on the out-of-vocabulary (OOV) rate for an hour of

speech. In distributed retrieval, it is important to know

how many times we should sample an unknown database

to accurately estimate its language model [3]. An

estimate of vocabulary growth could also be very useful

in determining how much to smooth a given language

model [5].

It is a common observation that vocabulary size grows

sub-linearly with a total size of the dataset. Asymptoti-

cally, the number of unique words
✁✄✂

in the vocabulary

is often proportional to the square root of the total

number of words � . Heaps [2] suggests a general form:✁ ✂✆☎✞✝ �✠✟ , where
✝

and ✡ are parameters. Regrettably,

Figure 1: Vocabulary growth as a branching process: after ob-

serving ☛✌☞✎✍ words ( ✏✒✑✔✓✖✕ unique), if ☛ th word is new we go

up and have ✏✗✑✙✘✚✍✜✛✎✏✗✑✢✓✣✕ , otherwise we stay flat.

there is no theoretical justification for this dependency. In

this paper we present a statistical model that leads to a

different formula for vocabulary size, based on the Gauss

hypergeometric series.

The remainder of this paper is organized as follows.

Section 2 provides detailed derivation of the dependency.

Sections 2.1 and 2.2 contain very general results which are

not limited to vocabulary growth. Our model for individ-

ual word probabilities in presented in Section 2.3. Section

3 presents empirical performance of our model on TREC

volumes 1 and 2.

2 Theoretical Framework

2.1 Non-stationary branching process

We choose to model vocabulary growth as a sequential

process. Figure 1 graphically shows the model. We

consider words ✤✦✥ to be arriving one-by-one in sequence

from some unknown source. By
✁ ✂

we denote the

number of unique (distinct) words we have seen after
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� words have arrived. Suppose after �✚✧✩★ words we

observed
✁ ✂✫✪✒✬

unique words. When the � th word ( ✤ ✂ )

arrives, there are two possibilities. If we have seen ✤ ✂
before, our vocabulary does not grow and

✁✭✂✯✮✰✁✱✂✫✪✗✬
(represented by a flat transition ( ✲ ) in Figure 1). Other-

wise, ✤ ✂ is a new word, in which case our vocabulary

grows by one and
✁✱✂✳✮ ★✙✴ ✁✵✂✫✪✒✬

(upward transition

( ✶ ) in the diagram).

This formalism is known as a branching process or

a random walk in statistics. The process is completely

determined by the probabilities of going up ✷ ✂✗✸ ✶✺✹ and

staying flat ✷ ✂✗✸ ✲✻✹ at every step � . If the probabilities

are stationary, i.e. if ✷ ✂ ✸ ✶✻✹ is the same for every node in

the graph, the whole process can be trivially described by

a binomial distribution. However, if ✷ ✂ ✸ ✶✺✹ varies with�
, it becomes exceedingly hard to estimate ✷ ✸ ✁✄✂✚✮✽✼ ✹

for arbitrary
�

and
✼

.

Fortunately, it is possible to get simple estimates for

the expected value and the variance without computing✷ ✸ ✁ ✂ ✮✾✼ ✹ . The following equations are true for any ran-

dom walk where ✷ ✂✗✸ ✶✻✹ depends on � but not on
✁ ✂✫✪✗✬

.

Proofs are omitted for brevity and will be included in the

full paper. ✿✌❀❁✁ ✂❃❂ ✮ ✂❄ ✥❆❅ ✬ ✷ ✥ ✸ ✶✻✹ (1)

❇❈❀ ✁ ✂❃❂ ✮ ✂❄ ✥❉❅ ✬ ✷ ✥ ✸ ✶✺✹❊✷ ✥ ✸ ✲✻✹ (2)

Note that ✷❋✥ ✸ ✶✺✹ is just a shorthand for ✷ ✸ ✁ ✥ ✮ ★●✴✁ ✥ ✪✗✬ ✹ , the probability of seeing a new word on step ❍ , and✷❋✥ ✸ ✲✺✹ ✮ ★■✧ ✷❋✥ ✸ ✶✻✹ .
2.2 Sampling from a fixed distribution

From equation (1), in order to compute expected vocab-

ulary size
✿✌❀❁✁ ✂❃❂

, we need accurate estimates for ✷ ✥ ✸ ✶✻✹ ,
the probability of a new word arriving at step ❍ . We as-

sume that words are randomly sampled from some possi-

bly infinite set ❏ . Suppose ✤ ✥ , the ❍ th observed word, is❑ . The probability that ❑ is a new word is just the proba-

bility that we have not seen ❑ before the ❍ th word:✷❋✥ ✸ ✶▼▲ ✤◆✥ ✮ ❑ ✹ ✮ ✷ ✸P❖✒◗❙❘ ✥❚✤ ◗❈❯✮ ❑ ✹
Now it is easy to express ✷❱✥ ✸ ✶✺✹ as the expectation over

all possible words that could come at step ❍ :✷ ✥ ✸ ✶✻✹ ✮ ❄❲❋❳✢❨ ✷ ✸ ✤ ✥ ✮ ❑ ✹❩✷ ✸P❖ ◗❙❘ ✥ ✤ ◗ ❯✮ ❑ ✹

If we further assume that the words ✤ ✥ are sampled in-

dependently of each other from the common distribution✷ ✸ ✤◆✥ ✮ ❑ ✹ ✮✩❬ ❲ , we arrive at the following formula-

tion: ✷❋✥ ✸ ✶✺✹ ✮ ❄❲❋❳✢❨ ❬ ❲ ✸ ★■✧ ❬ ❲ ✹ ✥ ✪✒✬ (3)

Note that equation (3) has an intuitive interpretation:

probability of seeing a new word at step ❍ is the expecta-

tion of not seeing some word
✸ ❍ ✧✻★ ✹ times in a row. Now

we can apply equation (3) to equation (1) and go through

the following derivation:✿❈❀ ✁ ✂❃❂ ✮ ✂❄ ✥❆❅ ✬ ❄❲❋❳✢❨ ❬ ❲ ✸ ★❭✧ ❬ ❲ ✹ ✥ ✪✗✬ ✮ ❄❲❋❳✢❨ ❬ ❲ ★❪✧ ✸ ★❫✧ ❬ ❲ ✹
✂★■✧ ✸ ★■✧ ❬ ❲ ✹

The last step was obtained by changing the order

of summations and using an algebraic closed form for❴ ✂✫✪✗✬✥❉❅✒❵ ✡ ✥ . Now we can write down a simple formulation

for the expected vocabulary size, given the relative fre-

quencies with which we expect to see different words ❑ :✿✌❀ ✁✱✂ ❂ ✮ ❄❲❋❳✢❨ ✸ ★■✧ ✸ ★■✧ ❬ ❲ ✹ ✂ ✹ (4)

2.3 Estimation of word probabilities

The final step in our model is the estimation of probability

with which we expect to see a given word
❑

. In the field

of language processing, there is a large body of work on

modeling word frequencies. The most famous result is

Zipf’s law [7], which states that the frequency of a given

word ❑ multiplied by its rank ❛ is a constant for all words.

The rank is obtained by sorting all the words in decreasing

order of frequency. An extension of Zipf’s law, suggested

by Mandelbrot [4] gives:❬ ❲ ☎❝❜ ❞❛ ✴❢❡❋❣ ✟ (5)

While Zipf’s law describes word frequencies in gen-

eral, it is rather a rather poor fit to any given collection.

Figure 2 shows on a logarithmic scale the empirical dis-

tribution of word probabilities in TREC volumes 1 and 2

(circles). A dotted line is a fit of generalized Zipf’s equa-

tion (5) to the data, where ❡ was set to 0. It is obvious

that Zipf’s law provides a reasonable fit for the majority

of the words, but is really poor in matching the most com-

mon words. A solid line, which gives a better overall fit is

given by fitting the following distribution to the data:❬ ❲ ☎ ★■✧ ❜ ❛✐❤❛ ❤ ✴❢❡❋❣ ✟ (6)
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Figure 2: Word probabilities as a function of word rank. Em-

pirical word probabilities in TREC volumes 1 and 2 are shown

with circles. All the words are stemmed, with 400 stopwords

removed. Zipf formula (5) is a good fit for the tail of the distri-

bution, but fails to capture high-frequency terms. Equation (6)

provides a good overall fit.

Here ❛ is the rank of
❑

, while
❡

and ✡ are the parameters

that jointly control the curvature of the distribution and

normalize
❬ ❲ so that

❴ ❲ ❬ ❲ ✮ ★
. Another convenient

property of equation (6) is that
❴ ❲ ❬ ❲ converges even if

number of words is infinite. We will use this property in

assuming that we are sampling from an infinitely large

set of words ❏ .

Aside from providing a better empirical fit to the word

frequencies in our dataset, equation (6) allows an elegant

closed-form solution for the expected size of vocabulary.

If we substitute our estimate for
❬ ❲ into equation (4), we

get the following:

✿✌❀❁✁ ✂❃❂ ✮ ❄❲❋❳✢❨ ✸ ★❥✧ ✸ ★❥✧ ❬ ❲ ✹ ✂ ✹ ☎❧❦✺♠✬ ★❥✧ ❜ ❛✐❤❛ ❤ ✴❢❡ ❣ ✟
✂■♥ ❛

While there is no closed form solution for the summa-

tion above, it turns out that the integral above is the exact

expansion of the Gauss hypergeometric function ❤♣♦ ✬ [1]:

✿✌❀ ✁ ✂❃❂✗☎ ❤q♦ ✬ ❜ ✧ ★r❱s ✡ � s ★r✵s ✧❫❡ ❣ (7)

The main result of this section is the following: if we

assume that words are independently sampled from equa-

tion (6), the expected number of unique words follows a

hypergeometric function ❤q♦ ✬ .
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Figure 3: Vocabulary size as a function of number of words

in a collection. Dotted line shows empirical vocabulary growth

in TREC volumes 1 and 2. Solid line shows our estimate of

vocabulary size.

3 Experimental Results

We performed a number of experiments to check the abil-

ity of our model to match the empirical growth of vocab-

ulary. Figure 3 shows the growth on the data in TREC

volumes 1 and 2 along with the expected value from

our model. Note that we measure vocabulary growth of

stemmed words.

The model provides a good overall fit to the growth.

The parameter values ❡ and ✡ for equation (7) were se-

lected to match the empirical word distribution in Figure

3. As expected, the model does not capture the artificial

“dips” in the growth. The dips happen because docu-

ments in TREC are ordered not randomly, but according

to source. The dips occur precisely when we shift from

one source to another (e.g. from AP Newswire to the

Federal Register). Figure 4 shows model predictions on

the AP’88 subset of our dataset. The overall fit appears

much better, because AP’88 does not exhibit abrupt shifts

in sources of documents.

3.1 Confidence Interval

Our model allows us not only to predict the expected value

of vocabulary size, but also to get a confidence interval

on the deviations of actual vocabulary size from the ex-

pected value. From equation (1), we can estimate the up-

per bound on the standard deviation of
✁ ✂

:t ✸ ✁ ✂ ✹ ✮✈✉ ❇✇✁ ✂②① ✉ ✿✌❀❁✁ ✂❃❂
Since we don’t know the distribution of

✁ ✂
, we cannot

apply parametric methods to compute the confidence in-

terval around
✿✌❀❁✁✱✂ ❂

. However, we can use Chebyshev’s

theorem [6] to assert that:✷ ✸ ▲ ✁ ✂ ✧ ✿✌❀❁✁ ✂❃❂ ▲✫③ ✝ ✉ ✿✌❀❁✁ ✂❃❂ ✹ ① ★✝ ❤ (8)

3



5·10
6

1·10
7

1.5·10
7

2·10
7

25000

50000

75000

100000

125000

150000

Prediction

TREC1,2

Figure 4: Vocabulary size as a function of number of words

in a collection. Dotted line shows empirical vocabulary growth

in AP’88 dataset. Solid line shows our estimate of vocabulary

size.
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Figure 5: Deviation of observed vocabulary size (AP’88) from

our estimate. Dotted lines show a 99% confidence interval, com-

puted from equation (8). x-axis represents total number of words

in the collection (note the logarithmic scale).

Equation (8) allows us to construct a 99% confidence

interval around the expected vocabulary size. The confi-

dence interval is shown in Figure 5, along with the actual

deviation of vocabulary size from our prediction. The log-

arithmic scale of the total size of the dataset highlights the

fact that confidence interval holds when � is small as well.

Note that apparent exponential growth of the deviations is

an artifact of logarithmic scale; actual deviations grow as

the square root of the total vocabulary size (equation (8)).

4 Summary

We presented a mathematical relation between the total

size of the textual dataset and the number of distinct words

in that text. Our model allows us to compute the expected

size of the vocabulary and to give bounds on how much

empirical data will vary around the expected value. Re-

sults in Sections 2.1 and 2.2 are not limited to vocabu-

lary growth and are applicable to a wide class of sam-

pling tasks. Our model is able to accurately capture vo-

cabulary growth in homogeneous datasets (e.g. AP’88).

For heterogeneous sets (e.g. TREC volumes 1 and 2), the

model is accurate except when abrupt shifts of source oc-

cur in the collection. The main result of this work is that

under reasonable assumptions the vocabulary growth fol-

lows Gauss’ hypergeometric function ❤❙♦ ✬ .
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