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We spent a fair amount of time this year rewriting our TDT system

in order to provide more flexibility and to better integrate the various

components. The time spent rearchitecting the code, learning to deal

with its peculiarities, and correct bugs detracted substantially from

research this year. As a result, the major approaches used on this

evaluation are very similar to those used in TDT 1999.

We had two thrusts to our research, neither of which was ready to be

deployed in this evaluation. We report here on the results from the

training data, in all cases explored within the link detection task. In

the first direction, we looked more carefully at score normalization

across different languages and media types. We found that we could

improve results noticeably though not substantially by normalizing

scores differently depending upon the source language. In the sec-

ond direction, we considered smoothing the vocabulary in stories

using a “query expansion” technique from Information Retrieval to

add additional words from the corpus to each story. This resulted in

substantial improvements.

1. BASIC SYSTEM
The core of our TDT system uses a vector model for represent-

ing stories—i.e., we represent each story as a vector in term-space,

where coordinates represent the frequency of a particular term in a

story. Terms (or features) of each vector are single words, reduced

to their root form by a dictionary-based stemmer. This system is

based on one that was originally developed for the 1999 summer

workshop at Johns Hopkins University’s Center for Language and

Speech Processing.[1] It was substantially reworked to provide im-

proved support for “language model” approaches to the TDT tasks,

though that functionality was not used significantly for TDT 2000.

1.1. Detection algorithms

Our system supports two models of comparing a story to previ-

ously seen material: centroid (agglomerative clustering) and nearest

neighbor comparison.

Centroid In this approach, we group the arriving documents into

clusters. The clusters represent topics that were discussed in the

news stream in the past. Each cluster is represented by a centroid,

which is an average of the vector representatives of the stories in that

cluster.

Incoming stories are compared to the centroid of every cluster, and

the closest cluster is selected. If the similarity of the story to the

closest cluster exceeds a threshold,
�✂✁☎✄✝✆✟✞✡✠

, we declare the story old;

if the similarity exceeds a second threshold,
� ✞✡☛✡☞✌✆✍✄✏✎✟✑

, we add the

new story to the topic and adjust the cluster centroid. If the similarity

does not exceed
�✒✁☎✄✝✆✍✞✓✠

, we declare the story new, and create a new

singleton cluster with the story as its centroid. Both thresholds are

set globally and apply to all clusters.

k-nearest neighbor The second approach, ✔ -NN, does not attempt

to explicitly model a notion of a topic, but instead declares a story

to on the topic of the existing story most similar to it. That is, in-

coming stories are directly compared to all the stories we have seen

before. The most similar ✔ neighbors are found, and if the story’s

similarity to the neighbors exceeds a threshold, the story is declared

to be on the same topic. Otherwise, if the story does not exceed that

similarity with any existing story, the incoming story is declared the

start of a new topic. In this work, we focused primarily on ✔✖✕✘✗ .

1.2. Similarity functions

One important issue in our approach is the problem of determining

the right similarity function. We considered four functions: cosine,

weighted sum, language models, and Kullbach-Leiblar divergence.

The critical property of the similarity function is its ability to sepa-

rate stories that discuss the same topic from stories that discuss dif-

ferent topics. For TDT 2000 we used only the cosine function, since

our previous work had shown it provided substantial advantages and

was more stable. Descriptions of the other techniques are provided

for comparison.

Cosine The cosine similarity is a classic measure used in Informa-

tion Retrieval, and is consistent with a vector-space representation

of stories. The measure is simply an inner product of two vectors,

where each vector is normalized to unit length. It represents the

cosine of the angle between the two vectors
✙✚
and

✙✛ .✜✣✢ ✛ ✎ ✚ ✎✥✤✧✦✩★ ✜✪✢ ✛✪✫✎ ✤ ✜✬✢ ✚ ✫✎ ✤
(Note that if

✙✛ and
✙✚
have unit length, the denominator is 1.0 and the

angle is calculated by a simple dot product.) Cosine similarity tends

to perform best at full dimensionality, as in the case of comparing

two long stories. Performance degrades as one of the vectors be-

comes shorter. Because of the built-in length normalization, cosine

similarity is less dependent on specific term weighting, and performs

well when raw word counts are presented as weights.

Weighted sum The weighted sum is an operator used in the In-

Query retrieval engine developed at the Center for Intelligent Infor-

mation Retrieval (CIIR) at the University of Massachusetts. InQuery

is a Bayesian inference engine with transition matrices restricted

to constant-space deterministic operators (e.g., AND, OR, SUM).

Weighted sum represents a linear combination of evidence with

weights representing confidences associated with various pieces of

evidence: ✜ ✢ ✛ ✎ ✚ ✎ ✤✧✦ ✜ ✢ ✛ ✎ ✤



where ✛ represents the query vector and
✚

represents the document

vector. (InQuery does not include a notion of vectors, but we have

mapped the InQuery ideas into our vector-based implementation.)

For instance, in the centroid model, cluster centroids represent query

vectors which are compared against incoming document vectors.

Weighted sum tends to perform best at lower dimensionality of the

query vector ✛ . In fact, it was devised specifically to provide an

advantage with short user requests typical in IR. The performance

degrades slightly as the number of entries in ✛ grows. In addition,

weighted sum performs considerably better when combined with

traditional tf ✭ idf weighting (discussed below).

Language model Language models furnish a probabilistic ap-

proach to computing similarity between a document and a topic (as

in centroid clustering) or two documents (nearest neighbor). In this

approach, previously seen documents (or clusters) represent models

of word usage, and we estimate which model ✮ (if any) is the most

likely source that could have generated the newly arrived document✯
. Specifically, we are estimating ✰✲✱ ✯✴✳ ✮✶✵ ✦ ✰✲✱ ✯ ✵ , where ✰✲✱ ✯ ✵

is estimated using the background model ✰✲✱ ✯✴✳ ✷✹✸ ✵ corresponding

to word usage in General English.

By making an assumption of term independence (unigram model),

we can rewrite ✰✲✱ ✯✴✳ ✮✶✵✺✕✼✻ ✎ ✰✲✱ ✚ ✎ ✳ ✮✘✵ , where
✚ ✎

represent in-

dividual tokens in
✯

. We use a maximum likelihood estimator for✰✲✱ ✚ ✎ ✳ ✮✘✵ , which is simply the number of occurrences of
✚ ✎

in ✮
divided by the total number of tokens in ✮ . Since our models

may be sparse, some words in a given document
✯

may have zero

probability under any given model ✮ , resulting in ✰✲✱ ✯✴✳ ✮✘✵✹✕✾✽ .

To avoid this problem we use a smoother estimate ✰✲✱ ✚ ✎ ✳ ✮✘✵✿✕❀ ✰ ✁☎❁ ✱ ✚ ✎ ✳ ✮✶✵❃❂❄✱✡✗❆❅ ❀ ✵✓✰✲✱ ✚ ✎ ✳ ✷✹✸ ✵ , that allocates a non-zero prob-

ability mass to the terms that do not occur in ✮ . We set
❀

to the

Witten-Bell[3] estimate ❇ ✦ ✱✥❇❈❂❄❉❊✵ where ❇ is the total number

of tokens in the model and ❉ is the number of unique tokens. (Note

that since detection tasks are online tasks, we may encounter words

not in
✷✹✸

, and so we smooth
✷✹✸

in a similar fashion using a uni-

form model for the unseen words.)

Kullbach-Leiblar divergence Instead of treating a document
✯

as

a sample that came from one of the models, we could view
✯

as a

distribution as well, and compute an information-theoretic measure

of divergence between two distributions. One measure we have ex-

perimented with is the Kullbach-Leiblar divergence, ❋✴●❆✱ ✯■❍ ✮✶✵❏✕❅▲❑ ✎ ✚ ✎✪▼❖◆◗P ✱❙❘ ✎❚✦ ✚ ✎ ✵ , where
✚ ✎

and ❘ ✎
represent relative frequen-

cies of word ❯ in
✯

and ✮ respectively (both smoothed appropri-

ately).

1.3. Feature weighting

Another important issue is weighting of individual features (words)

that occur in the stories. The traditional weighting employed in most

IR systems is a form of tf ✭ idf weighting.

Inquery The tf component of the weighting—the number of times

a term occurs in a document—represents the degree to which the

term describes the contents of a document. The idf component—

the inverse of the number of documents in which a term occurs—

is intended to discount very common words in the collection (e.g.,

function words) since they have little discrimination power. Below

is the particular tf ✭ idf scheme used in the InQuery engine:❱❳❲❩❨❭❬ ❘✧❪❫✕ ❱❳❲❱❳❲ ❂❴✽❛❵ ❜❝❂❞✗✪❵ ❜ ❁❖☛✡✑✣❡❁❖☛✡✑✪❢❤❣❤✐
❯ ✚ ❲❩❨❥❬ ❘✺❪❦✕ ▼❖◆✪P ✱✥❇ ✦ ✚ ❲ ✵▼❖◆✪P ✱✥❇❧❂❞✗✒✵

The tf-comp component has a general form of tf
✦ ✱ tf ❂♠❋▲✵ , where tf

is the raw count of term occurrences in the document, and K influ-

ences the significance we attach to seeing consecutive occurrences

of the term in a particular document. The functional form is strictly

increasing and asymptotic to 1.0 as tf grows without bounds. The

effect is that we assign a lot of significance to observing a single

occurrence of a term, and less and less significance to consecutive

occurrences. This is based on the observation that documents that

contain an occurrence of a given word ♥ are more likely to contain

successive occurrences of ♥ .

The parameter K influences how aggressively we discount succes-

sive occurrences, and in InQuery is set to be the document length

over average document length in the collection. This means that

shorter documents will have more aggressive discounting, while

longer stories will not assign a lot of significance to a single occur-

rence of a term. This form of the tf component is generally referred

to as “Okapi tf” since it was first introduced as part of the Okapi

system.[2]

The idf-comp component is the logarithm of the inverse probability

of the term in the collection, normalized to be between 0 and 1. N

denotes the total number of documents in the collection, while df

shows in how many of those documents the term occurs. This par-

ticular idf formulation arises naturally in the probabilistic derivation

of document relevance under the assumption of binary occurrence

and term independence.

tf This weighting scheme is simply the actual tf value used in the

tfcomp formula above—i.e., the number of times the term occurs

in the story. The intuition behind omitting the idf component is

that feature selection at other points in the process will choose only

medium- and high-idf features with good discrimination value. As a

result, the tf-only weighting scheme is less likely to work at high

dimensionality when low-idf features will appear and need to be

down-weighted.

tf ✭ idf This weighting scheme is simply the raw tf component times

the idf component of the tf ✭ idf scheme. This weighting method

boosts the importance of multiple occurrences of a feature over that

given in the tf ✭ idf scheme. This approach turns out to be the most

successful in our TDT 2000 research.

2. TRACKING

Our research was focused on Story Link Detection (Section ), so we

did not try anything unusual for tracking this year. We spent time

rechecking our parameter choices by sweeping a range of values. In

the end, we settled on centroid representation of topics (i.e., aver-

age all ❇ ✆
training stories together), and cosine comparison of sto-

ries to topics. The other parameters (weighting, number of features,

adapting thresholds) were chosen by a parameter sweep as shown in

Table 1.



It is interesting to note that difference between effectiveness of In-

query’s weighting function (Okapi tf component) compared to just

using the tf count directly. This difference is surprising because the

Okapi tf function has been widely adopted in IR—yet here it appears

to be less useful. We posit this is because the Okapi tf function is

valuable for high-precision (low false alarm) tasks such as informa-

tion retrieval. In the TDT tracking task, the optimum score is in a

part of the error tradeoff curve that is less significant for IR.

We normalized the scores by comparing all ❇ ✆
training stories to

the centroid and then finding the average of those ❇ ✆
similarities.

During tracking, all subsequent story similarities were divided by

that average score. So an “average on-topic story” would have a

score of 1.0.

If the topic was adapted, the average was recalculated using the orig-

inal ❇ ✆
training stories as well as the stories that had been included

in the topic. This year, adapting did not provide any reduction in the

cost, and usually helped. This is consistent with results from TDT

1998, though continues to surprise us.

We selected using 1000 features (the full story), tf ✭ idf weighting of

those features, and no adapting. The threshold was selected depend-

ing on the task, as follows:

❇ ✆ ✕✘✗ manual boundaries 0.07❇ ✆ ✕✘✗ auto boundaries 0.13❇ ✆ ✕❞♦ manual boundaries 0.07❇ ✆ ✕❞♦ auto boundaries 0.13

The threshold was chosen by sweeping through the scores on the

training data and finding the threshold that yielded the best normal-

ized tracking cost.

3. CLUSTER DETECTION

Our clustering approach used 1-NN story comparison, so that a story

was added into the topic that contained a single story to which it was

very similar. Comparison was done using the cosine measure. Idf

values were calculated using a retrospective corpus (the six-month

TDT-2 collection).

Table 2 shows the result of the parameter sweep for selecting the

comparison function, the weighting, and the threshold
� ✁☎✄✏✆✍✞✡✠

.

As part of a cooperative project with BBN’s Oasis system, we have

begun looking at cluster detection on “real world” data and in a “real

world” evaluation setting. It is obviously from the very first attempts

that 1-NN cluster formation will not be appropriate. The created

clusters have a property that is common among algorithms of the

“single link” genre: they tend to be “stringy” with stories that are

linked together in long chains, but that may not hold together as a

group. Using the optimal settings trained on the TDT-2 corpus (i.e.,

our TDT 2000 parameters), we found clusterings containing 100s of

at best marginally related stories.

The evaluation measure currently used in TDT rewards a system for

getting the bulk of a topic’s stories together, and does not appear to

penalize enough for mistakes. At a minimum that means that the

cost values for detection need to be different for the Oasis task. At

worst, it means that the detection cost function is inappropriate.

Weighting #Terms Adapting min ✱❚♣ ✆q☞❳✄✏✞✓r ✵ ✑✂s❭☞✌✁
Reference boundaries, ❇ ✆ ✕❞♦

tf ✭ idf 1000 no 0.2255

tf ✭ idf 100 no 0.2560

tf ✭ idf 50 no 0.2992

tf ✭ idf 20 no 0.3718

tf ✭ idf 10 no 0.4082

Inquery 1000 no 0.6038

Inquery 100 no 0.2663

Inquery 50 no 0.3102

Inquery 20 no 0.3761

Inquery 10 no 0.5879

Reference boundaries, ❇ ✆ ✕✘✗
tf ✭ idf 1000 no 0.2673

tf ✭ idf 100 no 0.2906

tf ✭ idf 50 no 0.3311

tf ✭ idf 20 no 0.3751

tf ✭ idf 10 no 0.4487

tf ✭ idf 1000 1.0 0.2673

tf ✭ idf 1000 0.9 0.2673

tf ✭ idf 1000 0.8 0.2673

tf ✭ idf 1000 0.7 0.3550

Inquery 1000 no 0.5301

Inquery 100 no 0.7825

Inquery 50 no 0.6675

Inquery 1000 1.0 0.5301

Inquery 1000 0.9 0.5301

Inquery 1000 0.8 0.5301

Inquery 1000 0.7 0.5301

Automatic boundaries, ❇ ✆ ✕❞♦
tf ✭ idf 1000 no 0.2586

tf ✭ idf 1000 1.0 0.3146

tf ✭ idf 100 no 0.2840

tf ✭ idf 100 1.0 0.3451

Automatic boundaries, ❇ ✆ ✕✘✗
tf ✭ idf 1000 no 0.9533

Inquery 1000 no 0.9720

Inquery 1000 1.0 0.9816

Inquery 1000 0.9 0.9730

Table 1: Result of parameter sweep for tracking run on TDT-2 train-

ing data.

4. FIRST STORY DETECTION

Our first story detection system was run identically to the cluster de-

tection system, except that we selected a different threshold because

of the different evaluation measure. The emitted score was one mi-

nus the detection score—i.e., the confidence that this story is new

(rather than on a topic).

Idf was calculated from a retrospective corpus (the six-month TDT-2

collection), we chose the tf ✭ idf weighting scheme, cosine compari-

son, and 1000 features per story (all features). We selected 0.20 as



Compare Weight Threshold Cost

cosine tf ✭ idf 0.04 0.9253

cosine tf ✭ idf 0.06 0.7707

cosine tf ✭ idf 0.08 0.5981

cosine tf ✭ idf 0.10 0.4673

cosine tf ✭ idf 0.16 0.2604

cosine tf ✭ idf 0.18 0.2334

cosine tf ✭ idf 0.20* 0.2193

cosine tf ✭ idf 0.22 0.2212

cosine Inquery 0.02 1.0000

cosine Inquery 0.04 1.0000

cosine Inquery 0.06 0.9904

cosine Inquery 0.14 0.6219

cosine Inquery 0.16 0.5289

cosine Inquery 0.18 0.4383

wsum tf ✭ idf 0.02 0.9804

wsum tf ✭ idf 0.04 0.9804

wsum tf ✭ idf 0.06 0.9569

wsum tf ✭ idf 0.08 0.9569

wsum tf ✭ idf 0.10 0.9569

wsum tf ✭ idf 0.12 0.9569

wsum tf ✭ idf 0.16 0.9560

wsum tf ✭ idf 0.18 0.9560

wsum tf ✭ idf 0.20 0.9246

wsum tf ✭ idf 0.22 0.9035

wsum tf ✭ idf 0.24 0.8934

wsum tf ✭ idf 0.26 0.8835

wsum Inquery 0.02 0.9245

wsum Inquery 0.04 0.9245

wsum Inquery 0.06 0.8393

wsum Inquery 0.08 0.5422

wsum Inquery 0.10 0.3560

wsum Inquery 0.12 0.2932

wsum Inquery 0.14 0.2713

wsum Inquery 0.16 0.2832

wsum Inquery 0.18 0.3101

wsum Inquery 0.20 0.3624

wsum Inquery 0.22 0.3872

wsum Inquery 0.24 0.4192

Table 2: Result of parameter sweep for cluster detection run on TDT-

2 training data.

the threshold—the same value as used in clustering, despite the dif-

ferent measures. We are somewhat surprised by this result, but have

not yet investigated it.

5. STORY LINK DETECTION

Our link detection submission did not include any novel results.

However, we report here on some preliminary results that were

showing us improvements in link detection. We exploring how a

query expansion technique from information retrieval could smooth

the compared stories, and how score normalization depending on

language mix can improve results.

Weight Thresh Norm( ♣ ❁❖✎✟✑◗r
)

tf ✭ idf 0.02 1.6619

tf ✭ idf 0.04 0.6322

tf ✭ idf 0.045 0.5362

tf ✭ idf 0.05 0.4591

tf ✭ idf 0.055 0.4099

tf ✭ idf 0.06 0.3769

tf ✭ idf 0.065 0.3523

tf ✭ idf 0.07 0.3412

tf ✭ idf 0.075 0.3289

tf ✭ idf 0.08* 0.3200

tf ✭ idf 0.085 0.3235

tf ✭ idf 0.09 0.3216

tf ✭ idf 0.10 0.3248

tf ✭ idf 0.12 0.3583

tf ✭ idf 0.14 0.4084

tf ✭ idf 0.16 0.4641

Inquery 0.02 4.2889

Inquery 0.04 3.3705

Inquery 0.045 3.1142

Inquery 0.05 2.8463

Inquery 0.055 2.5871

Inquery 0.06 2.3356

Inquery 0.065 2.1033

Inquery 0.07 1.8761

Inquery 0.075 1.6715

Inquery 0.08 1.4895

Inquery 0.085 1.3109

Inquery 0.09 1.1864

Inquery 0.10 0.9522

Inquery 0.12 0.6969

Inquery 0.14 0.5994

Inquery 0.16 0.6063

Table 3: Result of parameter sweep for link detection run on TDT-2

training data.

5.1. Submitted SLD

Here we are comparing two stories. We ran a parameter sweep to

select the weighting scheme and the threshold for comparison. We

found that cosine comparison of tf ✭ idf weights with a threshold of

0.80 worked best. Idf scores were taken from a retrospective cor-

pus (TDT-2’s six-month corpus). Table 3 shows the cost function

varying over a range of parameter values.

5.2. LCA smoothing

In SIGIR 1996, the CIIR presented a query expansion technique

that worked more reliably than previous “pseudo relevance feed-

back” methods.[4] That technique, Local Context Analysis (LCA),

locates expansion terms in top-ranked passages, uses phrases as well

as terms for expansion features, and weights the features in a way

intended to boost the expected value of features that regularly occur

near the query terms.

Because LCA has been so successful in IR tasks, we felt it was ap-

propriate to explore it as a smoothing technique in TDT’s story link

detection task. That is, each story is treated as a “query” and ex-



panded using LCA. Additional words that occur in the corpus very

near the words in the story are added into each story and the result-

ing, larger, stories are compared as before.

We first provide some details about how LCA works, and then dis-

cuss its explicit use and results in TDT.

LCA used for SLD We used LCA query expansion to replace the

original story vector with a different, smoothed one. We first con-

verted the story to a vector as before, selecting either Inquery or

tf ✭ idf as a weighting function. We then select the t most highly

weighted features from that vector and discard all other features.

Those t features are used as a query to find the ✉ stories from the

TDT-3 corpus that are most similar to features (as vectors). Except

where noted otherwise below, we only allow those stories to come

from stories that appeared before the story being expanded. (We

could have used any stories up until the later of the two stories, but

have not yet explored that adjustment.)

We extract all features from those ✉ stories and weight them based

upon their proximity to the original t “query” features. The LCA

weighting function is a complex heuristic that gives higher weights

to features that occur with many query words.[4] We select the topt LCA expansion features and add them to the vector. Note that it

is possible for some of the original t features to re-appear as LCA

features. The resulting vector has anywhere from t to ✈✒t unique

features.

The new features are added in with weights that start at ✗✪❵ ✽ and

smoothly drop down to ✗✪❵ ✽✲❅✇✱❙t①❅❄✗✒✵✓✽②❵ ③ ✦ t . This is the common

weighting function for LCA features, and may not be the best choice

for adding into the vector.

The result is that a story’s vector is replaced by t to ✈✂t features

with weights that are a combination of Inquery or tf ✭ idf weights, and

LCA weights.

For this study we used ✉❊✕④✈✂✽ stories for expansion, used t▲✕⑤✗✝✽◗✽
features from each story, and added t✴✕✘✗✏✽✪✽ expansion features.

LCA/SLD experiments Figure 1 shows the impact of story

smoothing using LCA on the link detection task. The curve that is

consistently worst is the DET plot for no smoothing at all: our base

case. The next curve toward the original (it moves closest to the ori-

gin at both ends) is the result of using LCA as described above. The

curve that comes closest to the origin is a “cheating” run that uses

the entire TDT-3 corpus for expansion, meaning that a story could be

expanded by stories that follow it and not just those in the past. Even

without looking ahead, the value of LCA smoothing is apparent.

For our experiments, we used either the Inquery or the tf ✭ idf weight-

ing function both for determining the top t features of the story, and

for finding the best-matching stories for expansion. Our best results

in non-LCA SLD were obtained with the tf ✭ idf weighting function,

but with LCA, Inquery weights performed better. Why?

We hypothesize that the reason is that query expansion requires

highly accurate retrieval of the type that is typical in an IR system.

The cost of expanding using non-relevant passages is very high: the

query will be expanded in a direction that is not related to th original

request. Our tf ✭ idf weight is well known to be less effective in IR,

so we expect it generates less relevant expansion terms. Since those

terms account for up to half of the story’s representation, it is very
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Figure 1: Results of LCA smoothing on SLD task. Experiments

were done on the TDT-2 corpus.

important that they be accurate.

5.3. Cross-language score normalization

Effects of SYSTRAN translations During our experiments we

stumbled upon an interesting effect of Mandarin documents on per-

formance. We observed that the performance of our story-link de-

tection system was noticeably worse on a multi-lingual dataset than

it was on the English-only data. We hypothesized that the drop in

performance could be due to lexical differences between the use of

language in native English stories and in SYSTRAN translations of

Chinese stories.

To test this hypothesis we performed the following post-hoc exper-

iment. We partitioned our set of story pairs into three subsets: (1)

pairs where both stories are native English stories, (2) pairs where

both stories are SYSTRAN translations of Chinese, and (3) pairs

where one story is a native English story and the other is the SYS-

TRAN translation. Then we analyzed the distributions of similarities

of stories in the pair for each subset. Figure 2 presents distribution

plots separately for on-target (both stories discuss the same topic)

and off-target (stories discuss different topics) pairs in each subset.

It is evident that similarity distributions are very different for dif-

ferent subsets of pairs. On average, two SYSTRAN stories have a

higher expected similarity than do two native English stories; the

expected similarity of a SYSTRAN story to a native English story is

even lower. Note that this observation holds for both on-target and

off-target story pairs, but the effect is much more pronounced for

on-target pairs.

We suspect the differences are due to the limited vocabulary of

SYSTRAN translations. Any machine translation system, including

SYSTRAN, has a relatively small vocabulary, whereas native En-

glish authors tend to use a much wider range of words. Also, SYS-

TRAN uses words consistently from story to story, whereas different

human authors tend to use different words to describe the same idea.

Inconsistent use of words leads to smaller expected word overlap be-
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Figure 2: Effect of language on distributions of story similarities.

Top: off-target story pairs. Bottom: on-target story pairs

tween any two stories, which translates to lower expected similarity

between two stories.

Whatever the cause, the differences in similarities present a seri-

ous challenge to effective cross-lingual story-linking. Suppose two

given stories have a similarity of 0.1. If we know that both stories

are SYSTRAN translations, the pair is most-likely off-target (from

Figure 2 we see that probability of getting a 0.1 similarity in an on-

target SYSTRAN pair is extremely low). However, if we know that

one story is native English, and the other is a SYSTRAN translation,

the pair is most-likely on-target, since the probability of getting 0.1

is higher for on-target pairs (Figure 2). This example implies that

our similarity values are not directly comparable when pairs of sto-

ries involve multiple languages. To make them comparable, we need

to normalize the similarities with respect to the source of stories in

the pair.

Compensating translation effects There exist a number of nor-

malization techniques, ranging from simple range normalization and

linear scaling (used in our tracking approach) to more elaborate tech-

niques. We consider a probabilistic normalization technique where

we replace the similarity ⑥ of a pair from subset ⑦ with the posterior
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Figure 3: Improvement in performance resulting from normalization

of similarities. Lower curve represents normalized system.

probability that the pair is on-target ✰✲✱❙⑧ ✳ ⑥ ❍ ⑦⑨✵ , given the similarity⑥ and subset ⑦ . If we have access to distributions of on-target simi-

larities ✰✲✱❙⑥ ✳ ⑧ ❍ ⑦❏✵ and off-target similarities ✰✲✱❙⑥ ✳ ❇ ❍ ⑦❏✵ , we can use

Bayes rule to derive the posterior:✰✲✱❙⑧ ✳ ⑥ ❍ ⑦❏✵❏✕ ✰✲✱❙⑥ ✳ ⑧ ❍ ⑦❏✵✓✰✲✱❙⑧ ❍ ⑦❏✵✰✲✱❙⑥ ✳ ⑧ ❍ ⑦❏✵✓✰✲✱❙⑧ ❍ ⑦❏✵⑩❂❴✰✲✱❙⑥ ✳ ❇ ❍ ⑦❏✵✓✰✲✱✥❇ ❍ ⑦❏✵
Note that estimating the posterior requires knowledge of relevance

judgments for each pair (to estimate ✰✲✱❙⑥ ✳ ⑧ ❍ ⑦❏✵ and ✰✲✱❙⑥ ✳ ❇ ❍ ⑦❏✵ ).
What we would do in practice is estimate the probabilities from the

training data and then apply the transformation to the similarities in

the testing data.

A number of parametric and non-parametric techniques could

be used to estimate the conditional densities ✰✲✱❙⑥ ✳ ⑧ ❍ ⑦⑨✵ and✰✲✱❙⑥ ✳ ❇ ❍ ⑦❏✵ . In this work we chose non-parametric kernel density

estimators because they can provide an arbitrarily close fit to the

training data (”Applied Smoothing techniques for Data Analysis”

A.Bowman, A.Azzalini). The conditional probability of ⑥ is a func-

tion of every story pair in the training set ⑦ :✰❷❶✬❸ ✠ ✱❙⑥ ✳ ⑦❏✵❹✕ ✗❺ ✳ ⑦ ✳ ✢ ❻◗❼✣❽☎❾ ✱ ⑥✲❅➀❿❺ ✵
Here

❾
is the kernel, which can be any probability density function,

and
❺

is the bandwidth parameter, representing the desired degree

of smoothness. For kernel estimators the choice of

❾
has very little

effect, as long as it is unimodal, symmetric and smooth. We selected

Gaussian kernels: ❾ ✱❙⑥➁✵❃✕ ✗➂ ✈✂➃➅➄✣➆➈➇✝➉❭➊ ✫
Bandwidth

❺
, on the other hand, has very strong effects on the fi-

nal distribution. We uses automatic bandwidth selection technique

(described in on p.31 of “Applied Smoothing techniques for Data

Analysis” A.Bowman, A.Azzalini).

Figure 3 shows the effects of applying our normalization to the train-

ing set of story-link pairs. System that used normalized similarities

shows a small but consistent improvement over no normalization.
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Figure 4: Effect of score normalization on similarity distributions.

Top: distributions before normalization. Bottom: after normaliza-

tion.

In this case we performed a cheating experiment, using the training

data to normalize itself.

To better understand the effects of our normalization we plotted the

overall densities of the original similarities (top half of Figure 4),

and normalized similarities (bottom half). The main effect is in

spreading the distributions apart. However, our normalization also

introduces very “heavy” tails in both densities on the bottom half

of Figure 4, and the tails are “bumpy”, which means that our nor-

malization is non-monotonic (higher similarities don’t always mean

higher probability of being on-target). We suspect that bumpiness

is the result of over-fitting the density. Possible ways to avoid this

problem would be to increase the bandwidth
❺

or use a parametric

density estimator instead of kernel estimator described above.

6. CONCLUSION

The bulk of our effort this half year was spent re-engineering our

TDT system so that it could better support our longer-term research

goals. In particular, we are modifying the system to provide better

capabilities in the area of language modeling, consistent with our

broader goals of formally modeling information organization tasks.

We have some preliminary work that shows the value of smoothing

stories by other, related stories in the corpus. We are simultaneously

working on improved formal models for query expansion, and antic-

ipate incorporating that approach into our language modeling ideas.

Score normalization is a key task within TDT that has not been im-

portant in areas such as information retrieval. We have been using

distribution plots to recognize when normalization is likely to be

helpful, and have shown that definitely helps within and across lan-

guages.
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