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ABSTRACT

We present a unique approach to identifying news stories
that influence the behavior of financial markets. We de-
scribe the design and implementation of Analyst, a system
for predicting trends in stock prices based on the content of
news stories that precede the trends. We identify trends
in time series using piecewise linear fitting and then as-
sign labels to the trends according to an automated binning
procedure. We use language models to represent patterns
of language that are highly associated with particular la-
beled trends. Analyst can then identify news stories that
are highly indicative of future trends. We evaluate the sys-
tem in terms of its ability to predict forthcoming trends in
the stock prices. We perform a market simulation, demon-
strating that ZEnalyst is capable of producing profits that
are significantly higher than random.

1. INTRODUCTION

People read the news to both understand what is happening
and what might happen in the future. News stories could ex-
plain why a presidential candidate is doing well in the polls
or report on events that will adversely affect future polling
results. Other stories may suggest why current economic
performance is poor or predict an upturn in the economy
in the coming months. Both approval ratings and economic
performance can be viewed as time series because they are
real valued data that change over time. News releases influ-
ence human behavior, and so may indirectly affect the fluc-
tuations in these time series. Conversely, new stories may
be written in response to fluctuations in a time series. We
develop AEnalyst,' a system which models the dependencies
between news stories and time series.

Analyst is a complete system, which collects two types of
data, processes them, and then attempts to find the rela-
tionships between them. The two types of data are financial
time series and time-stamped news stories. Once collected,

!From e-Analyst, pronounced “analyst”.

the time series are redescribed into high-level features which
we call trends. We then align each trend with time-stamped
news stories, and learn language models of the stories that
are correlated with a given trend. A language model deter-
mines the statistics of word usage patterns among the stories
in the training set. Once we have learned a language model
for every trend type, we can monitor a stream of incoming
news stories and estimate which (if any) of our trend models
is most likely to have generated the story. These estimates
could be used by an investor or an automated trading system
as recommendations to buy or sell a particular stock.

Our task is a special case of the Activity Monitoring task
introduced by Fawcett & Provost[6]. The task involves mon-
itoring a stream of data and issuing alarms that signal pos-
itive activity in the stream. In our case, the data are news
stories and financial time series; unusual trends in the time
series signify positive activity; and alarms take the form of
recommended stories.

In the following section, we describe the system design of the
MEnalyst and the technology used. Section 2.1 outlines our
processing of time series. Sections 2.2 and 2.3 describe the
process of learning the models of each trend. We evaluate
the system in Section 3. Finally, we discuss related and
future work.

2. SYSTEM DESIGN

AEnalyst is an implementation of a general architecture for
the task of associating news stories with trends. Figure 1
illustrates our approach. A general system uses textual doc-
uments and numerical data over a time series. In AEnalyst,
our numerical data is a history of stock prices, while the text
is the news about the companies. We have a collection of
38,469 news articles for 127 stocks collected from Biz Yahoo!
from October 15, 1999 to Feb 10, 2000. We also have stock
prices for the 127 stocks over the same period of time. Us-
ing stock price information for a given company, we generate
trends. The news articles are aligned with the price trends
according to when the articles were released and when each
trend occurred. Using the articles aligned with the trends of
each type, we generate language models for the trend types.
We can then use these models to correlate new articles with
trends. We use these correlations as an indication of the ar-
ticles’ influence on the future of the time series. To perform
predictions, we select the trend type whose model is most
likely to be the source of the news article.
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Figure 1: System Design

2.1 Redescribing Time Series

Stock traders do not base their decisions on single obser-
vations of a stock’s price. Rather, decisions are made with
respect to higher level trends in the stock price.

We define a trend as an interval in time, consisting of 3 or
more observations, during which the changes from observa-
tion to observation are predominantly positive (an increas-
ing trend) or negative (a decreasing trend). Due to latencies
inherent in stock trading, trends have obvious importance
relative to single observations or pairs of observations, and
consequently news articles that predict trends are of partic-
ular relevance.

Furthermore, one can (and should) only attend to some
types of trends. Relatively flat trends are of no importance
to a trader who wants to make profit, while trends of steep
increase are of importance for traders looking for a good
buy, and trends of steep decrease are important for a trader
who wishes to sell before taking a loss. We believe that the
concept “slope is important” generalizes across domains.

Our system for redescribing time series builds from these
two ideas: that a series of observed stock prices may be
broken up into trends, and that trends may be classified
into increasing, decreasing, or relatively flat.

2.1.1 Identifying Trends

Breaking time series of real-valued observations into compo-
nent trends is not a new problem. An obvious technique for
tackling this problem is piecewise linear regression, some-
times called piecewise segmentation, and many algorithms
for piecewise segmentation were pioneered by Pavlidis &
Horowitz[11].

The idea behind most piecewise fitting algorithms is to re-
describe a time series by a sequence of regression lines which
minimize some error metric (typically mean square error)
over the length n of the series. Popular fitting algorithms
work either top-down, starting with a single regression line
for the whole series, and greedily splitting the sequence un-
til some stopping criterion is met, or bottom-up, starting
with % segments, and greedily merging sequences until the
stopping criterion is reached. A typical stopping criterion
might be a threshold for the summed mean square error or
a fixed number of segments, both specified in advance. Our
piecewise fitting algorithm uses a top down procedure with
an automatic stopping criteria based on the t-test.

The algorithm works by passing a window of length é over
the entire sequence of length n.2 At each step of its pass over
the data, the window is broken into two halves, about point
i, and a regression line is fit to each half. The difference
between be fore;, the slope of the linear fit for the points in
the window before i, and after;, the slope of the linear fit
for the points in the window after ¢ is recorded. After the
window has been passed over the complete time series, the
point j which maximizes the difference in slope (|before; -
after;|) is considered as a candidate location for segmenting
the time series.

The next step of the algorithm is to test whether the series
should be split about j. Precisely, we test the hypothesis
that the slope of the segment fitting the % points before j
is equal to the slope of the % points after j. The following
function computes the ¢ statistic for the difference in slopes.

‘= before; — after; 7 (1)
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where &p, —b, is the estimate of the standard error for the
difference of slopes from two regression lines. This estimate
is computed from the pooled variance, or sums of squares of
residuals from each least-squares line:
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In Egs. (2)-(4), SSx and SSy are the sums of squares
for the independent and dependent variables (respectively,
time and stock price), and 72 is the goodness of fit for the
regression line. Finally, the ¢ statistic is compared to the
t distribution with n1 + na — 4 degrees of freedom to see
whether the hypothesis of equal slope should be rejected[8].
If the hypothesis is rejected, the sequence is split at point
j, and then the fitting algorithm is executed recursively on
each half of the sequence. This test is also the stopping

For results reported here, the window size is length 10,
roughly an hour’s worth of observations in each half of the
window.



criteria for the segmentation, though, and if the hypothesis
is not rejected, the algorithm terminates.

We regard each segment in the piecewise fit to be a trend.
The significance of the trend is defined by its regression
statistics. The slope of the line indicates whether the trend
is of interest.

Results typical of the piecewise fitting algorithm when ap-
plied to stock data are shown in figure 2. The unmodified
data are shown at left for ticker symbol YHOO, with piecewise
linear fits shown at right. At this scale (observations taken
every 10 minutes during open market hours, from October
14, 1999 to December 7, 1999), the difference is difficult to
ascertain. As noted in Keogh & Pazzani[7], there is little
loss of resolution in exchange for a reduction in the amount
of data. A redescription allows our system to make decisions
that are based on variable length intervals lasting hours or
days, rather than minute-by-minute or closing prices.
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Figure 2: On the left, unprocessed stock data for
ticker symbol YHOO, over a portion of October to
December in 1999. On the right, the same data’s
piecewise segmentation.

2.1.2 Discretizing Trends

Secondly, we redescribe our time series as discrete trends.
This step is a subjective one in which we assign labels to
segments based on their characteristics: length, slope, inter-
cept, and r2. These labels will be the basis for prediction
and assigning relevance to news stories.

A stock trader is most likely to focus primarily on two trend
characteristics: slope and r? (hereafter referred to as con-
fidence). These inform the trader of the sharpness of price
change, and the confidence that the trend is a good fit to
the actual behavior of stock price.

We might discretize a sequence of trends, described by slope
and confidence, in a number of ways. One might simply bin
the trends, manually selecting cutoff values, and assigning
labels like “surge, high confidence” to the bins. Another ap-
proach would be to use an unsupervised clustering algorithm
to automatically generate clusters of trends. That way, any
structure inherent in the segmented time series would be ex-
ploited automatically, and labels could be assigned as with
the binned data to reflect that structure.

We implemented a distance based agglomerative clustering
algorithm to automatically cluster stock trends based on
their slopes and confidence. The algorithm, adapted from
Everitt[5], works as follows.

First, compute a distance matrix for the trends of a partic-

ular stock. The distance between two trends is simply the
Euclidean distance between their standardized slopes and
standardized confidences. Next, create a cluster for each
segment. Finally, select the two closest clusters Ci1 and Co
based on the group average distance between segments in C
and those in Cs:

Ecmec’i zcyecj Dm,y

The minimum-distance clusters C1 and C> are candidates
for merging. We run a t-test of the inter-cluster segment
distances versus the intra-cluster segment distances under
the hypothesis that all these distances are drawn from the
same distribution (and thus the clusters should be merged).
If the hypothesis is not rejected by the t-test, we merge C1
and C2, and repeat for the next minimum distance pair.
If the hypothesis is rejected, we also move on to the next
minimal distance pair. If no pair is merged after one whole
pass through the clusters, the clustering algorithm stops.
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Figure 3: A plot of confidence versus slope for stock
symbol YHOO. Different symbols correspond to dif-
ferent clusters generated by the agglomerative clus-
tering algorithm.

The plot in figure 3 shows confidence plotted against slope
for the stock YHOO. There are a total of 16 different clusters.
Perhaps more importantly, though, is the structure that the
graph reveals. The “funnel” shape to the graph of confidence
versus slope is typical of all our linear fits. We can exploit
this structural property by simply ignoring 2. As we noted
before, segments of importance are those with steep slopes,
which we might call surges (for positive slopes) and plunges
(for negative slopes). Since all such segments necessarily
have relatively high confidence values, we need not worry.

In practice, then, it is not particularly important to go to
the length of first clustering segments and then assigning
labels. The structure present in the YHOO segmentation is
typical of nearly all the stocks we followed. While cluster-



ing is the principled approach to discretizing the stocks, we
have found that a simple binning procedure can effectively
single out the trends that we find most interesting. Segments
with slopes greater than or equal to 75% of the maximum
observed segment slope are labeled SURGE, and those with
slope greater than or equal to 50% of the maximum observed
slope are labeled sLIGHT+. Similarly for negative slopes, we
label PLUNGES and SLIGHT-. All other segments are labeled
NR for NO RECOMMENDATION.
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Figure 4: On the left, a plot of the stock prices of
YHOO for October and December 1999. On the right,
the segments of interest generated by our system.

The graph to the right of figure 4 shows the segments of
interest for stock symbol YHOO from October to December
of 1999. There are 11 such segments, each of which is very
steep in slope.

2.2 Aligning the trends with news stories
Selecting an appropriate set of news stories is a very impor-
tant step in our modeling. If done carelessly, it can be a
source of noise when generating the language models. To
ensure that all training stories are at least marginally rele-
vant to the companies we use external relevance assignments
obtained from our source of news (http://biz.yahoo.com/).
For every stock symbol, Yahoo! maintains a list of stories
that are considered to be relevant to that stock symbol.
Note that availability of these assignments are not crucial for
ZEnalyst: in the absence of external relevance assignments,
we could use traditional information retrieval techniques to
select documents relevant to a given company.

Once we have selected the stories that are relevant for a
particular stock, we can associate groups of these stories
with trends. In order to learn models that assist Analyst
in suggesting future behavior of a time series, we associate
a document with a trend if its time stamp is h hours or
less before the beginning of the trend. For instance, using
a five-hour alignment, we would associate all documents re-
leased from 10:00AM to 2:59PM with a trend that began at
3:00PM. Figure 5 illustrates this.
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Figure 5: Current Alignment

The alignment method we use can result in a document be-
ing associated with more than one trend. Document d2 in
the figure is associated with both trends ¢; and ¢». While
this may seem contradictory, it is possible for d2 to influence
both trends ¢; and t2. We can reduce the amount of overlap
between time windows associated with trends by decreasing
h, the number of hours included in the window. However,
this can reduce the number of documents that are associ-
ated with each trend, yielding fewer examples with which
to train our models. In the experiments we performed, we
determined that using a window of 5 to 10 hours tends to
work best. We treat all documents aligned with a trend as
having equal importance to a trend.

An alternative alignment method would be to align docu-
ments with the trend that was happening when the article
was released. This would shift the system from a predic-
tive system to an explanative system by looking for corre-
lations between articles and current behavior of the time
series. While this does not appear to be useful for predic-
tions, we will demonstrate that using this type of alignment
results in very high mean performance (see Section 3.3 for
details).

2.3 Language Models

After aligning news documents with trends in the time se-
ries, we can estimate a language model that is characteristic
of every trend type. For example, a language model may
learn that words like loss, shortfall, bankruptcy are highly
likely to precede a downward trend in the stock price, while
merger, acquisition, alliance are likely to be followed by an
upward trend.

Language modeling[12, 15] provides a formal framework for
text classification with respect to a set of targets (trends
in our task). After making certain assumptions about pat-
terns of word occurrence in natural language, we can for-
mally estimate the likelihood of a trend, given the observed
distribution of words in a set of news stories. Given a set of
stories {Dj...Dy, }, we would like to estimate the probability
that a trend of type t (e.g. a surge) will occur in the near
future. To do this, we associate a language model M; with
every trend type ¢t. A language model represents a discrete
distribution over the words in the vocabulary. M; specifies
an expected usage of words on the onset of the trend ¢. We
then estimate how likely it is that a set of documents was
generated by the model M;. For a given set of documents
we are interested in the model that is most likely to generate
the set of observations {Di...Dy, }:

Mpest = argmaXictrends P(Mi|{D1...Dm})

P({Dj...Dm}| M) P (M)
P({D1...Dm})

= arg maXictrends

In the current implementation of the system we assume a
uniform prior P(My), though in the future we will condition
P(M;) on the frequency of the trend ¢ in the time series.® We

3A uniform prior does not affect the evaluations based on
the ROC/DET curves (Section 3.1), but it does affect the
market simulation (Section 3.2). Since DET evaluation is
done independently for each trend type t, P(My) is constant
in each individual evaluation and does not affect the ranking
of documents with respect to M.



estimate a prior P({D;...Dn, }), as the probability that the
set of documents was generated by the background (Gen-
eral English) language model P({D;i...D}|GE). This is
somewhat different from a common formulation for a prior:
> P{D1...D }|M;)P(M;), but conditioning on the back-
ground language model has proven effective in text catego-
rization research[15].

Assuming that individual documents in the set D;...Dy, are
random samples from a common distribution, we can expand
the formulation as:

T P(D:| M)
Myest = P(D: Q)
best = W8 venas LL P(DIIGE)

To estimate P(D;|M;) we make an assumption that words in
D; are generated independently of each other. The assump-
tion of word independence is a common practice in text clas-
sification research. There is some evidence that preserving
word dependencies does not improve the accuracy of prob-
abilistic models of text (e.g. pairwise dependence model by
van Rijsbergen[14]). There is also a more general result by
Domingos & Pazzani[3], which demonstrates that in some
cases, naive Bayesian classifiers give very good results even
when dependencies exist in feature distributions. Note that
after making the word independence assumption, we effec-
tively arrive at a naive Bayesian classifier:

- 2 P(w|My)
Myest = argtertr:zgfdsn H P(w|GE)

t=1weD;

Here w represent individual word occurrences in the docu-
ment D;. We could use a maximum likelihood estimator for
P(d;|M¢), which is simply the number of occurrences of w
in M; divided by the total number of tokens in M;; how-
ever, this turns out to be problematic. Since our models
may be sparse, some words in a given document D; may
have zero probability under a given model M, resulting in
P(D;|M;) = 0. To alleviate this problem we use a smoother
estimate: P(w|Mt) = AePpi(w|Mz) + (1 — A\¢) P(w|GE).

This formulation, commonly known as linear back-off, allo-
cates a non-zero probability mass to the terms that do not
occur in M;. We set A; to the Witten & Bell[16] estimate
N¢/(N¢ + U;) where Ny is the total number of tokens and
U; is the number of unique tokens in the model M;. Since
modeling the market is a dynamic on-line task where lan-
guage usage may change, we may encounter words that are
not present in GE. To ensure that a new term does not
force a zero probability for a document, we smooth GFE in a
similar fashion using a uniform model for the unseen words:
P(’leE) = Mg Pmi (w|GE) + (1 — )\GE)/NGE.

3. EVALUATION

Associating patterns in text with patterns in time series is
a fairly novel task. As such, it does not yet have accepted
evaluation metrics. A number of metrics could be defined
to address such evaluation. The most simple is classifica-
tion accuracy, as used in a similar context by Cho et al.
[2]. Another example is the Activity Monitoring Operating
Characteristic (AMOC), suggested by Fawcett & Provost[6].
For the case of market prediction, they define the scoring

function in terms of ability to predict a 10% or more jump
in the market price within 34.5 hours of receiving relevant
news. Our evaluation is similar to the work of Fawcett &
Provost[6], but we use a more traditional ROC-style mea-
sures in place of AMOC. In this work we alternate between
two types of evaluation. First, we attempt to evaluate the
discriminating power of our language models using the clas-
sical classification framework. Second, we attempt to eval-
uate whether the system could be used to profitably buy
and sell stocks. This dual evaluation will both exhibit the
technological potential of language models for this task and
satisfy the practical curiosity of investors.

3.1 Evaluating Language Models

The results in this section address the issue of how well each
language model M; discriminates between the documents
followed by trend ¢ from the documents that are not followed
by trend ¢t. We perform n binary evaluations, one for each
model M; ... M,. We use Detection Error Tradeoff (DET)
curves (see [9]), which are similar to ROC curves, common
in classification literature.

In our analysis we focused on a set of 127 stocks over the pe-
riod of Oct 1999 - Feb 2000. The stocks were selected based
on two criteria: the average amount of news reporting about
that stock, and how frequently that stock is traded. Our
price data was sampled every 10 minutes during the mar-
ket hours, resulting in over 3600 data points for every stock.
The price data was re-described into trends as explained in
Section 2.1 to produce an average of 450 trends per stock.
Our news collection contains over 38,000 news stories, gath-
ered online over the same period. Each story contains a
reference to at least one of the stocks we are tracking. The
documents (D) for each stock were then aligned with the
future trends (¢) for the same stock, to provide the labeled
set of pairs {¢, D}, which we use for training and testing the
models.

To obtain a good estimate of mean performance, we use 10-
fold randomization in the following way. We randomly split
the set of pairs {¢, D} into a training set (90%) and a testing
set (10%). In doing this, we ignore the temporal ordering
of {t,D} pairs. This does not present a problem since our
evaluation is a binary classification task, and our model does
not learn in any way from the pairs in the testing set. For
each trend type ¢ (e.g. a surge) we form a language model
M, using all the documents D that are labeled with ¢ in the
training set.* Each model M; is then used to assign prob-
abilities to all documents in the testing set. The procedure
is repeated 10 times with a different random training and
testing set each time. We use pooled averaging to produce
a single DET curve for each trend type.

Figure 6 demonstrates how well Enalyst identifies news sto-
ries that are followed by a surge in the stock price within 10
hours from the story. From the distributions on the top, we
see that our Language Model assigns higher beliefs to the
stories that are in fact followed by a surge. A DET curve

“This corresponds to forming a universal language model
across all stocks. The intent is to capture uses of lan-
guage that will affect any stock in a similar fashion (e.g.,
takeovers). In other experiments we form language models
separately for every stock.
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Figure 6: Language model can separate stories that
are followed by a surge from stories that are not.
Left: belief densities. Right: corresponding DET
curve.

on the bottom of Figure 6 allows us to analyze the errors
of our system at varying levels of risk. For example, a sys-
tem is capable of achieving a 10% recall (90% miss), while
keeping the false alarm rate around 0.5%. That means that
we correctly identify 10% of stories that precede a surge in
the stock price, while the system would correctly eliminate
99.56% of stories that do not precede a surge. An investor
who is willing to take more risk, could lower the threshold
of the system, and be alerted to 40% of stories preceding a
surge, but the false alarm rate would increase to 15%.

3.2 Market Simulation

For the task of market prediction, the ultimate evaluation
of performance is whether or not the system would be able
to make a profit. In the following simulation we construct
a strategy which mimics the behavior of a day trader who
would use system predictions in a very simple fashion: if
Analyst indicates that a story is likely to precede an upward
trend for the stock, the system will invest in that stock; if
the predicted trend is downward, the system sells the stock.
To simulate this very simple strategy, we induced a separate
language model for each stock for each trend type using 3
months worth of training data between October and De-
cember 1999. Then, for 40 days starting on January 3rd, we
have our system monitor the news. Every time a new story
appears for some company, Analyst determines which trend
model is most likely to have generated it.

If the most likely trend is positive, our system will purchase
$10,000 worth of the stock. We assume sufficient credit to
purchase $10,000 worth of stock whenever we need to. An-
other assumption is zero transaction cost, which is common
in similar evaluations (the transaction costs are easily ab-
sorbed by increasing the volume of each transaction, as long
as we are making profit). After a purchase, the system will
hold the stock for 1 hour. If during that hour we can sell
the stock to make a profit of 1% ($100) or more, we sell
immediately. At the end of the hour, we sell the stock at
the current market price, and take a loss if necessary. We
define 1-hour holding time to exclude non-market hours, so
an hour at the end of the day can “spill” overnight.

If the most likely trend is negative, Analyst will sell short
$10,000 worth of the stock (this means selling the stock we
do not yet have in hopes of buying it later at a lower price).®
Again, Analyst will hold the stock for 1 hour. If during the
hour the system can buy the stock at a price 1% lower than
shorted, the system buys the stock to cover. At the end

5We do not model stock exchange restrictions which prohibit
shorting the stock during a down-tick.

Stock Gain Stock Loss
IBM $47,000 | Disney -$53,000
Lucent $20,000 AOL -$18,000
Yahoo $19,000 Intel -$14,000
Amazon $14,000 | Oracle -$13,000

Table 1: Best and worst cumulative profits over 40
days of trading

of the hour, Analyst buys the stock at the current market
price.

This model represents an extremely simplistic and greedy
day-trading strategy. One could easily improve the strategy
using a plethora of indicators available to a real trading sys-
tem, such as the general market conditions, recent history
of trends for a particular stock, trends of related stocks etc.
We choose to focus on our simplistic strategy to isolate the
contribution of language models, separated from any other
indicators that may be of assistance in trading. This sim-
ple strategy provides an absolute lower bound on how well
a real trading system could perform if it took advantage of
predictions provided by Analyst.

Table 1 summarizes cumulative profits that Analyst would
make if it followed the strategy described above. The cumu-
lative performance of our strategy varies widely from stock
to stock. Out of over 100 companies that we tracked, we
show only the best and the worst performing stocks. Sys-
tem predictions were most profitable for IBM, Lucent, Ya-
hoo and Amazon, while most money was lost on Disney,
AOL, Intel and Oracle.

The numbers mean that buying $10,000 worth of Yahoo ev-
ery time that Analyst predicts an uptrend (and shorting
$10,000 for every downtrend prediction) would result in net
profit of $19,000 after 40 days of trading. Of course, we have
to realize that the system traded Yahoo about 570 times
during these 40 days, so we made less than $50 (0.5% gain)
on an average transaction. A natural objection to our ex-
tremely active trading strategy is that perhaps investing in
these stocks in January and holding them for 40 days would
result in a larger (and certainly more effortless) profit. How-
ever, the four companies we earned the most profit from all
either stayed the same, or decreased slighty, so buying and
holding each stock over the same period would result in a
cumulative loss. For instance, shares of Lucent traded at
$75 in the first days of January, but dropped to below $50
by February.

After the 40-day simulation, the cumulative earnings of our
system, pulled over all stocks, totaled $21,000. We used a
randomization test[4] to determine if these earnings are sta-
tistically significant. Specifically, we conducted 1000 trials
of a system where buying and shorting decisions were made
randomly, without reference to the actual content of news
stories. Then we compared our actual earnings to the distri-
bution of cumulative earnings produced from the random-
ized trials. The randomized system was constrained to buy
and short particular stocks with the same probability per
stock as the actual system, and decisions about buying and
shorting a particular stocks were made at the same times as
in the actual system. After a decision to buy or short, the



randomized system followed the same strategy for selling as
was followed in the actual system. The results of the ran-
domized system equaled or exceeded $21,000 in only eight
of the 1000 trials, and thus the performance of the actual
system is significant at the 1% level. The mean over the ran-
domized tests was -$9,300 and the standard deviation was
$13,600.

The simulation we presented uses a very simple strategy. We
do not suggest this strategy for real trading environments.
Our simulation is a proof of concept, demonstrating that
news releases indeed have a strong influence on the mar-
ket, and suggesting a way of predicting and leveraging that
influence.

3.3 How quickly news influence stock prices?
In the previous section we demonstrated that news releases
do indeed have an influence on the trends in stock prices. A
natural question to ask is how quickly the market responds
to news releases. We could explore the issue by attempting
to correlate news stories with trends further and further in
the future and observing at which distance we get the best
correlation. Recall from section 2.2, that in the training
phase, we could align trends with stories that precede the
trend by any number of hours, or we could align with stories
that are released in the duration of a trend. We performed
the following experiments: concurrent alignment, and with
trends up to 1, 5 or 10 hours in the future. For aligning 1
hour in advance we get a labeled set of 10,863 {¢, D} pairs;
for 5 hours we get 49,872 pairs; and for 10 hours we get
75,610 pairs.® When we align trends with the concurrent
stories (simultaneous alignment), we get 35,681 pairs.

We performed a DET analysis, similar to the one in sec-
tion 3.1, to examine the impact of alignment on all types
of trends we considered. We observed that aligning stories
with trends that happen at the same time gives the over-
all lowest DET curves, having lower false alarm rates at any
level of recall. Aligning 1 hour in advance results in language
models with little discrimination power: the error tradeoff
curves are all very close to random performance at any false
alarm rate. Aligning 5 hours in advance produces models
that are close to random at the high false alarm rate, but
are noticeably better than random at low false alarm rates
(low false alarm rate is more important for many practical
applications). Aligning 10 hours in advance provides rela-
tively low errors in predicting surges (in fact better that any
other alignment). However, for any other type of trend this
alignment performs considerably worse, which leads us to
doubt its usefulness.

Based on the DET analysis, we would favor simultaneous
alignment, as the most stable for all trend types at all levels
of recall. To verify whether this is a reasonable choice, we
repeated our market simulation (Section 3.2) using different
alignments to form the training set of our models. The re-
sults are summarized in the first four rows of Table 2. Rather
than reporting the sum of cumulative gains over all stocks
(as we did in Section 3.2), we report the mean gain, as well as
the median, best, worst and standard deviation over all the

5Recall that a single story may be aligned with more than
one trend.

Training Align Mean stdev Median Best ‘Worst
Specific Sim. $3840 $9270 $0 $40460 -824070
Specific 1 hr $740 $13180 $840 $47870 -$53020
Specific 5 hrs $290 $10480 $0 $47870 -$53020
Specific 10 hrs $2360 $8440 $0 $47870 -$24530
Universal Sim. $2040 $5940 $350 $32920 -$7330
Universal 1 hr $1170 $5940 $0 $27210 -$23610
Universal 5 hrs $1920 $6440 $160 $33040 -$14110
Universal 10 hrs $1650 $5510 $150 $34160 -$8460

Table 2: Impact of alignment window and universal
vs. specific models

stocks. The simulation from Section 3.2 is presented in the
third row (5 hour alignment window). This turns our to be
our worst alignment ($290 average cumulative profit), and it
also has the highest variance of all alignments. Surprisingly,
even 1-hour alignment results in better performance. Our
best alignment scheme is simultaneous alignment, giving us
an average cumulative profit of $3840 per stock. We note
that all alignment schemes in the first four rows have an
extremely high variance. This implies that in an actual im-
plementation of a trading system we would have to be very
careful in selecting the set of stocks for which our Analyst
performs reasonably well.

3.4 Specific or universal models?

Another issue of particular importance in training our mod-
els is whether we opt to use stock-specific models or uni-
versal models. The distinction is highlighted by Fawcett &
Provost[6] in their work on activity monitoring. In stock-
specific models, we train a separate set of models for each
stock. In universal models, we train the same set of mod-
els across all stocks. The market simulations in Section 3.2
and Section 3.3 used stock-specific models. These models
have the advantage that they can learn the specific model
of language that affects each stock. The main disadvantage
of stock-specific models is the small size of their training
sets: since we train a separate set of models for each stock,
companies that are rarely covered by news releases are at
a disadvantage. Universal models overcome that difficulty:
we train one set of models for all stocks at once. The idea
behind universal models is learning the patterns of language
that affect all (or most) stocks in the same way. Universal
models are not prone to shortage in training data because
all news from all stocks is used in training. The price is
inability of the universal models to distinguish the specific
effect of news on a particular company.

Table 2 highlights the difference in performance between
universal and stock-specific models. We observe that while
the absolute best performance is certainly lower than stock-
specific models ($2040 vs. $3840), universal models exhibit
drastically lower variance across different stocks. This is
not surprising, since we use the same model (but a different
testing set of documents) for each stock. Universal mod-
els are also much less sensitive to the alignment conditions.
Table 2 suggests that stock-specific models are character-
ized by lower bias (provided appropriate alignment) but very
high variance, while universal models exhibit larger bias and
lower variance. This observation leads us to consider a mix-
ture of universal and stock-specific models, combining the
best of both worlds.



4. RELATED WORK

The Analyst draws on progress made in several areas: text
classification[1], language models[12], and time series anal-
ysis and clustering[13]. Analyst’s strengths come from its
use of language models and redescriptions of time series as
trends. QOur treatment of stock prices is different from the
work of Fawcett & Provost[6], who focus on raw time series
when trying to predict a shift of at least 10% by interpret-
ing the problem as an activity monitoring problem. Further-
more, by using language models, our system can incorporate
the entire vocabulary used in the text, rather than concen-
trating on feature phrases selected by experts as was done
by Cho et al.[2] in their work of trying to predict the closing
price of the Hang Seng stock index. There have been nu-
merous other works including McCluskey[10] that attempt
to predict stock behavior by relying purely on the analysis
of time series data.

S. CONCLUSIONS AND FUTURE WORK

We have demonstrated how to use language models to suc-
cessfully associate stories and trends in time series. We con-
clude that piecewise linear regression is a useful tool for
describing time series, particularly in this task where we are
interested in high-level view of stock fluctuations. We also
demonstrated that language models represent a good frame-
work for associating news stories with forthcoming trends.
In our market simulation, we showed that a simple greedy
strategy allows ZAnalyst to profit from market fluctuations.
Finally, we addressed in detail the issues of aligning trends
with news stories to be used for training, and highlighted
the differences between stock-specific and universal trend
models.

For future work, we would like to experiment with richer
document features. In this work we treat articles as though
they are a bag-of-words. These features could be augmented
with associations among trends, pairs of related words that
are significant across many documents, and also relations
between objects within a document that could add interesing
knowledge and make our models more complete. We further
plan to investigat the use of mixture language models for
predicting trends in stock prices.
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