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ABSTRACT
This report presents the system used by the University of Mas-

sachusetts for its participation in three of the five TDT tasks this

year: detection, first story detection, and story link detection. For

each task, we discuss the parameter setting approach that we used

and the results of our system on the test data. In addition, we use

TDT evaluation approaches to show that the tracking performance

that sites are achieving is what is expected from Information Re-

trieval technology. We further show that any first story detection

system based on a tracking approach is unlikely to be sufficiently

accurate for most purposes. Finally, we present an overview of an

automatic timeline generation system that we developed using TDT

data.

1. BASIC SYSTEM
The core of our TDT system uses a vector model for represent-

ing stories—i.e., we represent each story as a vector in term-space,

where coordinates represent the frequency of a particular term in a

story. Terms (or features) of each vector are single words, reduced

to their root form by a dictionary-based stemmer. This system was

originally developed for the 1999 summer workshop at Johns Hop-

kins University’s Center for Language and Speech Processing.[1]

1.1. Detection algorithms

Our system supports two models of comparing a story to previ-

ously seen material: centroid (agglomerative clustering) and nearest

neighbor comparison.

Centroid In this approach, we group the arriving documents into

clusters. The clusters represent topics that were discussed in the

news stream in the past. Each cluster is represented by a centroid,

which is an average of the vector representatives of the stories in that

cluster.

Incoming stories are compared to the centroid of every cluster, and

the closest cluster is selected. If the similarity of the story to the clos-

est cluster exceeds a threshold, we declare the story old and adjust

the cluster centroid. If the similarity does not exceed the threshold,

we declare the story new, and create a new singleton cluster with the

story as its centroid.

k-nearest neighbor The second approach, k-NN, does not attempt

to explicitly model a notion of a topic, and instead declares the story

new if it is not like any story seen before.

Incoming stories are directly compared to all the stories we have

seen before. The most similar
�

neighbors are found, and if the

story’s similarity to the neighbors exceeds a threshold, the story is

declared old. Otherwise the story is declared new.

1.2. Similarity functions

One important issue in our approach is the problem of determining

the right similarity function. We considered four functions: cosine,

weighted sum, language models, and Kullbach-Leiblar divergence.

The critical property of the similarity function is its ability to sep-

arate stories that discuss the same topic from stories that discuss

different topics.

Cosine The cosine similarity is a classic measure used in Informa-

tion Retrieval, and is consistent with a vector-space representation

of stories. The measure is simply an inner product of two vectors,

where each vector is normalized to unit length. It represents the

cosine of the angle between the two vectors ✁ and ✂ .✄✆☎ ✂✞✝✟✁✠✝☛✡✌☞✎✍ ✄✏☎ ✂✏✑✝ ✡ ✄✒☎ ✁✓✑✝ ✡
(Note that if ✔✂ and ✔✁ have unit length, the denominator is 1.0 and the

angle is calculated by a simple dot product.) Cosine similarity tends

to perform best at full dimensionality, as in the case of comparing

two long stories. Performance degrades as one of the vectors be-

comes shorter. Because of the built-in length normalization, cosine

similarity is less dependent on specific term weighting, and performs

well when raw word counts are presented as weights.

Weighted sum The weighted sum is an operator used in the In-

Query retrieval engine developed at the Center for Intelligent Infor-

mation Retrieval (CIIR) at the University of Massachusetts. InQuery

is a Bayesian inference engine with transition matrices restricted

to constant-space deterministic operators (e.g., AND, OR, SUM).

Weighted sum represents a linear combination of evidence with

weights representing confidences associated with various pieces of

evidence: ✄ ☎ ✂✞✝✟✁✠✝ ✡ ☞ ✄ ☎ ✂✞✝ ✡
where ✂ represents the query vector and ✁ represents the document

vector. For instance, in the centroid model, cluster centroids repre-

sent query vectors which are compared against incoming document

vectors.

Weighted sum tends to perform best at lower dimensionality of the

query vector q. In fact, it was devised specifically to provide an

advantage with short user requests typical in IR. The performance

degrades slightly as q grows. In addition, weighted sum performs

considerably better when combined with traditional tf ✕ idf weighting

(discussed below).

Language model Language models furnish a probabilistic ap-

proach to computing similarity between a document and a topic (as

in centroid clustering) or two documents (nearest neighbour). In this



approach, previously seen documents (or clusters) represent models

of word usage, and we estimate which model ✖ (if any) is the most

likely source that could have generated the newly arrived document✗
. Specifically, we are estimating ✘✚✙ ✗✜✛ ✖✣✢✤☞✥✘✚✙ ✗ ✢ , where ✘✚✙ ✗ ✢

is estimated using the background model ✘✚✙ ✗✜✛ ✦★✧ ✢ corresponding

to word usage in General English.

By making an assumption of term independence (unigram model),

we can rewrite ✘✚✙ ✗✜✛ ✖✣✢✪✩✬✫ ✝ ✘✚✙✭✁ ✝ ✛ ✖✮✢ , where ✁ ✝ represent in-

dividual tokens in
✗

. We use a maximum likelihood estimator for✘✚✙✭✁✠✝ ✛ ✖✮✢ , which is simply the number of occurrences of ✁✓✝ in ✖
divided by the total number of tokens in ✖ . Since our models

may be sparse, some words in a given document
✗

may have zero

probability under any given model ✖ , resulting in ✘✚✙ ✗✜✛ ✖✮✢★✩✰✯ .

To alleviate this problem we use a smoother estimate ✘✚✙✭✁ ✝ ✛ ✖✮✢✱✩✲ ✘✴✳✶✵✷✙✭✁✠✝ ✛ ✖✣✢✹✸✜✙✤✺✼✻ ✲ ✢✷✘✚✙✭✁✠✝ ✛ ✦★✧ ✢ , which allocates a non-zero prob-

ability mass to the terms that do not occur in ✖ . We set
✲

to the

Witten-Bell[6] estimate ✽✚☞✠✙☛✽✾✸❀✿✱✢ where ✽ is the total number

of tokens in the model and ✿ is the number of unique tokens. (Note

that since detection tasks are online tasks, we may enounter words

not in
✦★✧

, and so we smooth
✦★✧

in a similar fashion using a uni-

form model for the unseen words.)

Kullbach-Leiblar divergence Instead of treating a document
✗

as

a sample that came from one of the models, we could view
✗

as a

distribution as well, and compute an information-theoretic measure

of divergence between two distributions. One measure we have ex-

perimented with is the Kullbach-Leiblar divergence, ❁✜❂❃✙ ✗❅❄ ✖✣✢❆✩✻❈❇ ✝ ✁ ✝✏❉❋❊✥● ✙✭❍ ✝ ☞✹✁ ✝ ✢ , where ✁ ✝ and ❍ ✝ represent relative frequen-

cies of word ■ in
✗

and ✖ respectively (both smoothed appropri-

ately).

1.3. Feature weighting

Another important issue is weighting of individual features (words)

that occur in the stories. The traditional weighting employed in most

IR systems is a form of tf ✕ idf weighting.

tf ✕ idf The tf component of the weighting represents the degree to

which the term describes the contents of a document. The idf com-

ponent is intended to discount very common words in the collection

(e.g. function words). Below is the particular tf ✕ idf scheme used in

the InQuery engine:❏▲❑◆▼P❖ ❍✌◗❘✩
❏▲❑❏▲❑ ✸❙✯✠❚ ❯❱✸❲✺✏❚ ❯ ✵❋❳✤❨✆❩✵❋❳✤❨✏❬❪❭❪❫

■☛✁ ❑◆▼❴❖ ❍✪◗❵✩ ❉❋❊✏● ✙☛✽✪☞✹✁ ❑ ✢❉❋❊✏● ✙☛✽❛✸❲✺❜✢
The tf-comp component has a general form of

❏✤❑ ☞✓✙ ❏✤❑ ✸❝❁❈✢ , where

tf is the raw count of term occurrences in the document, and K influ-

ences the significance we attach to seeing consecutive occurrences

of the term in a particular document. The functional form is strictly

increasing and asymptotic to 1.0 as tf grows without bounds. The

effect is that we assign a lot of significance to observing a single

occurrence of a term, and less and less significance to consecutive

occurrences. This is based on the observation that documents that

contain an occurrence of a given word ❞ are more likely to contain

successive occurrences of ❞ .

The parameter K influences how aggressively we discount succes-

sive occurrences, and in InQuery is set to be the document length

over average document length in the collection. This means that

shorter documents will have more aggressive discounting, while

longer stories will not assign a lot of significance to a single oc-

currence of a term.

The idf-comp component is the logarithm of the inverse probability

of the term in the collection, normalized to be between 0 and 1. N

denotes the total number of documents in the collection, while df

shows in how many of those documents the term occurs. This par-

ticular idf formulation arises naturally in the probabilistic derivation

of document relevance under the assumption of binary occurrence

and term independence.

tf This weighting scheme is simply the actual tf value used in the

tfcomp formula above—i.e., the number of times the term occurs

in the story. The intuition behind omitting the idf component is

that feature selection at other points in the process will choose only

medium- and high-idf features with good discrimination value. As a

result, the tf-only weighting scheme is less likely to work at high

dimensionality when low-idf features will appear and need to be

downweighted.

idf This weighting scheme is simply the raw tf component times

the idf component of the tf ✕ idf scheme. This weighting method

boosts the importance of multiple occurrences of a feature over that

given in the tf ✕ idf scheme.

2. FIRST STORY DETECTION

We tuned parameters and made our choice of detection algorithms

by running FSD experiments using the January-June TDT2 corpus.

The first four months served as a training corpus and the last two

months as a development corpus. We also ran experiments on the

entire six months of data. Detection algorithms (centroid, k nearest

neighbor), similarity measures (cosine, weighted sum), weighting

schemes (tf ✕ idf, idf, tf), and thresholds were varied. Parameter se-

lection was made on the basis of DET curves and the topic weighted✙✟❡ fsd ✢ norm values.

2.1. Parameter setting

We set some initial parameters by using the entire six months of

training data. By a small margin the best DET curve was the one

generated using a 1-NN clustering algorithm, cosine similarity, di-

mensionality of 1000, and tf ✕ idf weighting scheme. A run using all

the same parameters and an idf weighting scheme came in a close

second. A tf weighting scheme and again, all the same other param-

eters came in third. Alternative clustering algorithms, wsum, and

lower dimensionality all proved less effective.

Previous experiments indicated that the optimal threshold was

around 0.2 so we tried the three most promising weighting schemes

and threshold values around 0.2, specifically, 0.18, 0.19, 0.2, 0.21,

0.22 and 0.24. The following table shows ✙✟❡ fsd ✢ norm values for

different thresholds applied to the 1-NN, cosine comparison, tf ✕ idf

weighting, 1000-feature system:



✙✟❡ fsd ✢ norm❢
(six months)

0.18 0.7596

0.19 0.7398

0.20 0.7024

0.21 0.6504

0.22 0.7315

To decide upon our actual parameter values, we used the four month-

two month split of data. We varied the weighting scheme between

tf ✕ idf and idf, the two most promising weighting schemes, and again,

used threshold values around 0.2. Once again, the top runs used

a tf ✕ idf weighting scheme. The optimal threshold for the training

collection was again 0.21. The optimal threshold for development

was 0.20. The following table shows some of the results:✙✟❡ fsd ✢ norm
Weights

❢
(Jan-Apr) (May-Jun)

tf ✕ idf 0.19 0.7112 0.6399

tf ✕ idf 0.20 0.6412 0.5959

tf ✕ idf 0.21 0.5963 0.6074

tf ✕ idf 0.22 0.6415 –

idf 0.20 0.7158 –

idf 0.21 – 0.6156

idf 0.22 – 0.6081

On the basis of these results, our final runs used a 1-NN cluster-

ing algorithm, cosine similarity, dimensionality of 1000, the tf ✕ idf

weighting scheme, and a threshold of 0.21.

Our score on the primary first story detection evaluation

(SR=nwt+bnasr TE=eng,nat boundary DEF=10) was 0.8110. The

following graph shows the error tradeoffs:

3. STORY LINK DETECTION

We made our choice of similarity measures, weighting schemes and

thresholds by running story link experiments using the January-June

TDT2 corpus. Similarity measures sampled were cosine, weighted

sum, language model and Kullbach-Leiblar divergence. Weighting

schemes sampled were tf ✕ idf, idf, and tf. Previous experiments indi-

cated that the best threshold was 0.1, so we tried values in that range.

As usual, parameter selection was made on the basis of DET curves

and the topic weighted ✙✟❡ link ✢ norm values.

The following table shows the top 5 runs, all of which were co-

sine similarity, dimensionality of 1000, and idf weighting scheme.

Within this set of parameters, threshold 0.08 yielded the lowest✙✟❡ link ✢ norm value. ✙✟❡ link ✢ norm❢
(six months)

0.06 0.1425

0.08 0.1299

0.10 0.1493

0.12 0.1741

0.14 0.2016

There was no easy way to divide this training collection into training

and development collections so we did not verify these parameters

by running them on four and two month subsets.

Our score on the primary link detection evaluation (SR=nwt+bnasr

TE=eng,nat DEF=10) was 1.1385. The following DET plot shows

the tradeoff between miss and false alarm errors:

Mid January, when NIST released a new link detection index file,

we performed an additional run using all the same paramters. Our✙✟❡ link ✢ norm score for this run was 0.1427, almost an order of mag-

natude better than the orignial score. We do not yet know why link

detection on this subset of stories was so much easier than the larger

set.

4. DETECTION

As with first story detection, we ran wide parameter sweeps on the

six month, January-June TDT2 corpus. We then confirmed our set-

tings with narrower parameter sweeps and finer granularity using

the four month and two month training and development corpora.

We also checked our choice of parameters on different languages.



For languages, we tried eng-nat (English-only corpus in its natural

language—i.e., English), mul-eng (English and Mandarin, with the

Mandarin translated into English by SYSTRAN), and mul-nat (En-

glish and Mandarin, each in their own “natural” language).

Using the six month eng-nat collection we varied the clustering algo-

rithm, weighting scheme, and threshold. The clustering algorithms

sampled were 1-NN and centroid. The weighting schemes sampled

were tf, idf and tf ✕ idf. The thresholds were in the 0.20 to 0.30 range.

We chose this threshold range on the basis of previous experiments.

The optimal combination for the six-months of data was 1-NN, 1000

dimensionality, idf weighting, and threshold 0.20. The same trend

showed up in the 4-month data. The following table shows some

sample runs: ✙✟❡ det ✢ norm
Weighting

❢
(six months) (four months)

idf 0.20 0.1806 0.1465

0.22 0.1902 0.1576

0.26 0.1955 0.1705

0.30 0.2175 –

tf 0.26 – 0.1938

0.30 0.2246 0.1945

Further experiments on the four month eng-nat training corpus using

2-, 4-, and 8-NN clustering algorithms and a wider range of thresh-

olds did not yield improvement.

Next we duplicated the English-only parameter sweep using the

Multilingual collection with all stories in English (mul-eng). The

results indicated that the parameter choice found using the English-

only collection was, thus far, stable across languages. Both the four

and six month collections confirmed the parameter choices made on

the basis of the eng,nat collection. Once again, as the same runs in

the following table show, we found the optimal parameter combina-

tion to be 1-NN, 1000 dimensionality, idf weighting, and threshold

0.2. ✙✟❡ det ✢ norm
Weighting

❢
(six months) (four months)

idf 0.20 0.1901 0.1526

0.22 0.1970 0.1604

0.26 0.2040 0.1796

0.30 0.2314 0.2159

tf 0.30 0.2513 0.2239

Finally, we tried the same experiements using the Multilingual col-

lection in the original languages (mul-nat) four and two month col-

lections. The four month mul-nat training corpus again showed that

the idf weighting scheme, 1-NN, and 0.2 threshold values were the

most promising. This strengthened our confidence that this set of

parameter choices is stable across languages. The following table

shows some values for these runs:�
for ✙✟❡ det ✢ norm�

-NN Weighting
❢

(four months)

1 idf 0.16 0.1772

0.18 0.1600

0.20 0.1549

2 idf 0.18 0.2019

0.20 0.1747

The 2-month mul,nat development corpus placed the optimal thresh-

old at 0.21 but left all other parameters the same. On the basis of

these results we used a 1-NN clustering algorithm, idf weighting

scheme, and threshold of 0.2 for our official detection runs.

Our results on the primary detection evaluations were 0.3023 on the

Multilingual in English task (SR=nwt+bnasr TE=mul,eng boundary

DEF=10). The following DET curve shows the error tradeoffs for

that run:

On the Multilingual in the original languages task (SR=nwt+bnasr

TE=mul,nat boundary DEF=10) our result was 0.4682. The error

tradeoff for that run was:

5. BOUNDS ON EFFECTIVENESS

In this section we show two things:

1. Tracking performance is approximately what we expect given

state-of-the-art information filtering systems from TREC.

2. If an FSD system is built using a tracking system, it is ex-

tremely unlikely that FSD effectiveness can be satisfactory. We

do not suggest that FSD is unsolvable, only that effective FSD

is not a simple matter of improving tracking technology.

The work in this section is described in more detail elsewhere.[2, 1]
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Figure 1: DET plot of two filtering and two tracking runs, each with

the “query” generated from ✽❤❣✐✩✮✺ or ❥ stories.

5.1. Expected TDT Performance

The DET curve of Figure 1 shows two tracking runs from the TDT-2

evaluation data. It also shows two runs from a TREC filtering task

(modified to be more like tracking).

One thing that the graph shows is that tracking performance at✽ ❣ ✩❦❥ is near the performance that filtering achieves with similar

starting information. Although the tasks were run on completely dif-

ferent corpora, and had different definitions, tracking performance is

approximately what filtering performance predicts. We hypothesize

that the wildly different performance of the tasks for ✽✌❣❧✩♠✺ is

because news topics are more focused (e.g., “Oklahoma City bomb-

ing”) than TREC filtering queries (e.g., “drug legalization benefits”).

As a result, a single story is a good representative of a news topic,

but it might take several documents to isolate the information perti-

nent to a hidden query.

5.2. Bounds on FSD

One possible solution to FSD is to apply tracking technology. Intu-

itively, the system marks the first story of the corpus with a very high

score (it must be the first story on any topic in the corpus). It then

begins tracking that story. If the second story tracks, it is assigned

a low FSD score. If it does not track (is not on the same topic as

the first story), it is assigned a high FSD score, and the system starts

tracking that one, too. At any point, the system is tracking numerous

topics—in fact, if the system makes an FSD false alarm, it will be

tracking some topics in multiple ways.

It should be clear that a perfect tracking system (for ✽ ❣ ✩✮✺ ) yields a

perfect FSD system. However, tracking systems are far from perfect.

What sort of FSD performance can we expect from a state-of-the-art

tracking system?

It is possible to derive expected FSD error rates from average TDT

error rates (omitted here). The result will be lower- and upper-

bounds on expected FSD performance. (We emphasize that the pre-

dictions only make sense if we assume that the FSD system uses

an approach that is based upon tracking.) Figure 2 shows both the
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Figure 2: The lower-left graph is a tracking DET curve for ✽ ❣ ✩✺ . The upper part of the graph shows the lower- and upper-bound

predicted performance for tracking-based FSD error rates in grey, as

well as the actual system performance of an FSD system in black.

appropriate DET curves. Note that the FSD error rates fall nicely

within the performance that is predicted by tracking. This result

suggests that our FSD system is working about as well as we could

expect.

5.3. Difficulty of improving FSD

The predicted and actual error rates of a tracking-based FSD system

are in fact not very good: they are unacceptably high for all but a few

applications, no matter what threshold on the DET curve is used.

We assume that “reasonable” FSD performance is approximately

equal to the tracking DET curve shown in Figure 2 (the lower-left

curve). A system that misses less than 10% of the first stories while

generating only 0.5% false alarms is acceptable for many applica-
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Figure 3: Shows desired FSD performance in black surrounded by

reasonable confidence intervals. The extreme lower-left curve is the

corresponding tracking performance.
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Figure 4: Overview of January - June, 1998. The topic labeled mon-

ica lewinsky allegation is the highest ranked topic, and the topic la-

beled jonesboro westside middle school is the second highest ranked.

The pop-up on oregon school shooting shows significant named en-

tities of oregon, springfield, kip kinkel, kinkel, ap, thurston high

school, and ore. The other pop-up displays a submenu for obtain-

ing more information on kip kinkel.

tions.

Figure 3 shows the desired FSD curve (it is really just the tracking

curve again) and lower- and upper-bounds on errors that encompass

it. In order to achieve those bounds, we had to improve tracking

performance for ✽♥❣✐✩❦✺ by a factor of 20. The resulting DET curve

is a small line segment in the lower left of the figure.

None of the research in TDT-1, TDT-2, and TDT-3 has resulted in

a tracking DET curve that is substantially better than the ones in

Figure 2. Further, as shown in Section 5.1, that level of effectiveness

is comparable to that achieved by many years of filtering research at

TREC. There is little reason to believe that tracking technology will

ever improve 20-fold.

We have shown how to reduce the FSD problem to a tracking task.

We have also shown that a given error rate in tracking results in

substantially worse error rates in a corresponding FSD system. Most

importantly, we have shown that there is little reason to believe that

tracking-based FSD effectiveness can be raised to the point that the

technology is widely useful.

6. AUTOMATIC TIMELINE
GENERATION

We have developed a technique for determining the relative impor-

tance of the occurrence of extracted features within text. Our tech-

nique requires an explicitly time tagged corpus, such as TDT with

its stories that arrive at known times. With our technique we are able

to analyze extracted features (named entities and noun phrases) and

explicitly rank how likely these features are to be high content bear-

ing. We are then able to group these features into clusters that cor-

respond strongly with the notion of “topic” as defined in the Topic

Detection and Tracking (TDT) study. Figures 4 and 5 show exam-

ples of the system running. This work is described in more detail

elsewhere.[5, 4]

With the model that tokens are emitted by random processes, we

assume two hypotheses as defaults. The assumptions are 1: the ran-

dom processes generating tokens are stationary, meaning that they

do not vary over time, and 2: the random processes for any pair of
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Figure 5: Detail, January 26 to March 13, 1998. Topics shown are

monica lewinsky allegation, broncos super bowl, karla faye tucker

execution, and aviano cable car. Additional phrases are displayed

with the Karla Faye Tucker execution and the Aviano cable car

crash.

tokens are independent. We use the ♦ ✑ measure to look for features

that violate those hypotheses. Details are omitted here.

We built a system that constructed timelines such as those shown.

We were curious whether it was finding “reasonable” events, so we

ran a small evaluation. We used the entire TDT-2 corpus for our ex-

periment, training on the 4-month development set, and evaluating

on the held-out 2 months. The corpus was tagged by BBN using

the Nymble tagger[3], which identified 184,723 unique named en-

tities. We also extracted noun phrases by running a shallow part

of speech tagger[7], and labeling as a noun phrase any groups of

words of length less than six which matched the regular expression

(Noun
✛
Adjective) ♣ Noun. This led to a set of 1,188,907 unique noun

phrases.

Our final run on the evaluation portion of TDT2 produced 146 clus-

ters of those features (based on pairing features by ♦ ✑ value and

time, and imposing a threshold on which could be paired). We be-

lieve that the clusters of features found are indicative of the major

news stories that were covered by the news organizations during the

time spanned by the corpus. We felt that the clusters were highly

suggestive of the major news stories and provided as good a sum-

mation as could be obtained by an unordered collection of features.

To test this, we hired four students (three undergraduates and one

graduate student) to evaluate the clusters.

Of the 146 clusters 79 were judged three times, and 67 had four judg-

ments. The four evaluators found that the great majority of groups

were indicative of a single topic (71.2%, 79.4%, 82.2% and 90.2%

of the groups judged), and the pairwise overlap on the judgments

of how many topics were contained in a group was 73.6%. How-

ever the overlap expected by chance was nearly 70%, and the pair-

wise Kappa statistics ranged from 0.045 to 0.315, with a (weighted)

average value of 0.223. The Kappa statistic is a measure of inter-

evaluator reliability, and a value of 0.0 indicates an overlap that

would be expected by chance and a value of 1.0 indicates perfect

overlap. A Kappa value of 0.233 indicates poor agreement among

evaluators and that the data are not reliable. This can also be seen

by looking at the scores given individual groups. Only twenty of the

146 were not judged to be a single topic by the majority of asses-

sors, and of these twenty there were only three where the assessors

unanimously agreed.



We also asked the assessors to compare the generated groups with

the TDT2 topics and indicate if they agreed. Here the results were

stronger. The (pairwise) overlap in topic/group matches was 86.7%,

and the six pairwise Kappa statistics ranged from 0.600 to 0.785,

with an average value of 0.699, indicating very good agreement.

This indicates that if a topic is defined, the features our system se-

lects are sufficient for recognizing the topic.

The groups of terms were automatically labeled and our assessors

were asked to rate the usefulness of the label. Our assessors were

asked to rank these on a six point Likert scale. In general our asses-

sors felt that the labels were very poor, with an average rank of 2.8

(1 ✩ poor, 6 ✩ excellent). Our assessors were in good agreement on

the rankings, with the average standard deviation equaling 1.0.

We feel that the techniques presented in this study can make a sig-

nificant contribution to the accessibility of information, as it allows

the automatic generation of interactive overview timelines at modest

cost. As archives of news, e-mails, historical newspapers, memos,

and other such time based corpora become increasingly common in

digital libraries we feel that this system, or one like it, will be a

tremendous tool to allow broader access to electronic information.

7. CONCLUSION
The results that we have presented on the three detection tasks were

acceptable, but not as high a quality as we would have liked. We be-

lieve that we have hit the limits of effectiveness that can be reached

with simple IR-based approaches to story/topic comparison.

We spent considerable effort, including two months over the

summer[1], working on FSD but were unable to achieve great im-

provements in the system. A major finding of that workshop, how-

ever, and one which we have extended since then[2], is the idea that

tracking-based FSD systems cannot be effective enough. This result

bolsters the idea that current approaches have hit their limits.

We believe that event-based information organization as realized in

TDT requires substantially different approaches and ideas. We have

briefly presented our work on automatic timeline generation, work

that we believe serves as an example of moving TDT ideas in new

directions. We hope that a richer set of ideas and directions will

yield new approaches and techniques for addressing the existing

TDT tasks, as well as new tasks that arise.
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