
UMASS Approaches to Detection and Tracking at TDT2

Ron Papka, James Allan, and Victor Lavrenko

Center for Intelligent Information Retrieval
Computer Science Department

University of Massachusetts
Amherst, MA 01003

ABSTRACT

The following work describes our solutions to the detection and

tracking problems defined by the Topic Detection and Tracking

(TDT2) research initiative. We discuss the implementation and re-

sults of the approaches which were recently tested on the TDT2 eval-

uation corpus. Our solutions to these problems extend text-based

ranked retrieval techniques previously used for document clustering

and filtering tasks. We present the effects of different on-line hi-

erarchic clusterings on the detection task. In addition we compare

adaptive and static approaches for building linear text classifiers for

the tracking task.

1. INTRODUCTION

The motivation for our solutions to the detection and tracking tasks

is the hypothesis that several properties of broadcast news can be

modeled and incorporated as extensions to a ranked-retrieval engine

of Inquery [3]. Given that the information domain for TDT2 is a

temporally ordered stream of news, we find that modeling the prop-

erties of time and evolution results in lower story-weighted cost for

detection and tracking.

1.1. Implementation

In the experiments that follow, we used the same underlying text

representation and threshold model for both problems. Our imple-

mentation comprises document and query objects. Documents con-

tain the tokenized text supplied by an automatic speech recognition

(ASR) and segmentation system. We create an inverted file from

the stemmed terms in each document. Document boundaries were

provided by the Linguistic Data Consortium (LDC)
�

for the TDT2

corpora.

Queries are used to represent the contents of a document or a set

of documents. A threshold is estimated for each query which deter-

mines binary classification decisions. If a new document appearing

on the stream has a similarity value exceeding a query’s threshold,

the document is assumed to discuss the same topic the query at-

tempts to represent. The query and threshold jointly form a classifier

which can be stored in an inverted file for on-line applications.

The similarity between a query and document is based on Inquery’s

belief function. Queries were formulated using the #WSUM opera-

tor. A
✁✄✂

representation was used for query weights, and a
✁☎✂✝✆✟✞✡✠☛✂

representation was used for document weights, where

✁✄✂✌☞✍✁✄✎✑✏✒✁✔✓✖✕✑✗ ✘✙✓✛✚✜✗ ✘✣✢ ✠✥✤
✦✥✧✩★ ✠✥✤✫✪✭✬ and (1)

�
http://www.ldc.upenn.edu

✞✮✠✯✂✌☞ ✤✱✰ ★ ✏✳✲✔✴✶✵ ✷✸✱✹ ✪✤✱✰ ★ ✏✡✺✻✓✍✚ ✪
✗

(2)

For both query and document term weights,
✁

is the term’s frequency

in the document, and
✠✥✤

is the document’s length. The remaining

values for Equations 1 and 2 are derived from an auxiliary corpus.✺
is the number of documents in the auxiliary corpus, ✦✥✧✩★ ✠✥✤

is the

average number of terms in a document, and
✠☛✂

is the number of

documents in which the term appears. If the term does not appear in

the auxiliary corpus a default value of 1 is used for
✠✯✂

.

During processing, a query’s threshold is potentially recomputed at

each time step, that is, when a new document arrives on the stream.

For any query formulated at time i, its threshold for any document

arriving at time j is

✁✄✼✾✽❀✿✳❁❂✼❃✰✜✤✱✠❄✏❆❅❂❇ ✬ ✠✳❈ ✪ ☞✕✥✗ ❉❊✓✖❋✣✢❊✏❆●✫✿✟✤✱✞✡✿✳✂❍✏❆❅❂❇ ✬ ✠✥❇ ✪❏■ ✕✑✗ ❉ ✪ ✓▲❑✌✢❊✏❆✠ ✦ ✁✯✿▼❈ ■ ✠ ✦ ✁✯✿✳❇ ✪✭✬ (3)

where ●◆✿✳✤❖✞P✿✳✂❍✏❆❅❂❇ ✬ ✠✳❈ ✪ ☞❘◗❚❙❯✫❱ � ❅ ❇❆❲ ❯ ✆❂✠ ❈✭❲ ❯
◗❳❙❯✫❱ � ❅ ❇✮❲ ❯ ✬ (4)

and ❨ is the index of the term weight. The parameters
❋

and
❑

are de-

termined by an optimization process discussed below. The constant

0.4 is an Inquery belief function parameter, and
✏❆✠ ✦ ✁✄✿✭❈ ■ ✠ ✦ ✁✄✿✟❇ ✪ is

the number of days between the arrival of documents
✠ ❈

and
✠ ❇

.

1.2. Optimization

During training and development, we honed our systems with the

goal of minimizing the TDT2 cost function over all available data.

Most of the optimization efforts for detection were based on find-

ing
❋

and
❑

that minimize story-weighted cost. The optimization ef-

forts for tracking involved finding appropriate values for
❋
, which we

found to be different for different numbers of on-topic training doc-

uments (❩ ✁
). We determined that thresholds which optimize cost on

the training data are consistently higher than optimal thresholds for

the test data. We discuss thresholding issues in terms of estimator

bias in Section 3.1.

The cost function used for optimization and evaluation in the fol-

lowing experiments is

✺❬✰❀❁✫✁❭☞✛❪✭✰✩❁◆✁ ✹❂❫ ✢❵❴❛✏✡✂ ✦ ✪ ✓✖❪✭✰✩❁◆✁✯❜❝✢❞❴❛✏❆❡ ✪ (5)

where
❴❛✏✡✂ ✦ ✪ is the probability a system produces a false alarm i.e.,

classifying an off-topic document incorrectly, and
❴❛✏❆❡ ✪ is the prob-

ability a system produces a miss i.e., classifying an on-topic docu-

ment incorrectly. In TDT2, cost was defined with
❪✭✰✩❁◆✁ ✹✫❫ ☞❢✕✥✗ ❣❀❤

and
❪◆✰❀❁✫✁ ❜ ☞✐✕✑✗ ✕✩❥

2. DETECTION
One correlation evident in the TDT1 and TDT2 corpora is that news

stories appearing on the stream closer in time are more likely to con-

tain discussion of the same topic than stories appearing further apart.

We exploited the temporal relationship between stories for the first

story detection task of TDT1 by explicitly using a time component

in our threshold model [1]. We applied the same threshold model to

the TDT2 detection task, and improved the time component by in-

corporating the number of days between documents, while in TDT1

the time component was based on a document sequence number.

We view the detection task as a problem appropriate for single-

pass clustering techniques such as those presented by van Rijsber-

gen [8]. For the TDT2 detection task we tested single-, average-,

and complete-link hierarchic clustering approaches using the
✁✄✂❞✆✱✞✮✠✯✂

query and document representations described above.

Our basic algorithm for detection was the following: for each doc-

ument we formulate a fixed length query from the n most frequent

words in the document after removing stopwords. The query’s ini-

tial threshold is its similarity value to the document from which it

was created. We assume no subsequent document will exceed this

threshold, and so it is reduced using appropriate values for
❋

which

are discussed below. As new documents arrive on the stream they are

compared to previously formulated queries. The existing queries’

thresholds are increased based on the new document’s relative time

of arrival using Equation 3. In the single-link approach, the new doc-

ument is assigned to the cluster of the query whose threshold it ex-

ceeds most. The document starts a new cluster if it does not exceed

any existing query’s threshold. The average- and complete-link ap-

proaches are similar, but require the additional step of assessing the

new document’s similarity to all the queries in each of the existing

clusters. Based on our implementation, we did not find complete-

link to be as effective as average-link in terms of TDT2 cost, and

therefore we focused on comparing average- to single-link hierar-

chic approaches. In the following experiments, detection decisions

were made in a strict on-line setting which does not use a deferral

period (i.e., DEF=0).

2.1. Parameter Estimation for Detection

The single-link implementation ran one order of magnitude faster

than the average-link method. Theoretically, both approaches have

the same running times. However, average-link requires that each

document be compared to all existing queries, while the compar-

isons for single-link are significantly reduced by using an inverted

index file. The faster running time for single-link allowed us to run

a semi-exhaustive search for optimal values of
❋

and
❑

using the

data from the TDT1, TDT2 train and development corpora. The pa-

rameters that minimized story-weighted cost were applied to both

ASR+NWT and CCAP+NWT conditions for the recent evaluation

by NIST ❦ . The running time of the average-link approach prohib-

ited an extensive parameter search for
❑

, and we were not able to

fully test average-link combined with a time component. In the

❦ Both data sets include the same Newswire sources. The ASR+NWT
used Dragon Systems Automatic Speech Recognition process applied to
Broadcast News sources, while the CCAP+NWT used manually transcribed
Closed Caption data for Broadcast News sources.

experiments that follow, for the single-link+time approach we set❋❧☞♠✕✥✗ ❥✜❥
and

❑♥☞♠✕✑✗ ✕✜✕✑✚
, for single-link

❋❧☞♠✕✥✗ ♦
and

❑♥☞♣✕✑✗ ✕
, and

for average-link
❋q☞✛✕✥✗r✚

and
❑s☞✛✕✑✗ ✕

.

The number of single term features in the query determines the di-

mensionality of the underlying vectors used in our implementation.

The greater the dimensionality, the slower the running time on se-

quential machines, so for efficiency, it is preferable to run at lower

dimensionality. During the development phase, we varied dimen-

sionality and tested 25, 50, 100, and 200 term queries. We found

that at optimal thresholds, lower cost was obtained for some top-

ics using more terms, but for other topics, fewer terms were more

effective. In the experiments that follow we used 50 terms, which

appeared to work best on the TDT2 train and development corpora

for both single- and average-link approaches.

We found that all approaches were affected by the headers and trail-

ers contained in Broadcast News programs. Boundaries provided by

LDC indicated that most of these snippets were tagged as miscella-

neous text, which are excluded from evaluation, but not from pro-

cessing. This implies that a system could be indirectly penalized for

correctly identifying a topic in a header or trailer by using the terms

in the snippet to represent a cluster. For example, a header to ABC’s

World News Tonight may include a brief description of all the topics

to be discussed in the program, including one of the target topics

being evaluated. We analyzed the length of documents marked mis-

cellaneous in the TDT2 train and development sets, and determined

that documents which contain less than 50 terms are very likely to

be headers or trailers. We therefore labeled documents under this

size as off-topic for all topics.

2.2. Results

ASR+NWT

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

single-

link+time

single-link average-link

S
to

ry
 W

e
ig

h
t

 T
D

T
2
-C

o
s
t

Audio

Text

Combined

Figure 1: Story-weighted cost for different hierarchic-clustering ap-

proaches on ASR and newswire source conditions.

The data from our detection runs are listed in Figures 1 and 2. The

charts include separated story-weighted TDT2 cost for audio (ASR

or CCAP) and text (NWT). They suggest that single-link clustering

incorporating a time component (
❑♣t❚✕

) works as well as, or bet-

ter than other hierarchic clustering approaches when applied to the

detection task for both audio and text.

Single-link+time clustering provided relatively lower story-

weighted cost for both ASR+NWT and CCAP+NWT source con-

ditions. The other approaches appeared to benefit from the CCAP

CCAP+NWT

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

single-
link+time

single-link average-link

S
to

ry
 W

e
ig

h
t

 T
D

T
2

-C
o

s
t

Audio

Text

Combined

Figure 2: Story-weighted cost for different hierarchic-clustering ap-

proaches on Closed Caption and newswire source conditions.

source, from which average-link provided equally low cost to single-

link+time. These results corroborate those we obtained using the

same systems on the TDT2 train and development corpora. We be-

lieve the single-link+time approach works well because it captures

the periodicity and overall temporal relationship between news sto-

ries.

The single-link+time implementation showed comparable story-

weighted cost to the top systems evaluated by NIST for both the

ASR+NWT and CCAP+NWT source conditions. Several of these

systems used an explicit time component or dynamic-
✞✡✠☛✂

. We have

observed that dynamic-
✞✡✠☛✂

has a similar property to a time compo-

nent caused by decreasing
✞✮✠☛✂

values as more of the stream is pro-

cessed. It is surprising, however, that single-link approaches worked

as well as agglomerative and average-link approaches in light of past

observations by Voorhees [9] and Willet [10] both of whom have

suggested that average- and complete-link are more effective than

single-link for cluster-assisted retrieval.

We analyzed the clusters resulting from each approach. The most

salient distinction observed was the number of clusters the differ-

ent approaches produced. After processing the ASR+NWT stream,

which contained 22,445 documents using the boundaries provided,

the average-link approach produced 1221 clusters. However, the

single-link produce 8206, and single-link+time produced 7515 clus-

ters. Despite similar average cost, the single-link approach suggests

that there are nearly 6 times as many topics in the evaluation corpus

than the number suggested by the average-link approach.

The representation we used for detection requires the on-line con-

struction of a sparse similarity matrix with ✉ ✏❆✈ ❦ ✪ entries. Though

we were not adversely affected by the space needed by the TDT2

corpora, this requirement is an issue for very large sources. One of

the steps that we did not test is agglomeration. An agglomeration

step, as discussed by Yang et al. [11], would merge queries in the

same cluster into a centroid representation. If agglomeration does

not significantly change the number of clusters produced by each

approach, then average-link would appear to require less space than

single-link using TDT2 cost as a utility function.

More experiments would be necessary to determine which approach

is producing the correct granularity of clusters, and those experi-

ments would require exhaustive relevance judgements. However,

we were able to test another aspect of clustering using these ap-

proaches on the TDT1, TDT2 train and development corpora. The

purpose of this analysis was to compare the ability to produce the

correct cluster-seed i.e., the first story of a topic. We used software

developed for the TDT1 Pilot Study [2] and tested first story de-

tection capabilities for each approach using the parameters for the

evaluation runs in TDT2. This retrospective analysis suggested that

single-link+time consistently detected 50% more first-stories than

average-link at similar false alarm levels.

3. TRACKING
We viewed the tracking task as a text classification problem. Much

of the previous work in this area uses a ranked-retrieval engine and

determines thresholds at some point in the ranked list of documents.

The implementations we tested involved formulating queries and es-

timating their thresholds assuming an on-line setting. Query formu-

lation involved a three step process:

1. Term Selection.

2. Weight Assignment.

3. Threshold Estimation.

We tested static approaches where query terms and thresholds are

held constant over time, and adaptive approaches where documents

assumed to be on-topic are used to reformulate the query over time.

Static query formulation served as our baseline system during the

training and development stages. Queries are formulated for each

topic using the n most frequent nonstopwords from the on-topic

documents in the training data. The words are given weights us-

ing an assignment based on
✁☎✂

(Equation 1).We also experimented

with feature selection and weight assignment variants of the baseline

process. We tested static queries expanded with multiword features

(MWF) [6]. We also tested two weight-learning algorithms: Dy-

namic Feedback Optimization (DFO) [7] and Exponentiated Gradi-

ent Descent (EG) [5].

3.1. Parameter Estimation for Tracking

We used optimal-parameter searching over the available TDT cor-

pora to determine global threshold parameters. The parameters we

found that optimized story-weighted cost on the TDT1, TDT2 train

and development corpora are listed in Table 1. In the following sec-

tion we describe the method we used to obtain these parameters au-

tomatically.

Nt Theta

1 0.2

2 0.3

4 0.4

8 0.6

16 0.8

Table 1: Static tracking threshold parameter
❋

when
❑s☞✛✕✑✗ ✕

.

The Histogram Method An important component of our track-

ing system is a threshold estimator for queries formulated for the

Inquery retrieval engine. In Equation 3, we let
❑✇☞①✕✑✗ ✕

, and

we use the resulting function as a threshold estimator ②③ such that②③ ☞④✕✑✗ ❉✝✓♠❋✾✏❆●◆⑤✯⑥✫⑦ ❇ ❜ ❇❖⑧▼⑨ ✸ ■ ✕✑✗ ❉ ✪ , where
❋

is same global system

parameter described above, and
●◆⑤✯⑥✫⑦ ❇ ❜ ❇❖⑧▼⑨ ✸ is the similarity value

resulting from the query that, when applied to the topic’s labeled

training documents, optimizes the target cost defined by Equation 5.

Using data from several experiments on the TDT1, TDT2 train and

development corpora, it was determined that when fewer on-topic

training documents were used,
●✫⑤✯⑥✫⑦ ❇ ❜ ❇❖⑧▼⑨ ✸ (our estimator ②③ when❋♥☞⑩✚❀✗ ✕

) was consistently below the parameter ③ it was trying to

estimate i.e., the optimal threshold for the unprocessed stream of

data for a particular topic, or simply
●✫⑤✯⑥✫⑦ ❇ ❜ ❫❂❶ . In what follows, the

bias in our estimator ②③ is the quantity
●✜✏ ②③ ✪ ☞✐❷❹❸ ②③❃❺ ■ ③ .

We observed, as we tested various values for
❋
, that bias decreased

when more on-topic training documents were used to formulate

queries. We also observed similar but less significant increases in

bias when more features were used. The observation that increasing

training instances reduces the bias of an estimator, in general, is not

surprising. James, for example, shows that estimates move toward

the true population values when training instances are increased for

data assumed to have multivariate-normal distributions [4]. He also

proposes that once found, it may be possible to reduce the bias using

a linear transformation. We tested James’s theory using estimator ②③ .

If we define a threshold estimator ②✰ such that ②✰✌☞❻● ⑤✯⑥✫⑦ ❇ ❜ ❇❖⑧▼⑨ ✸ , then

estimator ②③ is a linear transformation of estimator ②✰ . Finding opti-

mal values for
❋

can be done using statistical techniques.

Optimal Theta

50 Feature Queries

0

10

20

30

40

50

60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Theta

#
Q

u
e

ri
e

s

Nt=1

Nt=2

Nt=4

Nt=8

Nt=16

Figure 3: Distributions of optimal threshold parameter
❋

for varying❩ ✁ .
The histogram approach was trained on 91 topics and associ-

ated labeled documents from the TDT1, TDT2 train and devel-

opment corpora. Experiments were conducted over varying num-

bers of on-topic training documents (❩ ✁) and varying numbers of

query/document features. The histogram method, which utilizes

threshold estimator ②③ , is illustrated with 50-feature queries in Fig-

ure 3. Histograms of optimal values for
❋

are collected for each

value of ❩ ✁ and for queries formulated with 10, 20, 50,100, 200,

600, and 10000 features. Using this method on the training data

determined that for 1 on-topic document (❩ ✁❧☞❘✚
) and 50-feature

queries, 54 out of 91 queries had optimal cost when
❋❼☞❽✕✑✗ ❥

. For

each pair of ❩ ✁ and number of features, we calculate
❷❹❸ ❋ ❺ from the

corresponding histogram, and used the nearest tested value for es-

timator ②③ when conducting evaluation experiments using the same

pair. From the data in Figure 3, it is evident that as ❩ ✁ increases❷❹❸ ❋ ❺ increases. This observation coupled with the definition of es-

timator ②③ implies that
●✫⑤✯⑥❂⑦ ❇ ❜ ❇r⑧▼⑨ ✸ is closer to

●◆⑤✄⑥✫⑦ ❇ ❜ ❫❂❶ when more

on-topic training examples are used.

Varying IDF source Using static queries as a baseline approach,

we evaluated different sources for IDF over varying dimensionality

for overall minimum cost on the TDT1, TDT2 train and develop-

ment corpora. We found that
✞✡✠☛✂

calculated from document fre-

quencies (
✠☛✂

) from TREC volumes 1,2,3 combined with TREC-4

Routing (TREC 123R) produced lower cost and DET curves than✞✮✠✯✂
from the news-only documents from TREC 123R and 80K doc-

uments from a CNN corpus. Also, TREC 123R was a more effective

source for document frequency than the retrospective corpus being

processed. In general, the overall cost changes between using differ-

ent sources for
✞✮✠✯✂

and not using
✞✮✠✯✂

at all were small at best. Our

experience using dynamic
✞✮✠✯✂

from TDT1 tracking, however, sug-

gests that document frequency is a useful statistic. In addition, we

found that using queries comprised of 50 terms was more effective

than using queries containing up to 10, 20, 100, 200, 600, and 10000

terms.

Adaptive Query Formulation In addition to our static approach

we tested adaptive tracking approaches that extend some techniques

previously used to analyze the TDT1 corpus [1]. In the adaptive

approach, a query is initially formulated using the static approach,

and then reformulated on-line with features from new documents in

the stream. Both on-topic and off-topic documents are saved and

used to reformulate a query.

The threshold model for adaptive tracking uses Equation 3 for two

thresholds. One threshold is estimated for detection decisions and

another threshold is estimated for agglomeration decisions. If a doc-

ument exceeds the second threshold, it is used to reformulate the

query and determine new thresholds. If the document similarity to

the query was above the decision threshold but below the agglomer-

ation threshold, then it was excluded from the reformulation process.

After reformulating a query, we backtested its training data and cal-

culated TDT2 cost. If cost increased, we discarded the reformulated

query and reverted to the previous one. This additional step was nec-

essary to prevent the query from over-generalizing. In addition, we

found that reformulating queries with 10 terms worked better than

20 and 50 terms.

In the adaptive tracking experiments that follow, we determined val-

ues for
❋

for different values of ❩ ✁ using an optimization process

over the TDT1, TDT2 train and development corpora. As with the

static approach we let
❑s☞✛✕✑✗ ✕

, which turns off the time component

of the threshold equation. We found that an agglomeration threshold

when
❋q☞✐✕✑✗ ❤✩✘

worked best. The decision thresholds that we found

from the optimization process appear in Table 2.

Nt Theta

1 0.45

2 0.55

4 0.65

Table 2: Adaptive tracking threshold parameter
❋

with
❑s☞✛✕✑✗ ✕

.

Decision Score Normalization The DET curve illustrates the

trade-off between system miss and false alarm rates. Since Equa-

tions 1-4 produce different distributions of values for different top-

ics, we needed to normalize the similarity values from Equation 4

to produce decision scores. The TDT2 decision score is defined so

that all on-topic decisions must have a higher value than off-topic

decisions. Our initial attempt at normalization did not meet this re-

quirement, but in what follows, we produce decision scores based on

several experiments done after the submission deadline. Hard deci-

sions were made using the same process described above and match

the submitted runs.

In these experiments we looked at different approaches to belief

value normalization and their ability to lower DET curves on the

DET graph. We found that the most effective way to lower curves

was to normalize similarity score using a standard normal transfor-

mation. The general form of the transformation is

✠✥✿❂❪◆✞P❁✫✞✡✰✳✈ ❁✫❪✭✰✜✽✜✿❾✏❆❅ ❇ ✬ ✠ ❈ ✪ ☞ ●✫✿✟✤✱✞✡✿✳✂❍✏❆❅ ❇ ✬ ✠ ❈ ✪✶■s❿➀ ✬ (6)

where ❿ is the mean, and ➀ is the standard deviation of some distri-

bution that is assumed to be normal. We observed that queries for

most topics produced distributions of similarity values that were rel-

atively normal for on-topic documents, but the distributions did not

appear normal for off-topic documents. Experiments setting ❿ and ➀
to the values estimated from the on-topic documents in the training

sample produced worse DET curves than using the estimates cal-

culated from the off-topic documents. In either case, this transfor-

mation did not satisfy the decision score requirement that on-topic

decisions have a higher score than off-topic decisions.

We found that setting ❿ ☞➁✁✄✼✾✽❀✿✳❁❂✼❃✰✜✤✱✠❄✏❆❅ ❇ ✬ ✠ ❈ ✪ , and ➀ to the stan-

dard deviation of similarity values in the training data resulted in

good curves for both static and adaptive approaches. This normal-

ization appeared to work as well as using the distributions from the

off-topic training documents, with the additional property of pro-

ducing decision scores normalized around a value of 0. We used this

normalization process for the DET curves produced below.

3.2. Results: Static vs. Adaptive Tracking

Type Nt ASR+NWT CCAP+NWT

Static 4 0.0070 0.0066

Static 2 0.0069 0.0071

Static 1 0.0073 0.0081

Adaptive 4 0.0059 0.0064

Adaptive 2 0.0107 0.0075

Adaptive 1 0.0103 0.0122

Table 3: Story-weighted cost for static and adaptive tracking.

A comparison of our static and adaptive tracking approaches is listed

in Table 3. The data indicate that adaptive queries were more effec-

tive than static queries in terms of story-weighted average cost at❩ ✁➂☞➃❉
. The adaptive approach had lower cost for 9 topics and

higher cost for 7 topics. However, the results in Table 3 and Figure

4 suggest that the adaptive approach is less effective at lower values

of ❩ ✁
.

Figure 4: DET graph: static vs. adaptive tracking (ASR+NWT).

The DET graph in Figure 4 illustrates that at ❩ ✁q☞➄❉
the adaptive

curve is closer to the origin than the static query curve for
❴❛✏❆❡ ✪➆➅❥✜✕❀➇

; however, the static curve has a more desirable error detection

trade-off. The static queries resulted in lower DET curves than their

adaptive counterparts for ❩ ✁✝☞➈❥
and ❩ ✁✌☞➉✚

. The DET graph

suggests that the static query process is more robust than the adaptive

approach. With the exception of adaptive tracking at ❩ ✁✣☞❻❥
, both

approaches showed no improvement on the CCAP+NWT source.

This suggests that the impact of ASR on tracking was minimal.

3.3. Results: Multiword Features and Weight-
Learning

We tested various extensions of static query formulation that have

been hypothesized to significantly improve retrieval effectiveness

over basic Rocchio methods. Multiword features (MWF) were

found to improve tracking effectiveness in subsets of the training

corpora. We used a process described by Papka and Allan [6] that

expanded queries with Inquery proximity operators of varying size

windows of words. We tested windows of 5, 20, 50, and 100 words.

The weight-learning algorithms adjust the static query’s term

weights using supervised training techniques. The DFO algorithm

was the same as that used by Schapire et al. [7]. This algorithm

tweaks each query weight in turn, and recomputes average precision

on the training data. If a weight change does not improve precision,

the change is undone. The EG algorithm was a modification of the

algorithm used by Lewis et al. [5]. This learning technique is similar

to other least-square-error reduction approaches. Query weights are

adjusted based on pre-specified target values for on- and off-topic

documents. The algorithm attempts to minimize the difference be-

tween the target values and the actual belief values produced by the

training data.

In the following experiments, a static query was generated using

the training data containing ❩ ✁➊☞✛❉
on-topic instances, and the off-

topic documents supplied by NIST. Before tracking begins, the static

query is expanded using multiword features, or weights are modified

using EG or DFO. We used the same threshold parameters as those

in Table 1. The results are listed in Table 4.

Story- Topic-

Type Weighted Weighted

Static 0.0070 0.0066

Adaptive 0.0059 0.0074

Static+DFO 0.0061 0.0067

Static+EG 0.0070 0.0080

Static+MWF 0.0072 0.0064

Table 4: TDT2 cost for extensions to static tracking. (ASR+NWT,

Nt=4).

As with the adaptive approach, we found that expansion and weight-

learning approaches did not improve overall effectiveness signifi-

cantly. For the 21 topics evaluated, improvements were minimal.

The queries expanded with multiword features had lower cost for

10 topics, but increased cost for 6. Further analysis of the weight-

learning approaches revealed that the DFO algorithm decreased cost

for 3 topics, and increasing cost for 2 topics. EG decreased cost for

1 topic, and increased cost for 1 topic.

The weight-learning approaches are of little use at ❩ ✁✌➋➌❉ using

our representation. We find that most queries and thresholds already

separated the training data, so not much improvement should be ex-

pected from weight-learning ➍ . We observed that for higher values of❩ ✁ the occurrence of training data separation decreases. An analysis

of the TDT2 train and development corpora, for example, revealed

that 95% of the queries and thresholds formulated with 4 on-topic

training documents separated the training data. At ❩ ✁➎☞➃✚❂➏ only

10% of the classifiers separate their training data. This suggests that

weight-learning algorithms are more likely to be effective for higher

values of ❩ ✁ , and training data separation should be tested at lower

values.

4. Conclusion

We presented several solutions to the Detection and Tracking prob-

lems defined by the Topic Detection and Tracking research initia-

tive. For detection, we compared single-pass hierarchic clustering

solutions including single-link and average-link approaches. The

data suggest that augmenting single-link clustering with a time com-

ponent (single-link+time) yields low cost on the target cost func-

tion and source conditions. Other detection experiments using our

representation suggested that average-link is comparable to single-

link+time when audio sources for news are manually transcribed.

We suggest using single-link+time for on-line clustering of Broad-

cast News because it is faster than average-link. Furthermore, we

find that single-link+time is more effective for on-line new event de-

tection (first story detection) than average-link, which suggests that

the clustering granularity produced by single-link+time is closer to

the actual granularity of topic defined by the relevance assessments.

We viewed the tracking problem as an instance of on-line document

classification, and used an extension of techniques that have been

shown to work well for similar problems such as document filter-

➍ When the training data are separated it implies that a query and thresh-
old result in a TDT2 cost of 0. Furthermore, no further improvements to
Average Precision (used by DFO) can be obtained because the training data
is perfectly sorted.

ing. We compared variations of a static query formulation process

that included query expansion with multiword features and weight-

learning steps. In addition, we tested adaptive query formulation,

which has the side-effect of including new features in the query

over time. We found insignificant effectiveness improvements us-

ing these variations, which in most cases require significant comput-

ing resources. The adaptive technique appeared to work well on the

target evaluation condition (❩ ✁✝☞❢❉), but proved less robust than

the static approach for ❩ ✁ ➅ ❉ . The weight adjustment algorithms

affected very few topics at ❩ ✁❬➋✐❉ . For higher values of ❩ ✁ , how-

ever, we expected significant improvements in tracking effectiveness

using these query expansion and weight-learning approaches.

5. Acknowledgments

This material is based on work supported in part by the National

Science Foundation, Library of Congress and Department of Com-

merce under cooperative agreement number EEC-9209623. Any

opinions, findings and conclusions or recommendations expressed

in this material are the authors’ and do not necessarily reflect those

of the sponsor.

References
1. J. Allan, R. Papka, V. Lavrenko, “On-line New Event De-

tection and Tracking,” Proceedings of ACM SIGIR, pp.37-45,
1998.

2. J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang,
“Topic Detection and Tracking Pilot Study: Final Report,”
Proceedings of DARPA Broadcast News Transcription and Un-
derstanding Workshop, 1998.

3. J. Callan, B. Croft, and J. Broglio, “TREC and TIPSTER Ex-
periments with INQUERY,” Information Processing & Man-
agement, 31(3):327-343, 1994.

4. M. James, Classification Algorithms, John Wiley & Sons, New
York, 1985.

5. D. Lewis, R. Schapire, J. Callan, and R. Papka ,“Training Al-
gorithms for Linear Text Classifiers,” Proceedings of ACM SI-
GIR, pp.298-306, 1996.

6. R. Papka and J. Allan, “Document Classification using Mul-
tiword Features,” Proceedings of ACM CIKM, pp.124-131,
1998.

7. R. Schapire, Y. Singer, and A. Singal ,“Boosting and Roc-
chio Applied to Text Filtering,” Proceedings of ACM SIGIR,
pp.215-223, 1998.

8. C.J. van Rijsbergen, Information Retrieval, 2ed., Butterworths,
Massachusetts, 1979.

9. E. Voorhees, The Effectiveness and Efficiency of Agglomera-
tive Hierarchic Clustering in Document Retrieval , Ph.D. The-
sis, 1985.

10. P. Willet, “Recent Trends in Hierarchic Document Clustering:
A Critical Review,” Information Processing & Management,
24(5):577-597, 1988.

11. Y. Yang, T. Pierce, and J. Carbonell, “A Study on Retrospective
and On-Line Event Detection,” Proceedings of ACM SIGIR,
pp.28-36, 1998.

