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Abstract
Retrieval-enhanced machine learning (REML) refers to the use of
information retrieval methods to support reasoning and inference
in machine learning tasks. Although relatively recent, these ap-
proaches can substantially improve model performance. This in-
cludes improved generalization, knowledge grounding, scalability,
freshness, attribution, interpretability and on-device learning. To
date, despite being influenced by work in the information retrieval
community, REML research has predominantly been presented in
natural language processing (NLP) conferences. Our tutorial ad-
dresses this disconnect by introducing core REML concepts and
synthesizing the literature from various domains in machine learn-
ing (ML), including, but beyond NLP. What is unique to our ap-
proach is that we used consistent notations, to provide researchers
with a unified and expandable framework. The tutorial will be pre-
sented in lecture format based on an existing manuscript, with
supporting materials and a comprehensive reading list available at
https://retrieval-enhanced-ml.github.io/sigir-ap2024-tutorial.

CCS Concepts
• Information systems→ Information retrieval; • Computing
methodologies → Machine learning.
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1 Motivation
Retrieval systems, originally designed for human use, are increas-
ingly being integrated into machine learning models to extend
their access to information beyond fixed model parameters [21].
These systems can act as an external ‘memory’, using mechanisms
like nearest neighbor databases or keyword queries. Recent empiri-
cal evidence shows that incorporating retrieval systems enhances
model performance, improving generalization, knowledge ground-
ing, scalability, freshness, attribution, and on-device learning [39].

In light of the success of these methods, Zamani et al. [39] in-
troduced retrieval-enhanced machine learning (REML), a research
program focused on the development of information retrieval tech-
niques for artificial intelligence systems. In the year since it was
published, the machine learning and natural language processing
communities have continued to make progress in the design of
REML [2, 4, 7, 28].

While effective, much of the current REML research has been
disconnected from the Information Retrieval (IR) community. As a
result, many of the insights from existing IR research remains under-
utilized. For example, when retrieval methods are used, they are
often simple approaches such as BM25. At the same time, retrieval
methods to date have–with some exception–focused on their use
by people as end users, not models.

This tutorial explores the integration of retrieval systems into
machine learning models. We will cover the historical and con-
temporary use of retrieval in machine learning and synthesizes
methods across domains using consistent mathematical notation,
which is lacking in current literature. Instead of organizing the
tutorial by applications, the tutorial is structured by the compo-
nents of the REML framework: Querying, Searching, Presentation,
Consumption, Storing, Optimization, and Evaluation. This structure
enhances understanding of each component’s role and interaction
within the framework. Additionally, this allows us to highlight core
functionalities and generalize to new domains.

To this end, we will present examples of various tasks—both
within and beyond natural language processing—at different levels
of granularity where REML is applied. Additionally, we will show
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Time (min) Topic In Manuscript
20 Introduction Sec. 1-2
20 Querying Sec. 3
10 Searching Sec. 4
30 Presentation & Consumption Sec. 5
10 Q & A
30 Storing Sec. 6
20 Optimization Sec. 7
15 Evaluation Sec. 8
15 Future Direction & Conclusion Sec. 9-10
10 Q & A

3 hours
Table 1: Tutorial schedule and corresponding manuscript
sections [21].

how different types of knowledge aid in generalization and address
the computational costs associated with REML.

2 Objectives
The goal of this tutorial is to provide information retrieval re-
searchers with a clear, formal description of the various REML
approaches so that they can quickly begin research in the area. As
such, this tutorial will have the following objectives, (i) survey and
synthesize the variety of REML approaches based on common strate-
gies, (ii) connect abstract themes to existing information retrieval
research, and (iii) outline a set of new open research problems for
the information retrieval and ML community. This tutorial will
formally define the various strategies for retrieval enhancement
using consistent notation, allowing researchers easy entry to the
field.

3 Relevance to the Community
The information retrieval community has historically collaborated
with peers in natural language processing to support tasks like
question-answering [36]. Research to better support these tasks is
regularly published at SIGIR and studied at fora like TREC.

As described by Zamani et al. [39], REML can be seen as an
update and generalization of this thread of IR research. It updates
classic domains like retrieval-based question-answering by integrat-
ing them into modern deep learning architectures. It generalizes
across these domains by recognizing that retrieval does not have
to be constrained to be a single stage in reasoning (e.g. as a can-
didate generation step). Moreover, retrieval does not have to be
constrained to text corpora and can support knowledge and mem-
ory of abstract representations and concepts. Our tutorial provides
a theoretical unification across common themes in REML, and high-
lights opportunities for future research.

Drawing on our previous experience of hosting a workshop on
REML at SIGIR 2023 [4], where we witnessed substantial interest,
we have integrated insights from those discussions into this tutorial.
The growing popularity of REML is also evident in the recent surge
of research papers, open-source projects, and industry applications
that employ this innovative approach. As such, a comprehensive
tutorial on REML is both timely and valuable for the IR community.

4 Detailed Schedule
Table 1 presents the overall schedule along with the corresponding
sections from the manuscript [21]. The detailed content for each
section, along with representative papers, is provided in the bullet
points below.

1. Introduction (presenter: Diaz)
• Prehistory and definition of REML.
• Motivations: generalization, knowledge grounding, scala-
bility, freshness, attribution, and on-device learning [12,
17, 22, 39].

• Applications beyond NLP (e.g. image generation [6], image
classification [23], protein structure prediction [16])

2. Querying (presenter: Salemi)
• How query spaces are represented and constructed by pre-
dictive models.

• Input Reformulation: compression [18, 27], expansion [37,
43], and conversion [34].

• Input Decomposition [25, 42].
• Unified equation for Querying.

3. Searching (presenter: Salemi)
• How queries and stored items are combined to construct
retrieval results.

• Sparse [10], dense [19], and reranking [26] models.
• Generative retrievers [35, 40].
• Unified equation for Searching.

4. Presentation & Consumption (presenter: Drozdov)
• How retrieval results are represented and consumed by the
predictive models.

• Presentation: transformation [11], composition [33], and
truncation [13].

• Consumption with different granularities [15], algorithms
[3], efficiency [8], and attribution [11].

• Unified equation for Presentation and Consumption.
5. Storing (presenter: Kim)

• How retrievable items are represented and indexed.
• Storage operations (construction and management).
• Coupled [12, 24] and Decoupled [1, 17] storage.
• Unified equation for Storing.

6. Optimization (presenter: Zamani)
• How retrieval models use feedback provided by predictive
models to update their parameters, and how predictive mod-
els are optimized for performance.

• Conditional optimization of retrieval [14, 38] or predictive
models [5].

• Joint optimization of retrieval and predictive models [13,
22, 41].

7. Evaluation (presenter: Diaz)
• How REML components are benchmarked.
• Extrinsic and Intrinsic evaluations [9, 29].

8. Future Direction & Conclusion (presenter: Diaz)
• Future directions of each component of REML [20, 30–32].

5 Supporting Materials
This tutorial builds on material and structure from an existing
manuscript written by the organizers [21]. Attendees will receive
slides, including an annotated bibliography, throughout the session.

https://arxiv.org/abs/2407.12982
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Detailed information and a comprehensive reading list can be found
at the following link: https://retrieval-enhanced-ml.github.io/sigir-
ap2024-tutorial/.

6 Presenters
6.1 Fernando Diaz
Fernando Diaz is an Associate Professor at Carnegie Mellon’s Lan-
guage Technologies Institute (LTI), focusing on the design of infor-
mation access systems such as search engines, music recommen-
dation services, and crisis response platforms. His research also
explores the societal implications of artificial intelligence. Previ-
ously, he was the assistant managing director of Microsoft Research
Montréal, leading the FATE team, and a director of research at Spo-
tify. His work has been recognized with awards from SIGIR, CIKM,
CSCW, WSDM, ISCRAM, and ECIR. Fernando is a recipient of the
2017 British Computer Society Karen Spärck Jones Award and holds
a CIFAR AI Chair. He has co-organized NIST TREC tracks, WSDM
(2013), Strategic Workshop on Information Retrieval (2018), FAT*
(2019), SIGIR (2021), and the CIFAR Workshop on Artificial Intelli-
gence and the Curation of Culture (2019). He earned his BS from
the University of Michigan and his MS and PhD from the University
of Massachusetts Amherst.

6.2 Andrew Drozdov
Andrew Drozdov is a research scientist at Databricks, specializing
in building advanced systems for retrieval-augmented generation
(RAG). He serves as an Area Chair for Information Retrieval and Ef-
ficient NLP tracks at ACL Rolling Review. His previous roles include
research internships at Google Research’s Brain Team and IBM Re-
search’s Multilingual NLP Group. Andrew earned his PhD from
the University of Massachusetts Amherst, co-advised by Professors
Andrew McCallum and Mohit Iyyer, and holds a BS from the Uni-
versity of Michigan and an MS from New York University, where he
collaborated with Professors Sam Bowman and Kyunghyun Cho.

6.3 To Eun Kim
To Eun Kim is a PhD student at the Language Technologies Institute
(LTI) at Carnegie Mellon University, where he is advised by Pro-
fessor Fernando Diaz. His research focuses on retrieval-enhanced
machine learning, with a recent emphasis on algorithmic fairness
in REML models and improving known-item retrieval with large
language models. He holds an MEng in Computer Science from
University College London (UCL), where he worked with Professor
Emine Yilmaz and Professor Aldo Lipani, and was a lead author in
the Alexa Prize TaskBot Challenge.

6.4 Alireza Salemi
Alireza Salemi is a PhD student at the University of Massachusetts
Amherst, where he is advised by Professor Hamed Zamani and
works as a research assistant at the Center for Intelligent Informa-
tion Retrieval (CIIR). His research focuses on both uni- and multi-
modal retrieval-enhanced machine learning. He also works on
multi-modal knowledge-intensive visual question answering, per-
sonalizing pre-trained language models, and developing retrieval-
enhanced architectures. Alireza has authored several papers in the

domain of retrieval-enhanced machine learning, including at SIGIR
2024. He holds a BS in Computer Engineering from the University
of Tehran.

6.5 Hamed Zamani
Hamed Zamani is an Associate Professor at the University of Mas-
sachusetts Amherst, where he also serves as the Associate Director
of the Center for Intelligent Information Retrieval (CIIR). Prior
to UMass, he was a Researcher at Microsoft working on search
and recommendation problems. His research focuses on designing
and evaluating (interactive) information access systems, including
search engines, recommender systems, and question answering.
His work has led to over 90 refereed publications in the field, in-
cluding some recent work on the topic of REML. His research has
received a few Best Paper and Honorable Mentions from SIGIR,
CIKM, and ICTIR. He is a recipient of the NSF CAREER Award and
Amazon Research Award. He is an Associate Editor of the ACM
Transactions on Information Systems (TOIS), organized multiple
workshops at SIGIR, RecSys, WSDM, WWW, and KDD conferences,
and presented multiple tutorials at SIGIR and WWW.
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