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Abstract

Retrieval-Enhanced Machine Learning (REML) refers to the use of
information retrieval (IR) methods to support reasoning and infer-
ence in machine learning tasks. Although relatively recent, these
approaches can substantially improve model performance. This in-
cludes improved generalization, knowledge grounding, scalability,
freshness, attribution, interpretability, and on-device learning. To
date, despite being influenced by work in the information retrieval
community, REML research has predominantly been presented in
natural language processing (NLP) conferences. Our tutorial ad-
dresses this disconnect by introducing core REML concepts and
synthesizing the literature from various domains in machine learn-
ing (ML), including, but not limited to, NLP. What is unique to our
approach is the use of consistent notations to provide researchers
with a unified and expandable framework. The tutorial will be
presented in lecture format based on an existing manuscript, with
supporting materials and a comprehensive reading list available at a
website. Building on the momentum of our successful workshop at
SIGIR 2023 and our tutorial at SIGIR-AP 2024, this year’s tutorial fea-
tures updated content with an emphasis on retrieval technologies
used across the broader ML community. We also highlight their role
in emerging, future-facing applications such as language agents
and evolving scenarios where the extensive body of knowledge
from IR can provide critical insights and capabilities.
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1 Motivation

Retrieval systems, originally designed for human use, are increas-
ingly being integrated into machine learning (ML) models to extend
their access to information beyond fixed model parameters [27].
A growing body of research shows that incorporating retrieval
enhances model performance by improving generalization, knowl-
edge grounding, scalability, freshness, attribution, interpretability,
and on-device learning [56]. Moreover, these systems function as an
external memory for ML models or ‘agents’, effectively extending
their cognition to the external environment [28, 47].

In light of this progress, Zamani et al. [56] introduced Retrieval-
Enhanced Machine Learning (REML), a research program dedicated
to the development of information retrieval techniques for artificial
intelligence systems. Since its publication, the machine learning
and natural language processing communities have continued ad-
vancing REML design and applications [2, 4, 8, 10, 39].

Despite its growing impact, much of the current REML research
has remained disconnected from the Information Retrieval (IR)
community. As a result, insights from decades of IR research remain
underutilized. For instance, many works default to simple retrieval
techniques like BM25. At the same time, retrieval methods to date
have-with some exception—focused on their use by people as end
users, not models.

This tutorial explores the integration of retrieval systems into
ML models—extending beyond the traditional scope of NLP. We ex-
amine both historical and contemporary uses of retrieval in ML and
synthesize methods across domains using consistent mathematical
notation, a feature that is currently lacking in the literature.

Rather than organizing the tutorial around applications, we struc-
ture it around the components of the REML framework: Querying,
Searching, Presentation, Consumption, Storing, Optimization, and
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Evaluation. This structure facilitates a deeper understanding of
each component’s role and its interaction within the framework,
while enabling generalization to new domains.

2 Objectives

The goal of this tutorial is to provide information retrieval re-
searchers with a clear and formal overview of the diverse ap-
proaches in Retrieval-Enhanced Machine Learning (REML), en-
abling them to quickly engage in research in this area. The tutorial
builds upon the manuscript [27], co-authored by all presenters.
Specifically, the objectives are to: (i) survey and synthesize the
range of REML approaches using common strategies, (ii) connect
abstract themes in REML to existing information retrieval research,
and (iii) outline a set of future research directions for both the infor-
mation retrieval and machine learning communities. The tutorial
will formally define key retrieval enhancement strategies using
consistent notation, providing researchers with a structured and
accessible entry point into the field.

3 Relevance and Impact to the Community

The information retrieval community has a long history of collabo-
ration with the natural language processing field, particularly in
supporting tasks such as question answering [50]. Research aimed
at improving these tasks is regularly published at SIGIR and exam-
ined in forums like TREC.

As described by Zamani et al. [56], Retrieval-Enhanced Machine
Learning (REML) can be viewed as both an evolution and generaliza-
tion of this thread of IR research. It modernizes traditional domains,
such as retrieval-based question answering, by embedding them
within contemporary deep learning architectures. Furthermore, it
expands beyond these domains by recognizing that retrieval need
not be limited to a single stage in a reasoning pipeline (e.g., candi-
date generation), nor constrained to text corpora. Instead, retrieval
can serve as a mechanism for accessing knowledge and memory
involving abstract representations and concepts. This tutorial pro-
vides a theoretical unification of common themes across REML, and
surfaces opportunities for future research in the area.

In fact, the IR community has already begun moving in this
direction, as seen in initiatives such as TREC RAG 2024! and the
upcoming TREC Million LLM 2025.2 These efforts are focused on
developing standardized and effective evaluation strategies for RAG
systems [38, 40], as well as adapting long-standing IR knowledge—
including distributed IR, federated search, and meta-search—to
design search systems for machine users [21, 44].

The growing industrial interest in REML is also evident from a
surge in real-world Al applications equipped with retrieval systems
[5,23, 30, 53]. Thus, a comprehensive tutorial on REML is timely and
relevant not only to the academic community but also to broader
applied and industrial audiences.

Building on our prior experience organizing the REML workshop
at SIGIR 2023 [4] and the tutorial at SIGIR-AP 20243 [10], where we
witnessed substantial interest and engagement, we will incorporate

!https://trec.nist.gov/data/rag2024.html
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Time (min) Topic In Manuscript
20 Introduction Sec. 1-2
25 Querying Sec. 3
10 Searching Sec. 4
30 Presentation & Consumption Sec. 5
10 Q&A
25 Storing Sec. 6
20 Optimization Sec. 7
15 Evaluation Sec. 8
15 Future Direction & Conclusion Sec. 9-10
10 Q&A

3 hours

Table 1: Tutorial schedule and corresponding manuscript
sections [27].

insights from those events. This updated tutorial reflects ongoing
conversations and highlights the evolving role of IR in this new era.

4 Detailed Schedule

Table 1 presents the overall schedule along with the corresponding
sections from the manuscript [27]. The detailed content for each
section, along with representative papers, is provided in the bullet
points below.

1. Introduction (presenter: Diaz)

o Prehistory and definition of REML.

e Motivations: generalization, knowledge grounding, scala-
bility, freshness, attribution, and on-device learning [16,
22, 29, 56].

o Applications beyond NLP (e.g., computer vision [7, 32], ro-
bot navigation [54], reinforcement learning [12, 15], drug
discovery [31], protein structure prediction [20])

2. Querying (presenter: Salemi)

e How query spaces are represented and constructed by pre-
dictive models.

e Input transformation (compression [36], expansion [52],
conversion [46]), and decomposition [34, 59].

e Modeling when and where to query (routing) [25, 37, 48].

o Unified equation for Querying.

3. Searching (presenter: Salemi)

e How queries and stored items are combined to construct
retrieval results.

e Sparse [13], dense [24], and reranking [35] models.

e Generative retrievers [49, 57].

o Unified equation for Searching.

4. Presentation & Consumption (presenter: Drozdov)

o How retrieval results are represented and consumed by the
predictive models.

e Presentation (transformation [14], composition [45], trun-
cation [17]), and

o Consumption (different granularities [19], algorithms [3],
efficiency [9], attribution [14]) strategies.

o Unified equation for Presentation and Consumption.

5. Storing (presenter: Kim)
e How retrievable items are represented and indexed.
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e Storage construction and management in coupled [16, 33]
and decoupled [1, 22] storage.

e How agents can index past experiences [33, 51].

e Unified equation for Storing.

6. Optimization (presenter: Zamani)

e How retrieval models use feedback provided by predictive
models to update their parameters, and how predictive mod-
els are optimized for performance.

e Conditional optimization of retrieval [18, 55] or predictive
models [6].

e Joint optimization of retrieval and predictive models [17,
58].

e Unified equation for Optimization.

7. Evaluation (presenter: Diaz)

e How REML components are benchmarked.

e Extrinsic and intrinsic evaluations, and LLM-based evalu-
ations [11, 40, 41].

e Unified equation for Evaluation.

8. Future Direction & Conclusion (presenter: Diaz)

o Future directions of each component of REML [26, 42-44]

and across domains and communities.

5 Supporting Materials

This tutorial builds on the material and structure of an existing
manuscript co-authored by the organizers [27]. In line with the
approach used in our SIGIR-AP 2024 tutorial [10], attendees will re-
ceive slide materials throughout the session, including an annotated
bibliography to aid understanding and follow-up study.

We will also provide detailed documentation and a comprehen-
sive reading list. An example of the format and content can be found
on the website for our previous tutorial?, which will be updated
with newly published papers and resources in preparation for SIGIR
2025.
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