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Abstract

This paper investigates the design of a unified search engine to

serve multiple retrieval-augmented generation (RAG) agents, each

with a distinct task, backbone large language model (LLM), and

RAG strategy. We introduce an iterative approach where the search

engine generates retrieval results for the RAG agents and gathers

feedback on the quality of the retrieved documents during an offline

phase. This feedback is then used to iteratively optimize the search

engine using an expectation-maximization algorithm, with the goal

of maximizing each agent’s utility function. Additionally, we adapt

this to an online setting, allowing the search engine to refine its

behavior based on real-time individual agents feedback to better

serve the results for each of them. Experiments on datasets from the

Knowledge-Intensive Language Tasks (KILT) benchmark demon-

strates that our approach significantly on average outperforms

baselines across 18 RAG models. We demonstrate that our method

effectively “personalizes” the retrieval for each RAG agent based

on the collected feedback. Finally, we provide a comprehensive

ablation study to explore various aspects of our method.
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• Information systems → Learning to rank; Personalization;

• Computing methodologies → Natural language generation.
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1 Introduction

Search engines have been designed mainly to serve people by pro-

viding relevant results for search queries. They are typically trained

at scale using learning-to-rankmethods with implicit feedback gath-

ered and refined over time through user interactions [11, 17, 18].
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These systems often use personalization to deliver more tailored

and effective search results for users [5, 48]. With the recent rise

of large language models (LLMs), along with their user-friendly

chat interfaces, many users now use them for a wide range of tasks

[4]. Extensive studies have shown that LLMs often face challenges

in tasks that require external knowledge in rapidly changing or

evolving environments [32, 62]. One method to address this limita-

tion is to enhance LLMs by retrieving information from a knowl-

edge source, a technique known as retrieval-augmented generation

(RAG) [3, 15, 27]. This marks a paradigm shift in the current land-

scape, where humans interact primarily with LLMs, while LLMs

rely on search engines to retrieve external information [21, 45, 62].

With this paradigm shift, it is crucial to develop methods for

optimizing and personalizing search engines to better serve their

new users: the LLMs that depend on them. This need is further

highlighted by prior work showing significant differences between

the information preferences of humans and RAG agents [44]. In

addition, different LLMs may have different information needs. For

example, smaller LMs with limited reasoning capabilities might pre-

fer supporting documents that provide explicit information, while

more powerful LLMs can infer details even when the information

is stated vaguely. Given these variations, optimizing engines to

address the unique requirements of different LLMs is essential.

Prior work on RAG mostly focus on developing a RAG system

(i.e., a retrieval and a languagemodel) for each task. The recent work

by Salemi and Zamani [45] represents one of the first efforts to build

a centralized search engine capable of servingmultiple RAG agents,

each tasked with a distinct objective. These agents utilize different

underlying LLMs and employ varying RAG techniques. To train this

centralized search engine, they use its initial parameters to retrieve

documents for the training queries of the agents (i.e., the LLMs

utilizing the search engine). The feedback from these agents on

the retrieved documents is then collected to update the parameters.

This approach has a few limitations. First, it depends heavily on the

initial parameters to retrieve documents for training queries. If these

parameters are not well-initialized, the quality of the initial retrieval

lists would be low, leading to suboptimal feedback from the LLMs.

Furthermore, since the initial documents are retrieved without any

prior feedback to adapt the search engine to agent needs, they may

not be relevant or useful to the agents. Consequently, the feedback

provided might not reflect useful documents for the individual

agents, reducing the overall effectiveness of the training process.

This paper addresses these limitations by introducing an itera-

tive approach grounded in strong theoretical foundations, designed

to maximize the utility functions of RAG agents. Feedback is col-

lected over multiple iterations in an offline training procedure to

progressively optimize the search engine. In each iteration, the
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search engine applies the parameters optimized from the previous

feedback round to retrieve new documents tailored to the specific

information needs of each RAG agent. Feedback on these newly

retrieved documents is then collected to refine the search engine’s

understanding of each agent’s preferences. The personalization

process adapts the search engine for each RAG agent by leveraging

feedback from the prior iteration, using the agents’ training queries

and feedback on them. During the offline phase, feedback from all

agents is aggregated to train a multi-task central search engine

capable of effectively serving the diverse needs of all agents.

A natural extension to the offline optimization phase is online

learning in the serving phase where the retriever provides search

results for the agents on test queries. Here, the same iterative al-

gorithm is applied to adapt the retriever based on agent feedback

obtained during active serving sessions. Specifically, the retriever

first processes a batch of queries from an agent, collects feedback

on these queries, and then updates its parameters to improve per-

formance on subsequent queries within the same session for this

specific agent. This optimization occurs concurrently with the serv-

ing process and is not confined to pre-defined training queries.

Since this optimization leverages each agent’s feedback individu-

ally to further optimize itself, it enhances the personalization of

the search engine for that specific agent even more, tailoring the

system to better meet the unique information needs of each agent.

We evaluate our approach using diverse tasks from the Knowledge-

Intensive Language Tasks (KILT) benchmark [32]. Our evaluation

includes three open-domain question answering datasets: Natural

Questions (NQ) [24], TriviaQA [19], and HotPotQA [60]; one fact

verification dataset: FEVER [53]; and two relation extraction and

slot-filling datasets: zsRE [25] and T-REx [9]. Following Salemi and

Zamani [45], we test our approach with 18 different RAG agents

as the users, each performing a specific task and utilizing distinct

augmentation approaches and LLMs, to serve as users of the search

engine. Our results demonstrate that the proposed approach for

offline iterative training of the search engine significantly outper-

forms the state-of-the-art baseline. Additionally, combining this

offline approach with our online learning yields an even greater

improvement over the baselines. We also conduct an extensive ab-

lation study on various configurations of the proposed approaches

to provide further insights into their effectiveness and impact. Fur-

thermore, we show that our approach enhances the personalization

of the search engine over time, addressing a limitation noted in

Salemi and Zamani [45]. We observe that the correlation between

the retrieval results of the agents employing different LLMs but

performing the same task is very low, indicating that the results

are effectively personalized. To support future research, we have

open-sourced our code and models for the community.
1

2 Related Work

Knowledge-Intensive Language Tasks (KILT). Contrary to

standard NLP tasks like natural language understanding [55, 56]

and question answering [29], where the input alone is enough to

perform the task, knowledge-intensive NLP tasks rely heavily on ex-

ternal knowledge sources to extract necessary information. Petroni

et al. [32] introduces KILT, a benchmark designed for evaluating

1
Our code can be found at: https://github.com/alirezasalemi7/uRAG

such tasks. KILT encompasses a variety of tasks, including open-

domain question answering, fact verification, slot filling, and entity

linking, providing a benchmark for knowledge-intensive tasks.

Retrieval-Augmented Generation (RAG). RAG [27] represents

a framework that merges information retrieval with natural lan-

guage generation to improve the quality of generated outputs by

integrating external knowledge in the generation process [3, 51].

Unlike traditional LLMs that rely solely on pre-trained knowledge,

RAG can dynamically retrieve information from external sources

via a retriever, enabling them to produce content that is more accu-

rate [21, 62]. This flexibility allows RAG to be applied in various

domains, including knowledge grounding in textual [15, 27, 32]

and multimodal [6, 10, 37, 42], personalization [23, 38–41, 43], and

reducing hallucinations [2, 47]. The retriever in RAG plays a piv-

otal role as it sources the necessary information for the LLM to

perform its task [27]. This is typically done using either sparse

retrieval methods (e.g., TF-IDF, BM25 [35]) or dense retrieval mod-

els (e.g., DPR [20], Contriever [13], ColBERTv2 [46], E5 [58]). The

retrieved information is then utilized by the large language model

to complete the task. Prominent methods in this context include

In-Prompt Augmentation (IPA) and Fusion-in-Decoder (FiD) [15].

In IPA, the retrieved data is appended to the prompt, allowing the

language model to incorporate it during generation. FiD encodes

each retrieved document separately alongside the prompt within

the encoder of an encoder-decoder architecture, combining them

in the decoder to generate a cohesive answer based on the available

information, as explained in Izacard and Grave [15].

ASearch Engine forMachines. Research on search engines show
that successful systems rely on large-scale feedback for optimization

[1, 54]. With LLMs as the primary users of search engines [21, 62],

Salemi and Zamani [44] showed that the LLMs’ preferences about

relevance of a query and document differs from humans. Salemi and

Zamani [45] introduced a new problem that is training a unified

search engine capable of serving multiple diverse RAG agents. They

introduced uRAG, a unified ranking model designed to serve multi-

ple RAG models while learning and optimizing based on feedback

provided by these diverse RAG models. Recently, several methods

have been proposed for training retrieval models tailored to LLMs,

including distillation from LLMs to retrievers [14, 16, 59], end-to-

end training of retrievers and LLMs [36, 61], and bandit algorithms

[57]. However, most of these approaches focus on leveraging feed-

back from a single LLM, with the aim of aligning the retrieval with

that particular LLM [45]. Here, we introduce an approach based

on iterative utility maximization to train a unified retrieval model

for serving multiple RAG agents, applied in both offline and online

settings [7, 12] to optimize the search engine for the agents.

3 Problem Formulation

Consider the retrieval model 𝑅𝜃 , parameterized by 𝜃 , whose main

role is to facilitate information access from a corpus 𝐶 for a set of

RAG models (a.k.a, RAG agents) denoted as𝑀 = {𝑀𝑖 }𝑛𝑖=1
. Each𝑀𝑖

acts as a black-box agent for 𝑅𝜃 , which means that 𝑅𝜃 does not have

access to the models’ architecture, configuration, or parameters.

Each 𝑀𝑖 is designed to perform a knowledge-intensive task 𝑇𝑖 =

https://github.com/alirezasalemi7/uRAG
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Figure 1: Iterative Utility Maximization (IUM). This framework first iteratively trains the search engine with feedback from all

agents offline, then individually iteratively trains and serves the model for each agent during the online phase.

(𝐷train

𝑖
, 𝐷test

𝑖
, 𝜇𝑖 ) that requires external information from the cor-

pus 𝐶 as the knowledge source. There is a training dataset 𝐷train

𝑖
=

{(𝑥 𝑗 , 𝑦 𝑗 )}
|𝐷 train

𝑖
|

𝑗=1
for each agent 𝑀𝑖 , which can be used by the re-

trieval model 𝑅𝜃 for offline optimization. At inference, each agent

𝑀𝑖 operates sequentially on a test dataset 𝐷test

𝑖
= {(𝑥 ′

𝑗
, 𝑦′

𝑗
)} |𝐷

test

𝑖
|

𝑗=1

in the same order. The end-to-end performance of the agent𝑀𝑖 can

be measured by a utility function (metric) 𝜇𝑖 .

Each RAG agent can be simply formulated as 𝑦𝑀𝑖
= 𝑀𝑖 (𝑥 ;𝑅𝜃 ).

In more detail, given an input 𝑥 , each RAG agent 𝑀𝑖 submits a

query to the retrieval model 𝑅𝜃 for information access, and gener-

ates the output by consuming the top 𝑘 retrieved documents (i.e.,

R𝑘 = {𝑟1, ..., 𝑟𝑘 }). As suggested in [45], the search engine and RAG

agents can engage in an offline optimization process, in which each

RAG agent𝑀𝑖 produces a feedback list for a retrieval list of size 𝑘 ,

denoted as 𝑓𝑀𝑖
= {𝑓𝑗 }𝑘𝑗=1

∈ {0, 1}1×𝑘
. This feedback list indicates

the usefulness of each retrieved document in the retrieval list from

the agent’s perspective. Feedback can be computed in various ways;

based on the performance of the generated output when utilizing

the retrieved documents on the downstream task, e.g., using the

utility function 𝜇𝑖 , or based on ratings received from the users or

evaluators of the RAG agent, among other methods. Without loss of

generality, this paper focuses on the first case as the main method

for providing feedback from the agents. In this approach, feedback

is based on the agent’s downstream performance when it uses each

document individually in its task. Therefore, the main goal of this

paper is to optimize the retrieval model 𝑅𝜃 to maximize the the

expected utility for all the RAG agents that use the retrieval model.

4 Learning to Rank with Iterative Utility

Maximization

State-of-the-art commercial search engines have been trained using

implicit feedback from their users, such as clicks, scrolling behavior,

and dwell time [11, 17, 18]. In our setting, however, the primary

users of the search engine are the RAG agents that consume the

retrieval results. Therefore, their feedback on the quality of the re-

trieval results serves as the primary signal for optimizing the search

engine. Previous work [45] has explored the use of this feedback

to train the model, where they employed the initial parameters of

the search engine—without any prior training—to retrieve a set of

documents and collect feedback for them in an offline setting to

optimize the search engine. This approach has several shortcom-

ings. First, using an untrained retrieval model to gather documents

for feedback collection is suboptimal. If the parameters are not

well-initialized, the quality of the initial document retrievals would

be low, leading to a feedback collection process that may not yield

relevant documents. Consequently, the model might easily learn to

distinguish these poorly retrieved documents from relevant ones,

resulting in an inadequately trained search engine.

Furthermore, since the initial documents are retrieved without

any prior feedback to adapt the search engine to each agent’s in-

formation needs, they may not be relevant or useful to the agents.

Additionally, relying solely on offline feedback collection limits

the system, as it does not allow for continuous adaptation and im-

provement of the retrieval model based on real-time interactions.

Implementing an online learning approach could address these is-

sues by enabling the model to update its parameters incrementally

during serving phase as new feedback is collected. This would allow

the system to continuously refine its retrieval strategies, adjust-

ing to the evolving information needs of each agent, improving

personalization of the search engine for each agent.

We addresses the aforementioned issues by introducing the It-

erative Utility Maximization (IUM) framework for training the

retrieval model. This framework optimizes the retrieval model with

the feedback collected from all agents during an offline phase, and it

incorporates each agent’s specific feedback during an online phase,

all in an iterative manner to maximizes the probability of receiving

positive feedback for each served query, as shown in Figure 1.

4.1 Offline Ranking Optimization through

Iterative Utility Maximization

Similar to self-training of LLMs using self-generated data [49],

we define a optimality binary variable 𝑜 , where 𝑝 (𝑜 = 1|R𝑘 , 𝑥) ∝
𝑓𝑀𝑖

(R𝑘 , 𝑥), meaning that variable 𝑜 = 1 indicates positive feedback

and 𝑜 = 0 indicates negative feedback. Here, R𝑘 is a retrieved list

of 𝑘 documents, and 𝑓𝑀𝑖
(R𝑘 , 𝑥) represents the feedback for the

retrieved list R𝑘 given input 𝑥 from the RAG agent𝑀𝑖 . The main

goal is to maximize log-likelihood of observing 𝑜 = 1 for a given

input 𝑥 . Since in this process the retrieved documents affect the

variable 𝑜 , we can rewrite the log-likelihood as: log𝑝 (𝑜 = 1|𝑥) =
log

∑
R𝑘 ∈𝜋𝑘 (𝐶 ) 𝑝𝜃 (R𝑘 |𝑥)𝑝 (𝑜 = 1|𝑥,R𝑘 ), where 𝜋𝑘 (𝐶) denotes all

permutations of 𝑘 documents being selected from the corpus𝐶 . The
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summation over all possible retrieval lists R𝑘 is computationally

expensive for a large corpus,
2
making the calculation infeasible.

Instead of directly maximizing log 𝑝 (𝑜 = 1|𝑥), one can maximize its

Evidence Lower Bound (ELBO), denoted as 𝐿(𝑝𝜃 , 𝑞), with respect to

the retriever’s parameters 𝜃 and a variational distribution 𝑞(R𝑘 |𝑥).
The variational distribution is used to approximate the latent vari-

able R𝑘 distributions, simplifying and making the computation

more efficient. Since 𝐿(𝑝𝜃 , 𝑞) is a lower bound for log𝑝 (𝑜 = 1|𝑥),
maximizing ELBO ensures increase in log𝑝 (𝑜 = 1|𝑥). Formally:

log𝑝 (𝑜 = 1|𝑥) = log

∑︁
R𝑘 ∈𝜋𝑘 (𝐶 )

𝑝𝜃 (R𝑘 |𝑥)𝑝 (𝑜 = 1|𝑥,R𝑘 ) ×
𝑞(R𝑘 |𝑥)
𝑞(R𝑘 |𝑥)

= log E
R𝑘∼𝑞 (R𝑘 |𝑥 )

[
𝑝 (𝑜 = 1|𝑥,R𝑘 )𝑝𝜃 (R𝑘 |𝑥)

𝑞(R𝑘 |𝑥)

]
≥ E

R𝑘∼𝑞 (R𝑘 |𝑥 )

[
log

𝑝 (𝑜 = 1|𝑥,R𝑘 )𝑝𝜃 (R𝑘 |𝑥)
𝑞(R𝑘 |𝑥)

]
(Jensen’s ineq.)

= −𝐷KL [𝑞(R𝑘 |𝑥) | |𝑝 (𝑜 = 1|𝑥,R𝑘 )𝑝𝜃 (R𝑘 |𝑥)]
= E

R𝑘∼𝑞 (R𝑘 |𝑥 )
[log 𝑝 (𝑜 = 1|𝑥,R𝑘 )] − 𝐷KL [𝑞(R𝑘 |𝑥) | |𝑝𝜃 (R𝑘 |𝑥)]

≕ 𝐿(𝑝𝜃 , 𝑞) (1)

where 𝐷KL denotes the Kullback-Leibler divergence between the

two given distributions. Thus, we show that log 𝑝 (𝑜 = 1|𝑥) ≥
𝐿(𝑝𝜃 , 𝑞), which means that maximizing 𝐿(𝑝𝜃 , 𝑞) results in increas-

ing the lower bound of log𝑝 (𝑜 = 1|𝑥). To maximize 𝐿(𝑝𝜃 , 𝑞), we
utilize an Expectation-Maximization (EM) algorithm as follows.

Expectation Step (𝑞𝑡+1 = arg max𝑞 𝐿(𝑝𝜃𝑡 , 𝑞)): Maximizing 𝑞 is

considered the Expectation step since it involves finding the dis-

tribution 𝑞 that best approximates the true posterior distribution

of the latent variable R𝑘 . Considering the formulation in Equation

1, where 𝐿(𝑝𝜃 , 𝑞) = −𝐷KL [𝑞(R𝑘 |𝑥) | |𝑝 (𝑜 = 1|𝑥,R𝑘 )𝑝𝜃𝑡 (R𝑘 |𝑥)],
it implies that maximum of 𝐿(𝑝𝜃 , 𝑞) occurs when 𝑞𝑡+1 = 𝑝 (𝑜 =

1|𝑥,R𝑘 )𝑝𝜃𝑡 (R𝑘 |𝑥), because the KL divergence is non-negative and

equals to zero when the given two distributions are identical.

Maximization Step (𝜃𝑡+1 = arg max𝜃 𝐿(𝑝𝜃 , 𝑞𝑡+1)): The goal of

this step is to update the model parameters by maximizing the

expected log-likelihood computed in the Expectation step, thereby

fit the model to the observed data. We re-write this step as:

𝜃𝑡+1 = arg max

𝜃

𝐿(𝑝𝜃 , 𝑞𝑡+1) = arg max

𝜃

−𝐷KL [𝑞𝑡+1 | |𝑝𝜃 (R𝑘 |𝑥)]

= arg max

𝜃

∑︁
R𝑘

𝑞𝑡+1
log 𝑝𝜃 (R𝑘 |𝑥)

= arg max

𝜃

∑︁
R𝑘

𝑝 (𝑜 = 1|𝑥,R𝑘 )𝑝𝜃𝑡 (R𝑘 |𝑥) log𝑝𝜃 (R𝑘 |𝑥)

= arg max

𝜃

E
R𝑘∼𝑝𝜃𝑡 (R𝑘 |𝑥 )

[𝑝 (𝑜 = 1|𝑥,R𝑘 ) log𝑝𝜃 (R𝑘 |𝑥)] (2)

Since feedback in our case is non-negative, as assumed in Section

3, and 𝑝 (𝑜 = 1|𝑥,R𝑘 ) ∝ 𝑓𝑀𝑖
(R𝑘 , 𝑥), the final objective function

considering all agents to get updated parameters 𝜃𝑡+1
is defined as:

arg max

𝜃

E
𝑀𝑖∼𝑀

[
E

𝑥∼𝐷 train

𝑖

[
E

R𝑘∼𝑝𝜃𝑡 (R𝑘 |𝑥 )

[
𝑓𝑀𝑖

(R𝑘 , 𝑥) log 𝑝𝜃 (R𝑘 |𝑥)
] ] ]
(3)

2
In our case, the corpus contains approximately 36 million document chunks.

where the retrieval lists are sampled from the parameters of the

retrieval model in the previous iteration (R𝑘 ∼ 𝑝𝜃𝑡 (R𝑘 |𝑥)). As
noted by Salemi and Zamani [44], gathering agent’s feedback for

an entire ranked list is computationally expensive, and collecting

feedback on a per-document basis is more efficient. Additionally,

Singh et al. [50] emphasize the difficulty of calculating a retrieval list

probabilities. To simplify this, we instead use a pointwise ranking

objective function [28] using the same technique.

To implement this approach, two adjustments are needed: First,

for pointwise learning-to-rank, sampling should be based on the

probabilities of the documents, which can be approximated by

their relevance to the query. Let 𝑝𝜃𝑡 (𝑅 = 1|𝑥, 𝑑) represent the
probability that document 𝑑 is relevant to query 𝑥 . We assume that

themore relevant a document is to a query, the higher its probability.

Therefore, we have: 𝑝∗
𝜃𝑡
(𝑑 |𝑥) ∝ 𝑝𝜃𝑡 (𝑅 = 1|𝑥, 𝑑). Additionally, we

assume that any documents outside the top 𝑘 , ranked by 𝑝𝜃𝑡 (𝑅 =

1|𝑥, 𝑑), have a probability of zero. Thus, sampling from the retrieval

list R𝑘 can be approximated by selecting the top 𝑘 documents

based on 𝑝∗
𝜃𝑡
(𝑑 |𝑥) ∝ 𝑝𝜃𝑡 (𝑅 = 1|𝑥, 𝑑). The second adjustment is that

the objective function should aim to maximize the probability of

documents that receive positive feedback. Thus, we can reformulate

the problem by using the feedback as a relevance label, training the

model to classify whether a document is relevant or not. We can

define the final objective to get updated parameters 𝜃𝑡+1
as:

arg max

𝜃

E
𝑀𝑖∼𝑀

[
E

𝑥∼𝐷 train

𝑖

[
E

𝑑∼𝑝∗
𝜃𝑡

(𝑑 |𝑥 )

[
log 𝑝𝜃 (𝑅 = 𝑓𝑀𝑖

(𝑑, 𝑥) |𝑥, 𝑑)
] ] ]
(4)

Training Procedure: To train the retrieval model 𝑅𝜃 , we assume

𝑇 expectation and maximization iterations are performed. In each

iteration, the RAG agents submit their training queries to the re-

trieval model, which then provides them with the top results based

on the given query from the corpus𝐶 . In response, the agents return

feedback per retrieved document. After collecting feedback from

all agents, the search engine enters an optimization phase where

Equation 4 is used to optimize the model based on the provided

feedback. This procedure is shown in Algorithm 1.

Algorithm 1 The Offline IUM algorithm.

Initialize the retrieval model from a pretrained encoder check-

point

for 𝑡 = 1 to 𝑇 do

𝐷𝑡 = {}
for𝑀𝑖 in𝑀 do

for 𝑥 in 𝐷𝑖 do

Retrieve 𝑘 docs from corpus 𝐶 by 𝑅𝜃𝑡 : 𝑟 = 𝑅𝜃𝑡 (𝑥,𝐶, 𝑘)
Collect feedback of agent𝑀𝑖 for list 𝑟 : 𝑓𝑖 = 𝑓𝑀𝑖

(𝑑𝑖 , 𝑥)
Add feedback to iteration 𝑡 dataset:𝐷𝑡 = 𝐷𝑡∪{(𝑥, 𝑑𝑖 , 𝑓𝑖 )}

end for

end for

𝜃𝑡+1 = arg max𝜃 E(𝑥,𝑑,𝑓 )∼𝐷𝑡 [log𝑝𝜃 (𝑅 = 𝑓 |𝑥, 𝑑)]
end for
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4.2 Online Ranking Optimization through

Iterative Utility Maximization

In the previous subsection,𝑅𝜃 collects feedback from all RAG agents

on their respective training sets in an offline, iterative fashion, and

uses their feedback for optimizing its parameters. However, this

approach is not feasible during the serving phase
3
for several rea-

sons. First, rapid access to information is necessary for the serving

phase, since agents cannot afford to wait for feedback to be collected

from all other agents. Additionally, offline optimization methods

typically require access to the complete set of queries for effective

optimization, which is not applicable in this context, where inputs

appear sequentially. Therefore, this phase must rely on online op-

timization of the search engine tailored for each individual agent,

utilizing their specific feedback. For this purpose, we assume that

feedback for a test instance 𝑥𝑡 from the agent𝑀𝑖 is only provided

after 𝑅𝜃 has already retrieved and delivered the relevant documents

to the agent, and the agent will not submit 𝑥𝑡 to the system again

afterwards. In other words, the search engine has only observed

and served the first 𝑡 − 1 queries and received feedback for them

by the time it attempts to serve 𝑥𝑡 . Therefore, the search engine

can utilize the feedback from the first 𝑡 − 1 queries to optimize its

performance for serving the 𝑡 th query.

There are several strategies for updating the search engine pa-

rameters based on received online feedback. One possible approach

is to update the search engine after each feedback to align it with

the agent’s preferences. However, this method has several short-

comings: first, updating the search engine after each feedback is

computationally expensive. Additionally, the feedback for a sin-

gle input may be noisy, leading to noisy gradient updates. On the

other hand, an alternative strategy is to observe the majority of

test instances before updating the model for the remaining queries.

However, this would result in using the same old parameters for

most of the test instances. Therefore, we adopt a middle-ground

approach and apply the same method as described in Section 4.1 to

optimize the model over several iterations. We define an iteration

as serving 𝑏4 consecutive queries and receiving the corresponding

feedback. Thus, in step 𝑡 + 1, the model has access to the previous

user queries 𝑄𝑡
𝑀𝑖

= {𝑥1, ..., 𝑥𝑏×𝑡 } (This is the Expectation Step,

as defined in Section 4.1). Finally, the parameters for agent𝑀𝑖 can

be updated based on the following objective function (This is the

Maximization Step, as defined in Section 4.1):

𝜃𝑡+1

𝑀𝑖
= arg max

𝜃

E
𝑥∼𝑄𝑡

𝑀𝑖

 E
𝑑∼𝑝∗

𝜃𝑡
𝑀𝑖

(𝑑 |𝑥 )

[
log𝑝𝜃 (𝑅 = 𝑓𝑀𝑖

(𝑑, 𝑥) |𝑥, 𝑑)
]
(5)

where the main difference between this objective function and

Equation 3 is that the optimization occurs for each individual agent

based on their own feedback, with inputs sampled from the previous

queries observed from the agent during the serving phase.

Training Procedure: To optimize the search engine using Online

IUM, we assume a specific agent submits 𝑏 queries to the search

engine, which retrieves the top results from the corpus 𝐶 for the

3
The serving phase refers to the period when the system is being tested.

4
We call this parameter the online optimization batch size, which differs from the

batch size used in gradient optimization methods.

given queries and the previous iteration parameters. In response,

the agent provides feedback for the retrieved documents. Following

this, the search engine enters an optimization phase, updating its

parameters based on the feedback received for all queries submitted

thus far by that agent, using Equation 5, to get the parameters for

next iteration. This procedure is shown in Algorithm 2.

Algorithm 2 The Online IUM algorithm.

Initialize 𝑡 = 1

Initialize the retrieval model for agent 𝑀𝑖 from Algorithm 1

checkpoint

𝐷𝑡𝑒𝑠𝑡
𝑀𝑖

= {}
while there is a query 𝑥𝑖 do

Retrieve 𝑘 docs from corpus 𝐶 by 𝑅𝜃𝑡 : 𝑟 = 𝑅𝜃𝑡
𝑀𝑖

(𝑥𝑖 ,𝐶, 𝑘)
Collect feedback of agent𝑀𝑖 for list 𝑟 : 𝑓𝑗 = 𝑓𝑀𝑖

(𝑑 𝑗 , 𝑥𝑖 )
Add feedback to online dataset: 𝐷𝑡𝑒𝑠𝑡

𝑀𝑖
= 𝐷𝑡𝑒𝑠𝑡

𝑀𝑖
∪ {(𝑥𝑖 , 𝑑 𝑗 , 𝑓𝑗 )}

if |𝐷𝑡𝑒𝑠𝑡
𝑀𝑖

| dividable by 𝑏 then

𝜃𝑡+1

𝑀𝑖
= arg max𝜃 E(𝑥,𝑑,𝑓 )∼𝐷𝑡𝑒𝑠𝑡

𝑀𝑖

[log𝑝𝜃 (𝑅 = 𝑓 |𝑥, 𝑑)]
𝑡 = 𝑡 + 1

end if

end while

4.3 The Search Engine Architecture

The proposed algorithms can work for any learning-to-rank ap-

proach. Following uRAG from Salemi and Zamani [45], this paper

employs a two-stage cascaded retrieval system. In the first stage,

BM25 [35] is used to retrieve a set of initial relevant candidate docu-

ments. Then, a fine-tuned cross-encoder model is applied to re-rank

the retrieved documents. Note that all the trainable parameters 𝜃 in

the search engine are for the re-ranking model. Following Nogueira

and Cho [31], we add a linear projection over the representation of

the start token (i.e., [CLS]) of a text encoder to obtain the relevance

probability of a query and document, as follows:

𝑝 (𝑅 = 1|𝑥, 𝑑) = 𝜎 (ENCODER(𝑡𝑖𝑑 ;𝑚𝑖𝑑 ;𝑥 ;𝑑) ·𝑊 ) (6)

where 𝑑 is a document, 𝑥 is the query, 𝑡𝑖𝑑 is an ID associated with

the agent’s task,𝑚𝑖𝑑 is the ID associated with the LLM backbone

used in the agent, 𝜎 is the sigmoid function, and𝑊 ∈ R𝐷×1
is a

linear projection, where 𝐷 represents the embedding dimension-

ality of the encoder. We utilize BERT
5
[8] with 110M parameters

and embedding dimensionality of 𝐷 = 768 as the encoder. Here,

following Salemi and Zamani [45], 𝑡𝑖𝑑 and𝑚𝑖𝑑 is used for the pur-

pose of personalizing retrieval model for each agent. In this way,

each agent provides its underlying LLM architecture and the task

it is performing, represented by a task ID (𝑡𝑖𝑑) and a model ID

(𝑚𝑖𝑑). The search engine uses these identifiers as input and, when

optimized with feedback from each user, learns both the specific

preferences of individual users (presence of 𝑡𝑖𝑑 and𝑚𝑖𝑑 together in

input) and the general information needs associated with each task

(𝑡𝑖𝑑) and architecture (𝑚𝑖𝑑). This enables the search engine to better

understand user preferences and provide more effective, tailored

results while also learning the general preferences associated with

each task and agent architecture.

5
Checkpoint can be find at: https://huggingface.co/google-bert/bert-base-uncased

https://huggingface.co/google-bert/bert-base-uncased
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Table 1: A list of RAG models used in our experiments for

training and evaluation.

Task Data Utility Func. LM #Docs

𝑀1 open-domain QA NQ Exact Match RA-T5 10

𝑀2 open-domain QA NQ Exact Match RA-BART 4

𝑀3 open-domain QA NQ Exact Match FiD 10

𝑀4 open-domain QA TriviaQA Exact Match RA-T5 10

𝑀5 open-domain QA TriviaQA Exact Match RA-BART 4

𝑀6 open-domain QA TriviaQA Exact Match FiD 10

𝑀7 open-domain QA HotPotQA Exact Match RA-T5 10

𝑀8 open-domain QA HotPotQA Exact Match RA-BART 4

𝑀9 open-domain QA HotPotQA Exact Match FiD 10

𝑀10 fact verification FEVER Accuracy RA-T5 10

𝑀11 fact verification FEVER Accuracy RA-BART 4

𝑀12 fact verification FEVER Accuracy FiD 10

𝑀13 slot filling zsRE Accuracy RA-T5 10

𝑀14 slot filling zsRE Accuracy RA-BART 4

𝑀15 slot filling zsRE Accuracy FiD 10

𝑀16 slot filling T-REx Accuracy RA-T5 10

𝑀17 slot filling T-REx Accuracy RA-BART 4

𝑀18 slot filling T-REx Accuracy FiD 10

5 Experiments

5.1 Experiment Setup

Datasets & Corpus. We use various tasks from the KILT bench-

mark [32] to evaluate our approach. Dataset statistics is reported

Table 2. We experiment with six diverse datasets, including three di-

verse open-domain question answering datasets: Natural Questions

(NQ) [24], TriviaQA [19], and HotPotQA [60]. Notably, HotPotQA

focuses on questions requiring multi-hop reasoning. Additionally,

we use one fact verification dataset, FEVER [53], and two slot-filling

datasets for relation extraction: zsRE [25] and T-REx [9]. Note that

since the T-REx training set contains approximately 2.2 million

samples, we randomly select 5% of them to train our models in

order to speed up the experiments. We use the same samples as is

used in [45]. It is also important to mention that the test set labels

for these datasets are not publicly available. Therefore, we directly

use the validation set to evaluate the models. Note that we utilize

the McNemar statistical significance test [30] in our experiments, as

the metrics for the tasks—accuracy and exact match—yield binary

outcomes, making this test appropriate for evaluating significant

performance differences. We use the Wikipedia dump provided by

the KILT benchmark as the unstructured knowledge source.
6
We

follow the pre-processing method outlined by Karpukhin et al. [20],

in which each document is split into passages with a maximum

length of 100 words. Additionally, the document title is concate-

nated with each passage to form the entries in the retrieval corpus.

Agents Configuration. Following Salemi and Zamani [45], we use

18 diverse RAG agents, as listed in Table 1. In this setting, each agent

is trained on a separate dataset, with a distinct set of resources,

a different underlying LLM, and retrieves a varying number of

documents to perform its task. Each RAG agent is fine-tuned on the

corresponding training set. Additionally, the number of retrieved

documents is determined based on each agent’s LLM maximum

input size. We consider two types of RAG agents:

6
The retrieval corpus is available at https://dl.fbaipublicfiles.com/ur/wikipedia_split/

psgs_w100.tsv.gz

Table 2: A list of datasets from KILT [32] used in our experi-

ments. The validation data from KILT is used as test sets.
∗

Given the large training set in the original T-REx dataset, we

only sampled 5% of data for training our models.

Dataset #train #test

open-domain QA (short answer)

Natural Questions 87,372 2,837

TriviaQA 61,844 5,359

HotPotQA 88,869 5,600

fact verification

FEVER 104,966 10,444

slot-filling relation extraction

zsRE 147,909 3,724

T-REx 114,208
∗

5,000

(1) Retrieval-augmented LLM (RA-X) is a language model that

consumes 𝑘 documents per input via in-prompt augmentation

based on the following input format: “{input} context 1:
{doc1} . . . context k: {dock}”, where {input} is 𝑥 and

{doci} denotes the content of the 𝑖th retrieved document.

(2) Fusion-in-Decoder (FiD) [15] uses a different augmentation ap-

proach. Unlike RA-X that is based on in-prompt augmentation,

FiD first encodes the input and each retrieved document sepa-

rately and uses the concatenation of all document encodings

as cross-attention for the decoder. FiD can thus only be done

using encoder-decoder language models.

We utilize T5-small [33]with 60Mparameters and BART-base [26]

with 140M parameters using the first retrieval-augmentation ap-

proach and T5-small with the FiD. We use six datasets and apply

three distinct RAG models to each, resulting in 18 unique agents

for our experiments. All RAG agents are fine-tuned individually.

The AdamW optimizer with a weight decay of 10
−2

and a learning

rate of 5× 10
−5

for 10 epochs is used to train these models. A linear

warmup is applied to the first 5% of training steps. The effective

batch size is set to 64 through gradient accumulation. Each model

is trained on varying computational resources, including up to 8

A100, 1080ti, and 2080ti Nvidia GPUs. To optimize the RAG agents,

in this paper, we employ a sequence-two-sequence loss function

[52] using cross-entropy between the predicted token probability

and the ground truth output sequence.

Each RAG agent is expected to provide feedback for the given

retrieval list as a singal to help improving the search engine. For

simplicity, in this paper, we consider the case where the RAG model

provides feedback on a per-document basis. To generate feedback,

we use the evaluation metric associated with the dataset that the

model is applied to as the utility function for that model. Table 1

outlines the utility functions assigned to the RAG agents used in

this study. Specifically, we employ Exact Match (EM) for question

answering datasets and accuracy for the remaining tasks. For EM,

we follow the post-processing procedures introduced by Rajpurkar

et al. [34]. Accordingly, the feedback for a specific retrieval list

reflects the performance of the RAG agent when using only each

single document in the list in its task, and is evaluated based on the

utility function and downstream task expected output.

https://dl.fbaipublicfiles.com/ur/wikipedia_split/psgs_w100.tsv.gz
https://dl.fbaipublicfiles.com/ur/wikipedia_split/psgs_w100.tsv.gz
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Table 3: Downstream performance of RAG models in Table 1 utilizing the search engine. Superscripts 1, 2, 3, 4, and 5 denote

statistically significant improvements in the performance compared to BM25, Contriever, Reranker
individual

, Reranker
dataset

,

uRAG, respectively, using McNemar significance test (𝑝 < 0.05).

RAG

Data & Metric BM25 Contriever Reranker
individual

Reranker
dataset

uRAG

IUM

Model Offline IUM Online IUM

𝑀1 NQ - EM 28.05 22.55 36.76 37.39 37.82 38.42
12

38.84
1234

𝑀2 NQ - EM 33.09 23.68 40.07 40.50 42.12 43.60
12345

45.11
12345

𝑀3 NQ - EM 29.64 23.69 40.50 41.14 42.37 42.51
1234

42.47
1234

𝑀4 TriviaQA - EM 51.35 44.33 59.28 60.25 60.68 61.87
12345

61.59
12345

𝑀5 TriviaQA - EM 57.52 48.49 64.76 67.23 68.12 68.03
123

68.87
1234

𝑀6 TriviaQA - EM 60.48 49.30 67.44 68.63 68.74 70.27
12345

70.05
12345

𝑀7 HotPotQA - EM 27.51 18.80 29.92 30.91 31.33 31.41
123

31.16
123

𝑀8 HotPotQA - EM 31.21 20.78 35.03 34.62 34.85 35.51
124

35.41
12

𝑀9 HotPotQA - EM 29.48 20.43 32.54 32.71 33.46 33.77
1234

33.75
1234

𝑀10 FEVER - Accuracy 86.83 84.21 86.24 86.83 86.46 86.58
2

86.58
2

𝑀11 FEVER - Accuracy 87.54 84.37 84.38 87.54 85.99 86.17
23

87.44
235

𝑀12 FEVER - Accuracy 87.04 86.74 86.02 87.04 86.55 86.98
235

87.47
235

𝑀13 zsRE - Accuracy 55.37 38.77 60.39 59.98 61.09 61.22
1234

61.89
12345

𝑀14 zsRE - Accuracy 51.42 29.05 59.29 58.96 60.58 60.68
1234

60.31
1234

𝑀15 zsRE - Accuracy 55.42 37.35 60.47 60.66 62.13 62.35
1234

62.43
1234

𝑀16 T-REx - Accuracy 70.88 56.94 73.58 72.86 72.92 73.62
12345

73.98
12345

𝑀17 T-REx - Accuracy 75.16 58.30 80.04 80.18 79.94 80.32
12

80.24
12

𝑀18 T-REx - Accuracy 78.88 65.06 80.78 80.34 80.24 80.88
125

81.14
12345

Overall (macro-average) 55.38 45.15 59.86 60.43 60.85 61.34
12345

61.59
12345

Search Engine Configuration. The search engine initially re-

trieves 100 documents using BM25 [35]. These documents are then

reranked using the appropriate reranking model based on the exper-

imental setup. Training 𝑅𝜃 involves two phase. For the first phase

of training with Offline IUM, the Adam optimizer [22] with a

learning rate of 10
−5

for two epochs is used. A linear warmup is

applied to the first 5% of training steps. The effective batch size is

set to 512, achieved through gradient accumulation. A consistent

value of 𝑘 = 32 is used during training, and the maximum input

length for this model is set to 256 tokens. We train the model for

𝑇 = 3 iterations. Note that we randomly replace the model ID and

task ID with the “unk” token for 10% of the training samples for

better generalization. For the second phase training using Online

IUM, we set batch size 𝑏 = 256. Additionally, we utilize the same

optimizer and learning rate to train the model for two epochs in

each iteration. In this case, we set the variable 𝑘 to be consistent

with the downstream RAG agent configuration for each model in

Table 1, in contrast with the offline phase, where we set a constant

number of 𝑘 = 32 for all agents. Additionally, we do not replace

the model ID and task ID with the “unk” token for the sake of fully

personalizing the search engine for the agent.

5.2 Main Results

This section addresses the following research questions, providing

detailed analyses and insights based on our experimental findings.

How does Offline IUM impact downstream RAG perfor-

mance? Weemploy the baselines introduced by Salemi and Zamani

[45] for comparative evaluation against our proposed approach.

There are two types of baselines: (1) Single-stage retrieval and (2)

Cascaded two-stage retrieval models. The single-stage retrieval

(a) The Effect of Offline Learning

Number of Iterations

(b) The Effect of Online Learning

Batch Size

Figure 2: (a) The impact of iterations on personalized (solid)

and non-personalized (dashed) Offline IUM and (b) the ef-

fect of batch size 𝑏 on Online IUM performance.

baselines include BM25 [35] as a sparse retriever and Contriever

[13] as a dense retriever. The cascaded two-stage methods employ

BM25 in the first stage, followed by a reranker. Salemi and Zamani

[45] introduces three baselines for reranking: 1) Reranker
individual

,

which is a reranker trained individually for each agent based on a

single round of feedback from the respective agent, 2) Reranker
dataset

that is a reranker trained for each dataset similar to previous one,

using feedback from all agents associated with that dataset, and 3)

uRAG, which is a single reranker trained across all agents using

the combined feedback from different agents. The results of this

experiment are presented in Table 3 and suggest that Offline IUM

outperforms all baselines for 14 out of 18 RAG agents, with the

performance difference being statistically significant in 4 cases from

all baselines. Moreover, Offline IUM achieves statistically signifi-

cant improvements over all baselines when considering the average



ICTIR ’25, July 18, 2025, Padua, Italy Alireza Salemi and Hamed Zamani

Figure 3: Effect of online learning batch size 𝑏 on Online

IUM on per agent performance.

performance across all agents. That said, the results from this ex-

periment suggest that Offline IUM is a promising and effective

approach for addressing the problem at hand.

How does the number of training iterations in Offline IUM

impact the performance? An important hyperparameter for Of-

fline IUM is the number of iterations. To investigate its impact,

we train the search engine over several iterations and evaluate its

performance at each step. The outcomes of this experiment are

presented in Figure 2 (a—solid lines) for the average performance

and Figure 4 for per agent performance. The results in Figure 2 (a)

suggest that, overall, increasing the number of iterations leads to

improved performance for Offline IUM. However, the magnitude

of improvement diminishes with each additional iteration. For ex-

ample, the improvement in average performance from iteration 0

to iteration 1 is 9%, while the gain from iteration 1 to 2 is 0.8%, and

from iteration 2 to 3, the increase is less than 0.01%. This indicates

diminishing returns as the number of iterations increases.

How does “personalization” in Offline IUM training phase

impact the performance? As explained in Section 4, we use task

ID (tid) and model ID (mid) to personalize the search engine for

each agent during the Offline IUM training. In this experiment,

we remove these IDs and train the search engine without them,

using the same setup as Offline IUM. This allows us to examine

the impact of these identifiers on personalization of the search

engine during the Offline IUM training process on the overall

performance. The results of this experiment are demonstrated in

in Figure 2 (a) for average performance (dashed lines) and Figure 4

for per agent performance (dashed lines).

The results in Figure 4 indicate that training the search engine

without incorporating task and model IDs leads to a decline in the

performance with increasing iterations. Specifically, while most

agents benefit from the initial training round, performance get

worse for 10 out of 18 agents in the second iteration. Addition-

ally, in Figure 2 (a), the average performance of the search engine

Figure 4: Impact of iteration count on personalized (solid) and

non-personalized (dashed) Offline IUM plotted per agent.

also decreases with additional iterations. The results show that the

performance gap between the personalized and non-personalized

search engines widens with more iterations. Specifically, the plot

reveals a growing divergence between the average performance of

the personalized search engine and the non-personalized one as

the number of iterations increases. This suggests that incorporat-

ing personalization significantly benefits the search engine, with

the performance gains becoming more pronounced over time. We

believe this phenomenon is likely due to the lack of personalization

in the non-personalized search engine. Without task and model IDs,

the search engine retrieves more generic documents in subsequent

iterations, which may not be particularly useful for specific agents.

Consequently, the search engine may begin to overfit to the aver-

age preferences of all agents during the offline phase, rather than

effectively addressing the unique needs of each individual agent.

HowdoesOnline IUM impact downstreamRAGperformance?

To investigate this question, we compare Online IUM with the

previously discussed baselines. The results of this comparison are

presented in Table 3. The results demonstrate that Online IUM

surpasses the baselines for 13 out of 18 agents, with 6 of these

differences being statistically significant. Moreover, Online IUM

significantly enhances the average performance across all agents

compared to the baseline methods. Another notable observation

is that Online IUM enhances the performance of Offline IUM.

Although this improvement is not statistically significant at the

95% confidence level, the p-value is quite small (p-value = 0.061),

indicating a strong trend towards better performance. This obser-

vation suggests that applying Online IUM after Offline IUM is

a promising method for the task at hand, indicating potential for

further enhancing the system’s performance.

How does the batch size 𝑏 in Online IUM affects the perfor-

mance? One of the key hyperparameters in Online IUM is the

batch size 𝑏. This parameter determines how many consecutive

queries the search engine should serve using the same set of param-

eters, essentially defining the feedback collection interval before
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Figure 5: The Kendall’s tau and Jaccard’s similarity between the retrieval lists for agents that utilize the same dataset.

the model updates its parameters for the next batch. Exploring

the impact of this parameter is insightful, as shown in Figure 2 (b)

for average performance and Figure 3 for per agent performance.

While the optimal batch size might vary depending on the agent,

the general trend suggests that increasing the batch size improves

performance up to a certain point, beyond which performance

starts to decline. Notably, setting a small value (e.g., 64) leads to

a performance drop compared to the starting checkpoint (i.e., the

checkpoint from the Offline IUM approach).We believe this occurs

because using a small batch size 𝑏 leads to frequent updates in the

model’s parameters, making the model more susceptible to noisy

feedback from the agent. These frequent updates might cause the

model to overfit to specific feedback points rather than capturing

generalizable patterns, thus negatively affecting performance.

Does “personalization” with IUM result in different retrieval

lists for different RAG agents? We compare the retrieval lists

for the same query across different agents when applying IUM to

personalize the search engine for them. To evaluate the similar-

ity between the retrieval lists, we employ two metrics: Kendall’s

tau coefficient and Jaccard’s similarity. Kendall’s tau coefficient

captures how the ranking order of documents correlates between

two lists, providing insights into how similarly or differently the

documents are ranked for various agents. Jaccard’s similarity, on

the other hand, is a set-based metric that quantifies the overlap

between two sets of retrieved documents, indicating the percentage

of shared documents across retrieval lists for different agents. These

metrics allow us to analyze both the ranking and the content of the

retrieved documents across personalized search engine settings.

The results of this experiment are shown in Figure 5, yielding sev-

eral key insights. First, the findings suggest that, on average, about

20% of the retrieved documents differ between RAG agents for the

same query. This highlights the personalization effect, where each

RAG agent receives a distinct set of documents despite querying

with identical input. Furthermore, the low Kendall’s tau correlation

indicates significant differences in the ranking of the documents

retrieved for different RAG agents, demonstrating that the search

engine adapts document ranking based on agent-specific prefer-

ences and behaviors. Additionally, the Jaccard’s similarity between

agents employing FiD and those using in-prompt augmentation

is notably lower than between agents both utilizing in-prompt

augmentation. This demonstrates that the system has effectively

learned to tailor document retrieval strategies according to the

different retrieval-augmentation methods used by the RAG agents.

Another interesting observation is that the Kendall’s tau cor-

relation is higher between agents that both using T5 or FiD with

T5 than between agents where one employs BART and the other

utilizes T5 or FiD with T5. This suggests that the search engine,

through model ID, has identified shared information needs between

agents that utilize the same backbone language model (T5), result-

ing in more similar retrieval outputs. In summary, these results

confirm that personalization significantly affects the retrieval lists

provided to each agent, as the system learns to adapt document

rankings and selections based on both the retrieval-augmentation

method and the backbone LLM.

6 Conclusion & Future Work

In this paper, we address the challenge of building a search en-

gine tailored for multiple RAG agents, functioning similarly to how

search engines serve human users, considering the paradigm shift

where nowadays LLMs are the main users of the search engines.

We propose IUM, an iterative framework with expectation maxi-

mization to iteratively gather feedback from RAG agents and adjust

the search engine based on them in an offline and online phase.

Our findings demonstrate that the proposed approach statistically

significantly outperforms established baselines in terms of average

agents performance.We also conducted extensive studies to analyze

the impact of key factors such as the number of training iterations

in Offline IUM, batch size in Online IUM, and the role of per-

sonalization in search results for each agent. Overall, the proposed

method exhibits promising results, showcasing its effectiveness in

designing search engines for multiple RAG agents.

There are several potential future directions for this work: (1)

extending the current setup to optimize retrieval models rather

than just reranking; (2) considering multiple utility functions per

agent; (3) investigating novel regularization techniques to enhance

generalization for agents who do not participate in training; (4) ex-

ploring interleaving and counterfactual learning approaches within

the context of a search engine for machines; and (5) expanding

beyond text generation to address a more general REML scenario.
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