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ABSTRACT

CONTEXT-AWARE QUERY AND DOCUMENT
REPRESENTATION IN INFORMATION RETRIEVAL

SYSTEMS

SEPTEMBER 2024

SHAHRZAD NASERI

B.Sc., AMIRKABIR UNIVERSITY OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

Input representation has a major impact on the effectiveness of Information Re-

trieval (IR) systems. Further, developing a context-aware input representation for IR

systems is crucial to answering user’s complicated information need. The goal of this

work is to take advantage of the contextual features to represent the query and doc-

ument to enhance the information retrieval systems performance. We focus on three

sources of contextual features: 1. Entities, defined as things or concepts that exist in

the world; 2. Context within pseudo-relevant feedback document in IR systems; and

3. Context within example documents provided by user as the IR system’s input.

We first introduce a dense entity representation based on the relationships be-

tween an entity and other entities described within its summary. We explore its use

in the entity ranking task by representing both queries and documents using this

model. By integrating this ranking methodology with a term-based ranking method,
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we achieved statistically significant improvements over the term-based ranking ap-

proach. Further, we developed a retrieval model that merges term-based language

model retrieval, word-based embedding ranking, and entity-based embedding rank-

ing, resulting in the best performance. Additionally, we introduce an entity-based

query expansion framework employing local and global entity knowledge sources; i.e.

corpus-based indexed entities and the summary-expanded entity embedding. Our

results demonstrate our entity-based expansion framework outperforms the learned

combination of word-based expansion techniques.

Then we focus on leveraging the context of pseudo-relevance feedback documents

(PRF) for ranking relevant terms to the user’s query. To achieve this, we utilize trans-

former models, which excel at capturing context through their attention mechanisms,

and expand the query with top-ranked terms. We propose both unsupervised and

supervised frameworks. Our unsupervised model employs transformer-generated em-

beddings to calculate the similarity between a term (from a PRF document) and the

query, while considering the term’s context within the document. Our results demon-

strate that this unsupervised approach outperforms static embedding-based expansion

models and performs competitively with state-of-the-art word-based feedback mod-

els, relevance model variants, across multiple collections. The supervised framework

approaches query expansion as a binary classification task, aiming to identify terms

within the PRF documents relevant to the query. We utilize transformer models in a

cross-attention architecture to predict relevancy scores for candidate terms. This su-

pervised approach yields performance comparable to term frequency-based feedback

models, relevance model variant. Moreover, combining it with the relevance model

results in even greater improvement than either model used independently.

Finally, we concentrate on leveraging the context of the example documents pro-

vided by the user in the query-by-example retrieval problem to formulate a latent

query that represents the user’s information needs. We construct three query-by-
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example datasets and develop several transformer-based re-ranking architectures.

Our Passage Relevancy Representation by Multiple Examples (PRRIME) overcomes

BERT’s context window limitations by segmenting query example and candidate

documents into passages. It then trains an end-to-end neural ranking architecture to

aggregate passage-level relevance representations, demonstrating improvement over

the first-stage ranking framework. Additionally, we explore a cross-encoder reranking

architecture using the Longformer transformer model for query-by-example retrieval,

aiming to capture cross-text relationship, particularly aligning or linking matching

information elements across documents. This shows statistically significant improve-

ment on the test set of the dataset which it is trained on but performs not as well as

the baseline on the other two datasets which have limited fine-tuning data, indicating

limited knowledge transferability. Finally, we investigate a dual-encoder reranking

architecture that learns query and document representations through an auxiliary

training paradigm. It uses query prediction as an auxiliary task alongside the rank-

ing objective as the main task. It outperforms both the initial retrieval stage and

the single-loss training method - i.e training the dual encoders solely with a ranking

objective.
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CHAPTER 1

INTRODUCTION

Input representation is a fundamental task in information retrieval (IR), signif-

icantly affecting the effectiveness of retrieving relevant documents in response to a

user’s query. Traditionally, IR models relied on techniques like bag-of-words, where

query and documents are represented as an unordered collection of terms, often with

frequency weighting (e.g., TF-IDF). These models operate based on the exact match-

ing between high-dimensional vector representation of the queries and the document.

As a result, their performance is limited by semantic discrepancies and vocabulary

gaps and they are unable to capture the context. To enhance semantic understand-

ing, subsequent research incorporated additional contextual information, particularly

entities (Lee, Fuxman, Zhao, & Lv, 2015). Entities which are defined as distinct

concepts or objects that exist in the world facilitate the semantic understanding of

user intent and provides context for interpreting user’s information need.

Further, the advent of deep learning and neural networks in Natural Language

Processing (NLP) has transformed input representation. Word2Vec (Mikolov, Chen,

Corrado, & Dean, 2013) pioneered dense vector representations (embeddings) that

capture word meanings and relationships. While a significant step forward, these

embeddings remain static, ignoring the specific context in which words appear.

Transformer architecture (Vaswani et al., 2017) have addressed this limitation

by using attention mechanisms to dynamically model context within text. More

recently, large-scale Transformer-based language models (LLMs) have achieved state-

of-the-art results in text ranking. Researchers have investigated LLMs as both initial
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retrievers (Ma, Wang, et al., 2023; Sun et al., 2023; Pradeep et al., 2023) and as

pointwise or listwise rerankers. Reranking can be framed as text generation, with

models outputting an ordered list (Ma, Zhang, et al., 2023) or deriving rankings by

sorting token probabilities (Ma, Zhang, et al., 2023).

In this thesis, spanning work from 2018 to 2024, we investigate context-aware

representations for queries and documents to improve the semantic understanding

of query and documents. We focus on three core problems: entity retrieval, query

expansion to improve ad-hoc document retrieval performance and query by example

retrieval. We emphasize three primary sources of context:

• Knowledge Base Entities: Leveraging entities and their relationships with

each other from knowledge base.

• Pseudo-Relevance Feedback (PRF) Document Context: Utilizing con-

text within documents initially retrieved for the original query which are con-

sidered pseudo-relevant to the user’s query.

• Example Document Context: Incorporating context from user-provided ex-

ample documents in the query by example retrieval task.

More specifically, we begin by investigating the impact of entities as a source of

additional context for understanding user information needs with the goal of enhanc-

ing the IR system performance. For instance, in the query “Population of New York

City” recognizing “New York City” as a single entity (a city) rather than isolated

words leads to improved IR results compared to a word-level representation alone.

Further, unlike the query “Population of New York City” where the user’s infor-

mation need is direct and simple and the user is looking for a precise fact, a user’s

information need can be complex, consisting of different interconnected parts and

aspects. For example answering the query “What are the causes of the Civil War”
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can consist of different aspects such as economical, political and social. Taking ad-

vantage of different entities and words that are related to these different aspects will

provide more context for enriching the query and formulating a context-aware query

representation.

Next, we explore how to leverage context within PRF (Pseudo-Relevance Feed-

back) documents in the query expansion task. We investigate the potential and chal-

lenges of using contextual language models (i.e., Transformer models) to represent this

context. Our approach includes both unsupervised and supervised methods. The un-

supervised method builds upon Relevance Model expansion techniques (Lavrenko &

Croft, 2001), while the supervised method frames query expansion as a classification

task.

Lastly, we focus on the query by example retrieval problem where where users

don’t provide an explicit query. Instead, they provide example documents, and the IR

system aims to find other relevant documents that reflect the underlying information

need. We explore and investigate the strengths and challenges of using Transformer

models for query and document representation, as these models excel at understand-

ing the context within example documents, helping to represent the latent query they

represent.

In Chapter 2, we survey key research areas that provide the foundation for this

thesis and review related works developed after our own. These include but are not

limited to query expansion techniques, entity ranking, Transformer models for text

ranking, and query by example retrieval. This background sets the stage for our

contributions, which we outline in Section 1.1, Section 1.2, and Section 1.3.

1.1 Entities as the Contextual Information Source

In Chapter 3, we study the task of Entity Retrieval defined as retrieving a ranked

list of entities for a given query, and utilize the contextual information latent in en-
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tities’ characteristics such as their relationship with other entities to represent the

queries and documents. In entity retrieval, the user is looking for specific entities

as the information need in contrast to only a list of web pages addressing the query.

Lastly, the information representing the entities include other entities where there ex-

ist structured information about them such as names, aliases, categories etc. We build

an entity retrieval system by learning a joint word-entity dense embedding represen-

tation that leverages the summary of entity articles from the Wikipedia knowledge

base with a focus on mentions of the related entities. The intuition behind using this

approach is that the summary of an entity has mentions of important related entities

and can be used for enriching query and document representation.

Next, we investigate a context-aware query representation for multifaceted entity-

centric complex queries that include hierarchical information. The TREC CAR (Com-

plex Answer Retrieval) dataset provides semi-structured entity-bearing queries that

are constructed to address a complex information need. These queries are complex

in the sense that they cannot be answered with fact-like answers and the answers are

typically long and multi-faceted. As discussed earlier, the answer to the query “What

are the causes of the Civil War?” is multi-faceted and incorporates different aspects

from slavery to Lincoln’s election. We study latent word-based and entity-based rep-

resentations and extend these approaches to complex queries using fine-grained rep-

resentation on different elements of the hierarchical query structure. We formulate

a context-aware query representation by leveraging the learnt word-entity represen-

tation mentioned above and enrich the queries with contextual information derived

from similar entities and words. This results in improving the recall of probabilis-

tic retrieval approaches. Since this model incorporates universal information about

the entities we refer to it as global expansion method. Also, we investigate the lo-

cal models derived from pseudo-relevance feedback expansion approaches. Our main

contributions are:
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Contribution 1.1: We introduce a simple entity embedding model that fo-

cuses on representing an entity based on other entities crucial to its summary

with the goal of incorporating the contextual information of the entities re-

lationship with each other in the embedding representation. We demonstrate

that utilizing the entity-based representation results in 5.4% improvement in

MAP@1000 over the Query Likelihood (QL) retrieval model for all queries

comparing to an only word-based embedding representation that results in 3.9%

improvement over QL.

Contribution 1.2: We develop entity-aware query expansion methods based

on probabilistic retrieval approaches and entity embedding vectors for passage

retrieval given complex, multifaceted, and hierarchical queries. We show a

mixture model of different entity-based expansion model, capturing both global

context (embedding representation) and local context (retrieving entities within

the corpus) outperforms a learned combination of probabilistic word-based mod-

els by 21%.

These studies were conducted from 2017 to 2019 and pre-date recent advances in

NLP, particularly Transformer models and large language models.

1.2 PRF Documents as Contextual Information Source

In Chapter 4, we investigate the use of latent embedding vectors generated by

pre-trained contextual language models like BERT (Devlin et al., 2019) for query

expansion and enriching query representation. These models, trained on massive

datasets, are recognized for their ability to encode linguistic and factual knowledge

within their deep neural network parameters.

Further, with their attention architecture they enable us to utilize the context in

which a term occurs to enhance the query representation. We build a new model,
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Contextualized Embeddings for Query Expansion (CEQE), based on pseudo-relevance

feedback. Previously, most pseudo-relevance feedback models operated at the word

level without considering the word’s context. CEQE utilizes query-focused contextu-

alized embedding vectors and the contextualized embedding vectors of terms in the

pseudo-relevant documents to find the best terms for unsupervised expansion of the

query. Further, we design a supervised query expansion model, Supervised Contextu-

alized Query Expansion with Transformers (SQET), that builds on the Transformer

based architecture and treats the expansion problem as a supervised classification

task leveraging the context words around the candidate expansion terms.

Contribution 2.1: We develop a new contextualized query expansion method,

CEQE, that shifts from word-count approaches to contextualized approaches.

Our results demonstrate that CEQE significantly outperforms static embed-

ding expansion methods in terms of Mean Average Precision (MAP) by 23%

on TREC Deep Learning 19 and 7% on TREC Robust04 datasets. CEQE

also achieves comparable performance to static embeddings on the TREC CAR

dataset. Furthermore, CEQE statistically significantly surpasses a variant

word-based relevance feedback model, RM3, which combines relevance feed-

back with query expansion by interpolating the original query with terms from

feedback documents, by 4% in MAP on the TREC Deep Learning 19 dataset,

while maintaining competitive results on the TREC Robust04 and TREC CAR

datasets.

Contribution 2.2: We demonstrate that rounds of neural re-ranking, query

expansion using CEQE and a final neural re-ranking outperforms single round

of neural re-ranking in terms of MAP@100 by 8%.

Contribution 2.3: We develop a supervised query expansion model, SQET,

by formulating query expansion as a classification task leveraging Transformer-

based models in a cross-attention architecture. The linear combination of the
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SQET model and the RM3 word-based relevance feedback model results in a

statistically significant performance gain. Specifically, MAP and Recall both

improve by 2% when compared to using the RM3 model alone demonstrating

distinct contribution of SQET to retrieval performance.

1.3 Example Documents as the Contextual Information Source

In Chapter 5, we study the task of Query by Example (QBE), where the user

provides one or more documents representing their information need, and the IR

system aims to retrieve a list of additional relevant documents. The task of QBE is

challenging and complex because unlike traditional ad-hoc retrieval we don’t have a

specific information need in the form of a short or even a verbose query and in fact

the users’ information need is scattered through the example documents.

To study this problem, we construct three QBE datasets derived from standard

keyword-based ad hoc document retrieval tasks, including WikIR-QBE (a large-scale

dataset for training and evaluation), Robust04-QBE, and MultiNews-QBE (both eval-

uation datasets). Next, we develop Transformer-based neural re-rankers and address

the challenges of integrating Transformer models into Query by Example (QBE) re-

trieval problem. Our re-rankers leverage the attention architecture of Transformers

to provide context-aware representations of queries and documents, optimizing the

ranking. In particular, we developed Passage Relevancy Representation with Multi-

ple Examples (PRRIME) which tackles the limited context window of BERT-based

models by splitting documents into passages and then trains an end-to-end neural

ranking architecture that aggregates passage-level relevance representations. Our re-

sults show that PRRIME outperforms the first-stage term-based retrieval methods,

which use the top-k ranked terms from TF-IDF (Sparck Jones, 1972) as the query,

across all the datasets.
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We investigate a cross-encoder architecture leveraging Longformer (Beltagy et al.,

2020) (a Transformer model designed for long documents at the time of developing

this architecture) to re-rank first-stage retrievals in query by example retrieval. To

capture interactions, special tokens mark the beginning and end of both example and

candidate documents. This architecture allows for analysis of relationships within

query example documents as well as between query and candidate documents. Our

approach outperforms the first-stage retrieval on the dataset used for its initial fine-

tuning. However, subsequent cross-validation fine-tuning on two other evaluation

datasets perform not as well as the first-stage retrieval, likely caused by a limited

number of available samples and the model being overfit to the characteristics of

initial training collection.

Lastly, we developed a dual-encoder architecture that includes an auxiliary query

prediction task. This task is designed to enhance the primary ranking objective,

resulting in a model that not only generalizes better but also offers explainability

for its latent query representations. The model trained under the auxiliary training

paradigm outperforms the dual encoder ranker trained only with ranking objective as

well as the first-stage retrieval on the WikIR-QBE collection. In summary, our main

contributions are:

Contribution 3.1: We build multiple publicly available query by example re-

trieval datasets based on the standard keyword-based adhoc document retrieval

datasets for training and evaluation, namely WikIR-QBE, Robust04-QBE and

MultiNews-QBE.

Contribution 3.2: We develop a cross-encoder neural re-ranker architec-

ture, PRRIME, that employ a passage-based relevancy representation between

example documents’ passages and candidate document’s passages. Our results

show that this model achieve significant improvements of 37% and 19% in
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terms of MAP@100 improvement over the baseline, a query likelihood retrieval

model using top-ranked TF-IDF n-grams, on the Wiki-QBE and MultiNews-

QBE datasets. PRRIME achieves comparable results to the baseline on the

Robust04-QBE dataset, though we hypothesize further improvement is limited

because of the dataset’s small size.

Contribution 3.3: We investigate the effectiveness of the cross-encoder ar-

chitecture for reranking in query by example tasks. We introduce special tokens

to the Longformer Transformer model, enabling it to better capture relation-

ships between example documents. Our results demonstrate an 18% improve-

ment in Mean Average Precision (MAP) over the baseline, a query likelihood

retrieval model using top-ranked TF-IDF n-grams. However, we discover our

model is tuned on the latent characteristic of the train dataset and does not

perform well on other datasets with limited number of instances.

Contribution 3.4: We build a dual-encoder architecture with an auxiliary

query prediction task to enhance the primary ranking objective. This model

significantly outperforms the dual encoder ranker that uses only the ranking

objective, as well as first-stage retrieval methods on the WikIR-QBE collection

and MultiNews-QBE datasets, achieving an improvement of 17% and 10% in

MAP, respectively.

Our solutions and findings in this dissertation establish robust baselines for lever-

aging entities as contextual sources and using Transformer-based models to represent

textual context within query and documents in information retrieval tasks. These

solutions and findings provide a foundation for future work exploring the potential of

the recent large-scale language models such as GPT-3.5, GPT-4, Gemini, Llama, etc.
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CHAPTER 2

RELATED WORK

In this chapter, we describe the background and related work essential to under-

standing this thesis, along with subsequent research that expands upon our findings.

First, we discuss the long-standing problem of query expansion which has been used as

a technique for providing more context for the user’s information need (Section 2.1).

Then, we provide an overview of utilizing knowledge graphs and entities, as a source

of contextual information, to enhance information retrieval systems as well as discuss

the entity retrieval problem (Section 2.2). Next, we discuss utilizing Transformer-

based architecture models such as BERT, Longformer, etc. for the tasks of text

ranking, query refinement, and document representation. Subsequently we address

the recent developments in utilizing Large Language Models such as GPT3.5, GPT4,

Vicuna for ranking and re-ranking. (Section 2.3). Lastly, we discuss work related to

the query by example retrieval problem (Section 2.4).

2.1 Query Expansion

One of the fundamental challenges in retrieval is the vocabulary mismatch prob-

lem which arises from synonymy (words with similar meaning) and polysemy (words

with multiple meanings). Query expansion reformulates and expands the original

query with related terms in order to improve effectiveness, recall in particular. We

categorize the related work on query expansion into five main sections: 1)Relevance

Feedback Expansion Models, 2)Embedding-based Expansion Models, 3)Supervised

and End-to-End Expansion Models, 4)Dense Retrieval-based Expansion Models and
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5)Generative Expansion Models. These categories are interrelated rather than dis-

tinct. Each section often incorporates principles and methodologies from the others,

demonstrating a significant overlap and integration of approaches.

2.1.1 Relevance Feedback Expansion Models

Relevance feedback is a powerful technique that leverages user-provided judgments

on the relevance of retrieved documents to update the original query formulation.

The Rocchio algorithm, a traditional implementation of relevance feedback, updates

the query vector by moving it towards the centroid of relevant documents and away

from irrelevant ones (Rocchio, 1971). Pseudo-relevance feedback (PRF) (Lavrenko &

Croft, 2001; Lv & Zhai, 2009; Zhai & Lafferty, 2001) approaches perform the task of

identifying relevant documents automatically, assuming the top retrieved documents

are relevant. RM3 (Lavrenko & Croft, 2001) is a variant of PRF models which is a

mixture model between the top k expansion terms and the original query. Expansion

terms are weighted according to their term frequency in the top-ranked high scoring

documents.

PRF documents can provide contextual information to enhance a user’s query.

One of the earliest studies on utilizing context for query expansion was conducted by

Xu and Croft (1996), whose Local Context Analysis (LCA) model expands a query

using concepts that frequently co-occur with the query terms. These concepts are

identified as noun phrases within top-ranked passages relevant to the original query.

In our query expansion models introduced in Chapter 4, we leverage Transformer

models whose self-attention mechanism and pre-training on massive text corpora

enable us to generate a richer contextual representation of expansion terms stemming

from the PRF documents. This leads to improved ranking of potential expansion

terms, ultimately enhancing the effectiveness of our query expansion process.
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2.1.2 Dense and Sparse Embedding-based Expansion

Another approach for query expansion incorporates static embeddings (Pennington

et al., 2014; Mikolov, Sutskever, et al., 2013) to find the terms relevant to the query.

Word embedding techniques learn a low-dimensional vector (compared to the vocab-

ulary size) for each vocabulary term in which the similarity between the word vectors

captures the semantic as well as the syntactic similarities between the corresponding

words. Word embeddings are unsupervised learning methods since they only need

raw text data without other explicit labels. There are different methods to compute

the word embeddings. One of the most popular methods is using neural networks to

predict words based on the context of a text. Mikolov, Sutskever, et al. (2013) intro-

duced Word2Vec that learns vector representation of words via a neural network with

a single layer. Word2vec is proposed in two ways, CBOW and skip-gram. CBOW

tries to predict the word based on the context, i.e., neighboring words. skip-gram

tries to predict the context. Given the word w, it tries to predict the probability of

word w′ being in a fixed window of word w. Another model for learning embedding

vectors is based on matrix factorization, e.g., GloVe vectors (Pennington et al., 2014).

Although many variants of word embeddings exist, skipgram embeddings are quite ef-

ficient and not significantly different from other variations if tuned correctly (Mikolov,

Chen, et al., 2013; Levy et al., 2015).

Since embeddings promise to capture the semantic similarity between terms, they

are used in different ways to expand queries (Diaz et al., 2016; Kuzi et al., 2016;

Zamani & Croft, 2016, 2017; Roy et al., 2016). Zamani and Croft (2016) proposed two

expansion methods based on unigram language models with either an assumption that

query terms are conditionally independent or an assumption that term similarities

are query-independent. Similarly, Kuzi et al. (2016) perform expansion using locally

trained word embeddings by either finding the closest terms to the query’s centroid

or by identifying the terms with the highest embedding similarity to each query term.
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In the latter case, these per-term similarities are then aggregated using either a sum,

weighted sum, or max over query terms. These word embeddings, such as Word2Vec,

GloVe, and others, learn a static word embedding for each term regardless of the

context. Most basic models fail to address polysemy and the contextual characteristics

of terms.

Both our unsupervised (CEQE) and supervised (SQET) expansion models intro-

duced in Chapter 4 leverage the contextual representation of the terms to expand

the query with terms relevant to the query, to address the static representations

limitations. Further, other works that leverage term’s contextual representation for

term-weighting are query-independent (Dai & Callan, 2020a, 2020b), while our mod-

els considers the original query when selecting expansion terms.

Concurrent with our proposed model CEQE, Formal et al. (2021) introduced

the Sparse Lexical and Expansion Model for First Stage Ranking (SPLADE), which

employs Transformer models, specifically BERT, to learn sparse representations of

queries and documents. SPLADE utilizes the Masked Language Modeling task to

determine the importance of token j in the vocabulary to token i in the input se-

quence. The final representation of term j is obtaind by using a log-saturated function

applied to the aggregate of importance scores across the input sequence tokens. To

optimize these representations, SPLADE incorporates in-batch negative sampling in

their ranking loss calculation and employs sparse regularization techniques.

2.1.3 Supervised and End-to-End Expansion Models

There is a vein of work using supervised learning to perform query expansion. Cao

et al. (2008) and Imani et al. (2019) use feature-based models to predict what terms

should be used for expansion. A common practice is to classify terms as positive, neg-

ative, or neutral and use classification methods to maximize the number of predicted

positive terms. Further, an end-to-end neural PRF model (NPRF) proposed by Li et
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al. (2018) uses a combination of models to compare document summaries and com-

pute document relevance scores for feedback and achieves limited improvement while

only using bag-of-words neural models. Zheng et al. (2020) identify and rank relevant

text chunks within the first-pass retrieved documents. They then utilize the top-k

chunks as queries, using a cross-encoder to score candidate documents. The obtained

scores were then weighted and summed to determine the final relevance score of the

candidate documents.

Researchers have studied leveraging Reinforcement Learning (RL) to optimize the

selection of terms for query expansion. Nogueira and Cho (2017) introduce a query

reformulation system based on a convolutional neural network (CNN) / Recurrent

Neural Networks (RNN) that rewrites a query to maximize the number of relevant

documents returned. However, their model only focus on semantic matching be-

tween query and a candidate term and cannot capture relevance matching signals

such as term importance, document frequency of candidate terms in the feedback set

and document length. Montazeralghaem et al. (2020) introduced a reinforcement

learning framework for query expansion that directly optimizes retrieval metrics, in-

cluding average precision for effective retrieval and α-nDCG for diverse retrieval.

Moreover, X. Wang et al. (2020) proposed a reinforcement learning-based seq2seq

model for query reformulation. The reward function in their RL framework utilizes

query performance prediction to select high-quality paraphrases resulting in encour-

aging the model to focus on paraphrases likely to enhance retrieval effectiveness.

2.1.4 Dense Retrieval-Based Expansion Models

Dense retrieval which encodes queries and documents into high-dimensional vec-

tors using neural learning models to enable semantic similarity and utilizes approx-

imate nearest neighbors search to quickly find the most relevant documents, has

shown impressive results (Qu et al., 2021; S.-C. Lin, Yang, & Lin, 2020; L. Xiong et
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al., 2020; Khattab & Zaharia, 2020). Researchers have studied incorporating pseudo-

relevance feedback for dense retrieval to improve query representation. H. Yu et al.

(2021) introduced ANCE-PRF which concatenates the original query with pseudo-

relevance feedback (PRF) passages obtained from an ANCE retrieval model (L. Xiong

et al., 2020) and encodes the combined text using a BERT architecture. The new

query encoder is then is trained for dense retrieval ranking, while the document

encoder remains fixed. X. Wang et al. (2021) proposed ColBERT-PRF, a vector-

based pseudo-relevance feedback (PRF) technique that enhances ColBERT’s query-

document scoring function. In particular, ColBERT-PRF clusters the embeddings of

pseudo-relevant documents retrieved using the ColBERT dense retrieval model. It

then selects the most discriminative embeddings by mapping them to token space

and prioritizing tokens with high inverse document frequency (IDF). Finally, a linear

combination of ColBERT’s query-document score and the weighted similarity be-

tween selected embeddings and the document’s token-level representation is used to

calculate final query-document relevance score. Later they propose a deep language

model-based contrastive weighting model, called CWPRF that learns to select the

most useful embeddings for expansion (X. Wang, MacAvaney, Macdonald, & Ounis,

2023a).

2.1.5 Generative Expansion Models

Nogueira et al. (2019) were among the first to leverage Transformer models for

generative expansion approaches. Their work focused on generating questions from

passages and concatenating them to the document, falling under the umbrella of

“document expansion” methodologies. This approach differs from ours, which in-

vestigates query expansion instead. For the TREC Deep Learning 2019 track, the

Brown team addressed query expansion by framing it as a query paraphrasing prob-

lem (Zerveas et al., 2020). They trained their paraphrasing model, based on a
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sequence-to-sequence architecture using OpenNMT (Klein et al., 2017), on the MS

MARCO passage dataset (Bajaj et al., 2016). They focused on the 2.6% of pas-

sages that answer multiple queries, providing the model with rich examples of how

the same information need can be expressed differently. During inference, the model

generates paraphrases of the original query; the top 3 outputs from a k-beam search

are concatenated with the original query to expand the query. X. Wang et al. (2023b)

investigated neural query reformulation methods built upon small generative neural

models, such as T5 and FLAN-T5 models. They proposed two possible generative

query reformulation frameworks: GenQR, where models directly take a query as in-

put, and GenPRF, where models also incorporate contextual information extracted

from pseudo-relevant feedback documents.

Recent advancements in Large Language Models (LLMs) such as GPT-3.5, GPT-

4, Gemini, and Claude have dramatically improved natural language understanding,

text generation, and task completion. These advancements allow researchers to di-

rectly apply LLMs in downstream tasks (zero-shot settings) or fine-tune them for

specialized purposes. In the query expansion problem, Mackie et al. (2023b) lever-

aged GPT-3 to generate diverse query-specific text formats (e.g., keywords, entities,

chain-of-thought reasoning, facts, news articles, and essays). They demonstrated

that combining these generated text types outperforms sparse retrieval techniques,

in particular BM25, across multiple datasets. They later showed that combining

this approach with traditional PRF expansion techniques results in further improve-

ment as their generative expansion techniques and PRF expansion have contrasting

benefits (Mackie et al., 2023a).

2.2 Leveraging Entities in Information Retrieval Systems

Researchers have explored leveraging entities (specific things and concepts in real

world) and knowledge bases (structured repositories of entity information and rela-
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tionships) for enhancing information retrieval systems. In this thesis, we investigate

the use of entities to augment user queries and corpus documents with richer context.

In Section 2.2.1, we provide an overview of “Entity-centric Ranking” approaches, in-

cluding Entity Retrieval, Knowledge Base-Focused Ranking, Neural and Embedding

Approaches, Complex Entity Centric queries and Entity Set Expansion.

2.2.1 Entity-centric Ranking

2.2.1.1 Entity Retrieval

Entity ranking is the task of retrieving entities from a knowledge base and pre-

senting them in ranked order in response to a user’s information need. This fo-

cus has driven various benchmarking campaigns including the INEX Entity Ranking

track (Demartini et al., 2009), the INEX Linked Data Track (Q. Wang et al., 2012),

the TREC Entity track (Serdyukov & De Vries, 2009; Balog et al., 2010, 2012), the

Semantic Search Challenge (Blanco et al., 2011; Halpin et al., 2010), and the Ques-

tion Answering over Linked Data (QALD) challenge series (Lopez et al., 2013). These

campaigns share the goal of providing an entity-focused response to users, instead of

returning documents which might contain unnecessary information. The campaigns

differed in the specific types of queries they addressed, such as list searches (Balog et

al., 2012; Demartini et al., 2009), related entity finding (Serdyukov & De Vries, 2009),

and natural language questions (Lopez et al., 2013). To facilitate further benchmark-

ing of entity ranking systems, Balog and Neumayer (2013) and Hasibi et al. (2017)

compiled datasets from the mentioned campaigns, introducing the DBPedia Entity-

V1 and DBPedia Entity-V2 datasets, respectively. We evaluate the effectiveness of

our Summary-Expanded Entity Embeddings model for entity retrieval on the DBPedia

Entity-V2 dataset in Section 3.1.

Many different approaches have been proposed to address the entity retrieval

(entity ranking) task. Zhiltsov et al. (2015) propose a fielded retrieval approach
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known as the Fielded Sequential Dependence Model (FSDM). This model uses a

learning-to-rank method to determine the importance of various entity fields, such

as name, attributes, categories, similar entities, and related entities. Further, Hasibi

et al. (2016) proposed leveraging entity annotations of queries obtained by entity

linking in the entity retrieval model. Schuhmacher et al. (2015) propose a learning-

to-rank model which incorporates different features of both text and entities for entity

ranking. Foley et al. (2016) propose an an approach for entity ranking that does

not rely on entity linking to be effective even with limited linguistic resources that

are typically annotated by experts. Additionally, Garigliotti et al. (2019) studied the

effectiveness of entity type information in entity retrieval.

Further, Dietz et al. (2018) introduced the Complex Answer Retrieval dataset,

featuring entity-centric, multi-faceted hierarchical queries that address both entity

ranking and passage ranking tasks. In Section 2.2.1.4, we provide a detailed descrip-

tion of this dataset and discuss relevant approaches for it. This relates to our Local

and Global Entity Centric model (Section 3.2), which also investigates these queries.

2.2.1.2 Knowledge Base-Focused Ad-hoc Document Retrieval

Researchers explored utilizing entities within knowledge bases in different ways to

improve ad-hoc document retrieval. Dalton et al. (2014) proposed EQFE model for

web-based queries which expand the query with entity features such as alias, cate-

gory, type. X. Liu et al. (2014) propose an entity-centric query expansion for enterprise

data. They later propose the Latent Entity Space model (X. Liu & Fang, 2015), which

constructs entity profiles (pooled information about entity in the document collection

or the entity document in the knowledgebase) and represent both query and docu-

ments with their entities. C. Xiong and Callan (2015b) propose a query expansion

technique by using Freebase knowledge graph objects to improve ad-hoc information

retrieval. Further, they propose a learning-to-rank approach that uses objects from
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external data such as vocabularies and entities as an interlingua between query and

documents. The learning-to-rank model then learns a weighting for the features that

are derived from query-object and object-document relationships (C. Xiong & Callan,

2015a). Later, they propose a bag-of-entity representation for query and documents

which ranks documents either by number of query entities that they contain or by

the frequency of query entities in the document (C. Xiong et al., 2016). They further

address the discrepancies between entity linking and entity-based ranking systems by

performing the two tasks jointly (C. Xiong, Liu, et al., 2017). Recently, (Shehata et

al., 2022) study expanding both queries and documents with entity mentions to im-

prove the performance of sparse retrievers like BM25. While their approach improved

on the BM25 baseline on the MSMarco dataset, it still fell short of dense retriever

performance. Despite not matching dense retriever performance, the study objective

was to bridge the gap between sparse and dense retrievers as dense retrievers have

shortcomings such as latency issues.

2.2.1.3 Neural and Embedding Based Approaches

With the rise of dense embedding representations and deep learning, researchers

explored training entity-based embeddings and deep neural entity-based models, lever-

aging them in information retrieval systems. Yamada et al. (2018) propose the

Wikipedia2Vec model, which aims to learn a joint representation of words and entities.

This is achieved by linearly combining three kinds of context: word context (repre-

sented by a Word2Vec approach on Wikipedia articles), entity context (represented

by neighboring entities in Wikipedia’s link graph), and anchor context (represented

by the words surrounding the anchor text of an entity in Wikipedia’s article).

The entity-based embeddings have been used for many ranking tasks. For exam-

ple C. Xiong, Power, and Callan (2017) show the effectiveness of academic knowledge

graph embeddings for academic search. Later, Gerritse et al. (2020) explore the effec-
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tiveness of Wikipedia2vec for representing queries and documents in entity retrieval

tasks. They utilize the similarity between query and document vector representa-

tions based on Wikipedia2vec as a re-ranking step, following an initial ranking with

a fielded probabilistic retrieval model on the DBPedia-Entity V2 dataset.

Further, C. Xiong, Callan, and Liu (2017) propose the word-entity duet model for

ad-hoc document retrieval which the query and documents are represented by both

word-based and entity-based hand-crafted features. The four-way interactions be-

tween the two representation spaces form a word-entity duet that can systematically

incorporate various semantics from the knowledge graph. Z. Liu et al. (2018) expand

on word-entity duet model and instead of using hand-crafted features uses a transla-

tion layer that calculates similarity between a pair of query-document terms (words

and entities) along with a neural matching ranker. C. Xiong et al. (2018) propose

the end-to-end neural kernel entity salience model which estimates entity salience

(importance) in documents and show it improves the ad-hoc document retrieval per-

formance.

The advent of Transformer models prompted researchers to investigate whether

incorporating entity contextual information from a knowledge base could further en-

hance their performance in downstream tasks. ERNIE (Gerritse et al., 2022) pio-

neered the integration of entities into Transformer models. This was achieved by

pre-training a BERT-based Transformer where token embeddings for entities are ag-

gregated with their corresponding TransE-based (Bordes et al., 2013) entity embed-

dings. Further, KnowBERT (Peters, Neumann, et al., 2019) enhances BERT by

integrating knowledge graph-based entity embedding with BERT by introducing a

Knowledge Attention and Recontextualization (KAR) component during pre-training.

This component aggregates the embeddings of entities linked from knowledge graphs

with the mention-span representations computed from BERT vectors. Unlike ERNIE

and KnowBERT, which incorporate factual entity knowledge during pre-training,
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E-BERT (Poerner et al., 2020) enhances BERT by aligning Wikipedia2Vec entity

vectors with BERT’s wordpiece vectors using a transformation matrix. The aligned

entity vector is then concatenated next to the wordpiece representations of the entity

mentions. E-BERT has been shown to improve performance on unsupervised QA

tasks like LAMA, as well as downstream tasks like relation classification. Gerritse et

al. (2022) combined E-BERT with the mono-BERT (Nogueira & Cho, 2019) cross-

encoder re-ranking architecture and employed it for entity retrieval task achieving

state-of-the-art results for entity-centric queries. Recently, Chatterjee et al. (2024) re-

cently proposed an end-to-end re-ranking architecture for ad-hoc document retrieval,

which utilizes a hybrid document embedding that combines query-specific entity-

centric and text-based embeddings. Their approach outperforms existing non-entity

based and entity-based methods on standard TREC collections.

2.2.1.4 Complex Entity Centric Queries

TREC CAR Dataset TREC Complex Answer Retrieval (CAR)(Dietz et al.,

2018) is a dataset curated for the TREC Complex Answer Retrieval track to address

retrieval for complex entity-centric topics, which was introduced in 2017 (TREC CAR

Y1) and continued for 2018 (TREC CAR Y2) and 2019 (TREC CAR Y3). In this

dataset each topic consists of the hierarchical skeleton of a Wikipedia article and its

sections. To be more specific, [Radiocarbon dating/Measurement and results/Errors

and reliability] is an example topic constructed from the hierarchical skeleton of the

“Radiocarbon dating1” Wikipedia article. The TREC CAR dataset defines two tasks:

1) passage ranking, where the goal is to retrieve paragraphs, and 2) entity ranking,

where the goal is to retrieve entities for each query. The most common approach to

formulate a query from a topic is to concatenate the different parts of its hierarchical

skeleton. The TREC CAR setup includes two types of judgments, automatic and

1https://en.wikipedia.org/wiki/Radiocarbon dating
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manual. The automatic (binary) judgments are derived directly from Wikipedia and

the manual judgments are created by NIST assessors. TREC CAR has different

relevance annotations based on the section path of the topic. Tree-qrel relevancy

judgments which label a paragraph or entity as relevant if it is contained in the

section or any of its child sections and Hierarchical relevancy judgments which assess

the relevance of paragraphs or entities that are directly included only within that

specific section. There are 2283 evaluation topics for BenchMarkY1Test for the Tree

QRels.

Comparison of TREC CAR with Other Query Types. TREC CAR queries,

while not strictly formulated as traditional questions, share core methodologies with

non-factoid Question Answering (QA) (Cohen & Croft, 2016; Song et al., 2017; Co-

hen et al., 2018; Vikraman et al., 2021; Cortes et al., 2021; Breja & Jain, 2021).

Both approaches rely on retrieving relevant passages to provide comprehensive an-

swers. However, the key distinction lies in the structure and complexity of the queries.

CAR topics are multi-faceted with hierarchical relationships that necessitate complex,

multi-part answers, whereas non-factoid QA typically deals with singular questions

that, although not seeking simple factual answers, do not generally require the hier-

archical or multi-dimensional responses characteristic of CAR queries.

On the other hand, complex queries in retrieval is not a new problem. In fact,

some of the earliest uses of retrieval focused on boolean retrieval. Users constructed

complex boolean expressions with complex subqueries (Salton et al., 1983). This was

later followed up with more complex query capability (Turtle & Croft, 1991). Follow-

up query languages that support rich query expressions include: INQUERY, Lucene,

Terrier, and Galago. However, these languages are often only used internally to

rewrite simple keyword queries, possibly using some inferred structure from natural

language processing. In contrast, CAR query topics contain explicit multifaceted

hierarchical structure.
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Findings on TREC CAR. Nanni et al. (2017) survey approaches for the

CAR dataset, including sparse retrieval (BM25, TF-IDF), query expansion (Lavrenko

& Croft, 2001), dense vector word-based (GloVe (Pennington et al., 2014)) and

entity-based (RDF2Vec (Ristoski & Paulheim, 2016)) embedding ranking, supervised

learning-to-rank and neural re-ranking, Duet model (Mitra et al., 2017). They find

that RDF2Vec entity embeddings are not as effective as BM25 for their entity-focused

paragraph ranking, and although the neural Duet model gives the best performance,

the gains over BM25 are only modest. Later, MacAvaney et al. (2018) modified the

PACRR (Hui et al., 2017) neural re-ranker for the CAR dataset. They added contex-

tual vector features—Heading Position (indicating a term’s location within a head-

ing) and Heading Usage Frequency (similar to Inverse Document Frequency (IDF),

measuring a heading’s importance across documents). These modifications improved

effectiveness over the unmodified PACCR model and other approaches like BM25

and the Sequential Dependence Model (Metzler & Croft, 2005). With the advent of

Transformer models, Nogueira and Cho (2019) introduced the mono-BERT ranking

architecture, modeling passage relevance calculation as a sequence classification task.

Applied to the TREC-CAR dataset, this approach significantly improved the MAP

metric by 2X compared to non-neural and earlier neural baselines

2.2.1.5 Entity Set Expansion

Another vein of work focus on finding “sibling” entities within a corpus that are

from the set characterized by a small set of seed entities. P. Yu et al. (2019) introduce

an unsupervised corpus-based set expansion framework that leverages lexical features

as well as distributed representations of entities. In a follow-up work (P. Yu et al.,

2020), they present a two-channel neural re-ranking model, that jointly learns exact

and semantic matching of entity contexts through entity interaction features. The

key difference between entity retrieval tasks and entity set expansion lies in the query
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format. Entity retrieval tasks accept various queries, including natural language ques-

tions (e.g., “Who is the mayor of Berlin?”), keyword queries (e.g., “electronic music

genres”), named entity queries (e.g., “Brooklyn Bridge”), and requests for specific lists

of entities (e.g., “Professional sports teams in Massachusetts”). In contrast, entity set

expansion uses an example set of entities (e.g., “Boston Celtics”, “Patriots”, “Boston

Bruins”) as the query, with the goal of extracting related entities (e.g., “Boston Red

Sox”, “New England Revolution”).

2.3 Text Ranking with Transformers

Transformer-based language models have revolutionized the field of Natural Lan-

guage Processing (NLP). Pioneered by BERT Devlin et al. (2019), these models

leverage the self-attention mechanism to dynamically weigh the importance of tokens

(words or subwords) within their input sequence. Through large-scale pre-training on

extensive text corpora, Transformer models obtain a rich understanding of linguis-

tic structure and semantic relationships. This facilitates effective transfer learning

across diverse NLP tasks, including sentiment analysis, question answering, docu-

ment ranking, etc. (Akkalyoncu Yilmaz et al., 2019; Dai & Callan, 2019; Li et al.,

2020; MacAvaney et al., 2019; Nogueira & Cho, 2019; Nogueira et al., 2020; Padigela

et al., 2019; Qiao et al., 2019; H. Zhang et al., 2019).

Recent Large Language Models (LLMs) or Foundational Models leverage substan-

tially scaled architectures and even larger training datasets than those employed by

first-generation Transformer-based models like BERT, T5, etc. These models adopt a

decoder-only generative approach, producing text one token at a time. LLMs perform

remarkably well in zero-shot settings, demonstrating impressive capabilities without

direct fine-tuning on specific downstream tasks (Kojima et al., 2022; Hou et al., 2024).

In this section, we first provide a brief overview of related work using first-

generation Transformer-based models – i.e. BERT-based models, T5, etc. – for
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document ranking. We then explore how LLMs are applied to ranking, both in zero-

shot settings and with downstream task fine-tuning.

At the beginning of 2019 Nogueira and Cho (2019) achieved state-of-the-art

results by being the first to propose fine-tuning BERT as a reranker and use it as

a binary classifier to predict whether the document is relevant. Later, Qiao et al.

(2019) explore and compare various methods for integrating the BERT embeddings

of queries and documents to calculate relevance scores. Their approaches include

computing cosine similarity between the [CLS] tokens from the last layer of BERT

for both the query and document, as well as concatenating the query and document

and using the [CLS] token of the concatened representation to determine the relevance

score

MacAvaney et al. (2019) propose incorporating Transformer models into existing

neural ranking architectures such as PACRR (Hui, Yates, Berberich, & De Melo,

2018), KNRM (C. Xiong, Dai, Callan, Liu, & Power, 2017) and DRMM (Guo, Fan,

Ai, & Croft, 2016). They achieve this by treating each layer of a contextualized

language model as a channel and integrating the channel-specific query-document

similarity matrices within the existing ranking architecture.

The above approaches to document ranking with BERT-based Transformer mod-

els either focus on datasets with passage-length entries or truncate long documents

to fit the maximum input length. Consequently, researchers focused on adapting

model architectures to address limited input-sequence length challenge. The works

of Akkalyoncu Yilmaz et al. (2019), Li et al. (2020), and Y. Kim et al. (2021) were

among the first to propose segmenting long documents into sentences or passages for

independent scoring against a query, with the final document relevance determined by

aggregating these scores. In particular, Dai and Callan (2019) score individual pas-

sages and aggregate them into document level score by taking the first, maximum,

or sum of passages scores. Li et al. (2020) propose to aggregate passage representa-
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tions rather than passage relevance scores. On the other hand, with the advent of

Transformer models with larger context-window size researchers study and compare

the performance of such models for ranking long documents (Boytsov et al., 2022;

Sekulić et al., 2020).

Further, other researchers (Gao et al., 2020; Khattab & Zaharia, 2020; MacAvaney

et al., 2020; Zhan et al., 2020; L. Xiong et al., 2021) utilize Transformer models to

produce query and document representations that can be used for (relatively) effi-

cient first-stage retrieval. In this context, Gao et al. (2020) find that combining a

representation-based model with a lexical matching component improves effective-

ness. Zheng et al. (2020) combine BERT with a NPRF framework and illustrate the

importance of an effective first-stage ranking method. Padaki et al. (2020) inves-

tigate BERT’s performance when using expanded queries and find that expansion

which preserves some linguistic structure is preferrable to expanding with keywords.

Recently, with the advent of Large Language Models (LLMs) there have been a

shift from adopting smaller language models (such as BERT, Longormer, etc.) to-

wards LLMs for ranking and re-ranking. In particular, Ma, Wang, et al. (2023)

fine-tuned a LLaMA-2 model (Touvron et al., 2023), employing a bi-encoder archi-

tecture (Karpukhin et al., 2020) with a contrastive ranking objective for first-pass

retrieval. They further fine-tuned LLaMA-2 within a cross-attention architecture,

concatenating query and documents and utilizing the same contrastive ranking ob-

jective for a re-ranking stage. On the other hand, other researchers cast re-ranking

as a text-generation task and explored zero-shot prompting for generating an ordered

list (Sun et al., 2023; Pradeep et al., 2023; Ma, Zhang, et al., 2023; Qin et al., 2023) or

creating the ordered-list by sorting the probabilities of generated token (Ma, Zhang,

et al., 2023; Zhuang et al., 2023). The long context-window of LLMs facilitates the

zero-shot listwise re-ranking approaches, resulting in them outperforming zero-shot

pointwise approaches. In pointwise approaches, the model determines relevance for
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each document individually (returning “True” or “False” tokens), and the probabili-

ties of these tokens are used as relevance scores ((Ma, Zhang, et al., 2023)).

2.4 Query by Example Information Retrieval Systems

There exist many scenarios where it is more convenient for the users to express

their information need by providing relevant examples instead of formulating keyword

queries. Generally, the example instances can be defined in any form including but

not limited to textual documents, user profiles and images (Lissandrini et al., 2019).

Candidate/talent search at LinkedIn is an example of the Query-by-Example (QBE)

problem where the searcher query the system by giving one or several ideal candidates

for a given position as a query.

Query-By-Document (QBD) is a special case of the QBE problem where the ex-

amples are in the form of one or multiple documents. In particular, professional and

domain-specific search such as legal case retrieval Althammer et al. (2022); Abol-

ghasemi et al. (2022); Askari and Verberne (2021); M.-Y. Kim et al. (2019); Shao

et al. (2020), scientific literature retrieval Mysore et al. (2021); Cohan et al. (2020),

patent retrieval Fujii et al. (2007); Piroi and Hanbury (2019) and cross-referencing

a news article on a specific topic across sources Y. Yang et al. (2009) are examples

of QBD. Williams et al. (2014) propose SimSeerX, a QBD system for retrieving aca-

demic documents which combines multiple similarity function and demonstrate it is

scalable to a collection of 3.5 million academic documents. Weng et al. (2011) in-

corporate a two-stage retrieval problem for QBD where in first stage the documents

in the collection are encoded into dense vector using dimension reduction techniques

and in the second stage locality sensitive hashing is used for quick ranking.

Most of the prior work is focused on one example document as the input and

there are a few studies where we have multiple example documents. Lissandrini

et al. (2018) investigate a specific case of having multiple examples where the user
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issues graph-based queries consistent of tuples against a knowledge graph. El-Arini

and Guestrin (2011) introduce an optimization function based on a probabilistic and

concept-specific notion of influence between documents to model query documents in

scientific publication search domain. D. Zhang and Lee (2009) address the query by

multiple examples as a one-class text classification and use support vector machines

to tackle it. Zhu and Wu (2014) adopt a two-stage ranking algorithm where they use

topic modeling to formulate a keyword query from example documents and retrieve

a set of candidate documents. Then, they use PU learning algorithms to re-rank the

set of retrieved candidate documents.

Lastly, query by multiple examples can be viewed as relevance feedback (Salton &

Buckley, 1990) where the example documents can be regarded as feedback documents

from the user. Smucker and Allan (2006) investigate the “find-similar” feature in some

commercial search engines as a form of manual feedback from user and study user

behavior and its possible effect on retrieval performance.
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CHAPTER 3

ENTITIES AS THE CONTEXTUAL INFORMATION
SOURCE

Statement of Contribution

The works described in this chapter, namely Exploring Summary-Expanded En-

tity Embeddings for Entity Retrieval (3.1) and Local and Global Query Expansion

for Hierarchical Complex Entity-centric Queries (3.2) were published in the EYRE

workshop at CIKM 2018 (Naseri S. & B., 2018) and ECIR 2019(Dalton et al., 2019),

respectively. I was the lead author in the former publication, designed the embedding

model and carrying out the experiments. I designed and conducted the experiments

regarding the global expansion study on the complex entity-centric queries, in the

latter publication.
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Knowledge cards, conversational answers, and other focused responses to user

queries in current search engines are relying on the availability of rich information

for named entities and search based on knowledge graphs. In particular, the entity

retrieval task has been defined as returning a ranked list of entities relevant to the

user’s query to directly answer the queries from knowledge bases. This task is typically

approached by finding entities with a “meaning” that is similar to the query.

Beyond questions with a focused response like [“Who won the James Beard Award

for best new chef 2018?”], there exist questions which require multifaceted essay-like

responses such as [“What are the causes of the Civil War?”] that span a rich variety

of subtopics with hierarchical structure. These ‘complex’, multifaceted, hierarchical

questions can also take advantage of the words and entities related to their “meaning”

and leverage more contextual information about the user’s query.

Capturing the semantic similarity between queries and documents, and repre-

senting the context beyond a bag-of-words has been a long-standing problem in

information retrieval. Researchers have proposed leveraging knowledge bases that

offer information about entities and their relationships to enrich contextual under-

standing (Lee et al., 2015). Furthermore, traditional word embedding methods like

Word2Vec (Mikolov, Sutskever, et al., 2013) offer semantic understanding by assign-

ing low-dimensional vectors to terms, with the semantics derived from capturing

co-occurrence information between terms using a likelihood approximation of their

appearance within a window of text.

In this Chapter, we investigate the following research question: “How can entities,

as source of contextual information, enhance the performance of information retrieval

systems with entity-focused queries?” To answer this question, we explore two distinct

approaches: 1) learning dense embedding representations of entities, and 2) utilizing

corpus-based entity information through probabilistic retrieval methods.
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3.1 Exploring Summary-Expanded Entity Embeddings for

Entity Retrieval

We study the task of entity retrieval where the queries are entity-centric and the

output is a ranked list of relevant entities, in contrast to ad-hoc retrieval where the

focus is on retrieving ranked documents. We design an entity embedding representa-

tion in Section 3.1.1 and hypothesize that mapping the query to the entity space and

comparing with the retrieved entities will improve the retrieval results. In Section

3.1.2 we describe our scheme of retrieval and validate our hypothesis in Section 3.1.4.

3.1.1 Summary-Expanded Entity Embeddings

Following Ni et al. (2016), we learn a joint entity-word embedding to capture

semantic relationship between words and entities. This approach is built upon the

skip-gram model proposed by Mikolov, Sutskever, et al. (2013). For training the

entity embedding model, we require a corpus that could provide the necessary context

for each entity. To this end, we utilize the internal linking structure in Wikipedia. An

internal link in a Wikipedia page consists of both a hyperlink to another Wikipedia

article and a surface form that represents the linked article. We preprocessed all

Wikipedia pages by replacing the surface form of each internal link with the title of

the referenced article.

Consider the following excerpt, where links to other Wikipedia articles (entities)

are represented by italics:

Harry Potter is a series of fantasy novels written by British author J. K.
Rowling. The novel chronicle the life of a young wizard, Harry Potter, and
his friends Hermione Granger and Ron Weasley, all of whom are students
at Hogwarts School of Witchcraft and Wizardry.

The excerpt will be replaced by:

Harry Potter is a series of Fantasy literature written by British author
J. K. Rowling. The novels chronicle the life of a young
Magician (fantasy), Harry Potter (character), and his friends
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Hermione Granger and Ron Weasley, all of whom are students at
Hogwarts.

where the link is replaced by the corresponding article’s title and spaces are re-

placed by underscores. Now each entity in the original excerpt is considered as a

single “term”, and an embedding is learned based on the Skipgram model.

Furthermore, in knowledge graphs like DBpedia, each entity is accompanied by an

abstract where human annotators highlight key related entities. The final embedding

of a target entity is then calculated by averaging the embedding vectors of these

referred entities within the abstract.

Implementation Details. To train the entity embeddings, we use the full article

of Wikipedia pages obtained from the DBpedia 2016-10 dump. We take advantage of

the Word2Vec implementation in gensim (Řeh̊uřek & Sojka, 2010) version 3.4.0 with

parameters as follow: window-size = 10, sub-sampling = 1e-3, and cutoff min-count

= 0. The learned embedding dimension is equal to 200 and we learned embeddings

of 3.0M entities out of 4.8M entities available in Wikipedia.

3.1.2 General Scheme of Retrieval

Given a query, q, that targets a specific entity, our task is to return a ranked

list of entities relevant to the query. In our approach each entity is represented

by a short textual description, specifically its short abstract in DBpedia. A list

of candidate entities is retrieved using term-based retrieval models such as query

likelihood model (Ponte & Croft, 1998), efficiently creating a large pool of candidates.

In our model, we try to enhance the accuracy of entity retrieval by represent-

ing queries and entities by their corresponding embedding vectors. We explore two

methods to represent query and entity embedding vectors: WordVec and EntityVec.

In the WordVec model each query is represented by the average of the embed-

ding vector of the query’s terms. Entities are also represented in a similar way, by

averaging over the embedding vectors of the terms in the entity’s abstract. The
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Table 3.1: Query and retrieved entity representations for WordVec and EntityVec

models.

Model Query Retrieved Entity
WordVec Average of query terms’ embedding vectors Average of embedding vectors of terms in the entity’s abstract

EntityVec Average of query entities’ embedding vectors Average of embedding vectors of related entities in the entity’s abstract

GloVe (Pennington et al., 2014) pre-trained word embedding is used for the word

embedding vector in the WordVec model.

In the EntityVec model, we utilize the entity representation introduced in Sec-

tion 3.1.1 and represent queries by the average of the embedding vectors of their

entities. The entities in the query are annotated using the TagMe (Ferragina &

Scaiella, 2012) mention detection tool.

For both WordVec and EntityVec the similarity between query and the document

is calculated by the cosine similarity between their respective embedding vectors. The

final entity retrieval score is obtained by linear interpolation of the baseline, WordVec,

and EntityVec models. We summarize the final embedding vector for query and

entity in table 3.1.

3.1.3 Experimental Setup

Data set. Our experiments are conducted on the entity search test collection

DBpedia-Entity v2 (Hasibi et al., 2017). This dataset originally consists of queries

gathered from the seven previous competitions with relevance judgment on entities

from DBpedia version 2015-10. For word embeddings, we use the GloVe (Pennington

et al., 2014) pre-trained word embedding with 300 dimensions. The word embed-

dings were extracted from a 6 billion token collection (the Wikipedia dump 2014

plus Gigaword 5). The implementation details of entity embeddings are described in

Section 3.1.1.
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Data Processing. Retrieval results were obtained using the index built from the

abstract of the entities. We use TagMe (Ferragina & Scaiella, 2012) as the mention

detection tool for the entities in the queries.

Evaluation Metrics. Mean Average Precision (MAP) of the top-ranked 1000

entities is selected as the main evaluation metric to evaluate the retrieval effectiveness.

Furthermore, we consider precision of the top 10 retrieved entities (P@10). Since we

have graded relevance judgment, we also report nDCG@10. Statistically significant

differences in performance are determined using the two-tailed paired t-test computed

at a 95% confidence level based on the average precision per query.

3.1.4 Results

We explore the results of our entity representation model atop two baselines: the

query likelihood language model retrieval (LM) (Ponte & Croft, 1998) and the query

expansion approach based on relevance modeling (RM3) (Lavrenko & Croft, 2001).

Table 3.2 shows the results of our model on top of the LM baseline for short and

verbose query subsets as well as their union. Both proposed methods outperform the

baseline LMmodel, suggesting that there is value in both our EntityVec and WordVec

representation. Combining the two methods yields even greater accuracy across all

measures, indicating that the two methods are complementary. We observe both

WordVec and EntityVec improve verbose queries (queries longer than four terms)

more than short queries (particularly measured by MAP). We speculate the reason

is, the additional terms in the verbose queries disambiguate the user’s information

need, thus it better matches with the relevant entities.

Since some of the queries don’t have entity mentions, the number of ties in the

linear combination of LM and EntityVec with the LM approach is more than the

number of ties of the linear combination of LM and WordVec with LM.
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Table 3.2: Effect of WordVec and EntityVec models on top of LM baseline for ver-
bose, short queries and their union. Superscripts †,‡, and § indicate statistical signif-
icance over the LM, LM+WordVec, and LM+EntityVec, respectively.

Verbose Queries

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

LM 0.1609 - 0.1992 - 0.2261 - -
LM + WordVec 0.1708† +6.15% 0.2168† +8.84% 0.2429† +7.43% 171/14/77
LM + EntityVec 0.1731† +7.58% 0.2218† +11.35% 0.2415† +6.81% 162/28/72
LM + WordVec + EntityVec 0.1786†‡ +11% 0.2328†‡§ +16.87% 0.2554†‡§ +12.96% 189/16/57

Short Queries

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

LM 0.2445 - 0.2922 - 0.3357 - -
LM + WordVec 0.2498 +2.17% 0.2956 +1.16% 0.3417 +1.79% 111/23/71
LM + EntityVec 0.2532 +3.56% 0.2985 +2.16% 0.3454 +2.89% 92/49/64
LM + Wordvec + EntityVec 0.2635†‡§ +7.77% 0.3034†‡ +3.83% 0.3531†‡ +5.18% 135/20/50

All Queries

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

LM 0.1976 - 0.2400 - 0.2742 - -
LM + WordVec 0.2055† +3.99% 0.2514† +4.75% 0.2863† 4.41% 282/37/148
LM + EntityVec 0.2083† +5.41% 0.2555† +6.45% 0.2871† +4.70% 254/77/136
LM + WordVec + EntityVec 0.2159†‡§ +9.26% 0.2638†‡§ +9.91% 0.2983†‡§ +8.78% 324/36/107

We investigate the effect of our entity vector models on different types of queries

available in our dataset in Table 3.3. Since the queries are of such diverse types, it is

not surprising to observe some variation. We see that the WordVec model does not

show a significant improvement in the results of SemSearch-ES, ambiguous keyword

queries, and QALD-2, natural language question-answering queries. Since SemSearch-

ES queries are mostly ambiguous keyword queries, it is possible that the WordVec rep-

resentations are not specific enough to be helpful. Finally, we evaluate the proposed

methods in the pseudo-relevance feedback scenario, utilizing RM3 as the state-of-the-

art PRF method that has been shown to perform well in various collections (Lv &

Zhai, 2009). Similar to LM baseline, in Table 3.4 we observe WordVec and EntityVec

improve over the RM3 which means our embedding-based methods are complemen-

tary to the keyword-matching expansion approaches. Performing query expansion,

more specifically RM3 method here, is well-known to improve retrieval performance.

However, in this dataset RM3 results are substantially worse than the simple LM

showed in Table 3.3
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Table 3.3: Effect of WordVec and EntityVec models on top of LM baseline for differ-
ent query types. Superscripts †,‡, and § indicate statistical significance over the LM,
LM+WordVec, and LM+EntityVec, respectively.

SemSearch-ES

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

LM 0.3188 - 0.2805 - 0.3901 - -
LM + WordVec 0.3242 +1.69% 0.2726 -2.82% 0.3908 +0.18% 42/27/44
LM + EntityVec 0.3365† +5.55% 0.2832‡ +0.96% 0.4014 +2.9% 45/45/23
LM + WordVec + EntityVec 0.3358 +5.33% 0.2867‡ +2.21% 0.3995 +2.41% 57/15/41

ListSearch

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

LM 0.1683 - 0.2800 - 0.2431 - -
LM + WordVec 0.1724 +2.44% 0.2878 + 2.79% 0.2493 +2.55% 58/11/46
LM + EntityVec 0.1854†‡ +10.16% 0.2957 +5.61% 0.2597† +6.83% 75/8/32
LM + WordVec + EntityVec 0.1874†‡ +11.35% 0.2991† +6.82% 0.2673†‡ +9.95% 76/5/34

INEX-LD

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

LM 0.1593 - 0.2596 - 0.2800 - -
LM + WordVec 0.1619 +1.63% 0.2747 +5.82% 0.2908 +3.86% 54/5/40
LM + EntityVec 0.1788†‡ +7.85% 0.2859† +10.13% 0.3077† +9.89% 62/9/28
LM + WordVec + EntityVec 0.1837†‡§ +15.32% 0.2949†‡ +13.6% 0.3201†‡§ +14.32% 71/5/23

QALD-2

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

LM 0.1554 - 0.1907 - 0.2224 - -
LM + WordVec 0.1557 +0.19% 0.1929 +1.15% 0.2226 +0.09% 62/30/48
LM + EntityVec 0.1653†‡ + 6.17% 0.2100†‡ +10.12% 0.2338 +5.13% 94/18/28
LM + WordVec + EntityVec 0.1653†‡ +6.17% 0.2100†‡ +10.12% 0.2338 +5.13% 94/18/28

Table 3.4: Effect of WordVec and EntityVec models on top of RM3 baseline for
verbose, short queries and their union. Superscripts †,‡, and § indicate statistical
significance over the RM3, RM3+WordVec, and RM3+EntityVec, respectively.

Verbose Queries

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

RM3 0.1614 - 0.2103 - 0.2264 - -
RM3 + WordVec 0.1714† +6.2% 0.2286† +8.7% 0.2459† +8.61% 166/13/83
RM3 + EntityVec 0.1759† +8.98% 0.2233† +6.18% 0.2435† +7.55% 167/31/64
RM3 + WordVec + EntityVec 0.1810†‡§ +12.14% 0.2298†§ +9.27% 0.2508†§ +10.78% 185/15/62

Short Queries

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

RM3 0.2387 - 0.2902 - 0.3289 - -
RM3 + WordVec 0.2465 +3.27% 0.2941 +1.34% 0.3369 +2.43% 117/19/69
RM3 + EntityVec 0.2524† +5.74% 0.2976 +2.55% 0.3397† +3.28% 104/51/50
RM3 + WordVec + EntityVec 0.2546†‡ +6.66% 0.3010†‡ +3.72% 0.3461†‡ +5.23% 131/15/59

All Queries

Method MAP@1000 P@10 nDCG@10 Win/Tie/Loss

RM3 0.1954 - 0.2454 - 0.2714 - -
RM3 + WordVec 0.2044† +4.60% 0.2574† +4.88% 0.2859† +5.34% 283/32/152
RM3 + EntityVec 0.2095† +7.21% 0.2559† +4.27% 0.2857† +5.26% 271/82/114
RM3 + WordVec + EntityVec 0.2133†‡§ +9.16% 0.2610†§ +6.35% 0.2926†‡§ +7.81% 316/30/121
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3.2 Local and Global Query Expansion for Hierarchical Com-

plex Entity-centric Queries

A complex topic (i.e. query) T consists of heading nodes constructed in a hierar-

chical topic tree; an example is shown in Figure 3.1. Each heading node, h, represents

the subtopic elements. For example, a complex topic with subtopics delimited by a

slash would be: “Urban sprawl/Effects/Increased infrastructure and transportation

cost”. This consists of three heading nodes - the leaf heading is “Increased infrastruc-

ture and transportation cost” with the root heading “Urban sprawl” and intermediate

heading “Effects”. The tree structure provides information about the hierarchical re-

lationship between subtopics. In particular, the most important relationship is that

the root heading is the main focus of the overall topic.

Given a complex topic tree T , the outline consists of a representation for each

of the subtopic heading nodes h ∈ H. At the basic level, each heading contains its

word representation from text, W : {w1, ..., wk}, a sequence of words in the subtopic.

Beyond words, each heading can also be represented by features extracted by infor-

mation extraction and natural language processing techniques, for example part of

speech tags and simple dependence relationships.

In particular, we hypothesize that another key element of effective retrieval for

complex topics requires going beyond words to include entities and entity relation-

ships. Therefore, we propose representing the topic as well as documents with entity

mentions, TM and DM respectively, where each has M : {m1, ...,mk} with mk a men-

tion of an entity e in a knowledge base. Given an entity-centric corpus and task

along with rich structure, the mix of word and entity representation offers significant

potential for retrieval with complex topics. The result is sequence of ordered entities

within a heading with provenance connecting the entity annotations to free text. In

TREC CAR as well as adhoc document retrieval, this representation is (partially)

latent - it must inferred from the topic text.
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Figure 3.1: Example of a complex topic from the TREC Complex Answer Retrieval
track(Dalton et al., 2019).

3.2.1 Topic Expansion Model

We study two expansion approaches over diverse types of representations, based

on words and entities: 1) expansion based on local query-specific relevance feedback

and 2) expansion based on global word-entity embedding similarity. To specify the

representations we use different term vocabularies, v ∈ V , for example:

• Words, W : {w1, ..., wk} are unigram words from the collection vocabulary.

• Entities, E : {e1, ..., ek} are entities from a knowledge base, matched based on

their entity identifiers.

Note that entities may have multiple vocabularies that interact with one another.

We can match entities to word representations using the entity names and aliases

A : {a1, ..., ak} derived from their Wikipedia name, anchor text, redirects, and dis-

ambiguation pages.

To perform effective expansion, our goal is to estimate the probability of relevance

for an entry in the vocabulary with respect to the complex topic, T . In other words,

regardless of the underlying expansion method, the overarching goal is to identify the

latent representation of the topic across all vocabulary dimensions: p(V |T ). However,

a single expansion model for an entire complex topic is unlikely to be effective. For

both expansion methods we also build a mixture of fine-grained expansions for each
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subtopic node that are combined. For every type in the vocabulary V , and for every

heading node h ∈ H, we create a feature, f(h,D).

In Table 3.5 we illustrate different approaches for expansion that include three

dimensions of the expansion: the expansion method, the representation type, and

which subtopic to expand. An example is, [Antibiotic use in livestock/Use in different

livestock/In swine production]. In this case, R = [Antibiotic use in livestock] is the

root , I = [Use in different livestock] is an intermediate node, and H = [In swine

production] is the leaf heading. We vary the topic representation using differing

combinations of these three elements. The most common approach by participants

in TREC CAR is to simply concatenate the RIH context into one query and to

ignore the heading relationships or boundaries. In contrast, our fine-grained method

preserves these elements and handles them separately.

Features are combined using a log-linear model with parameters, θ. The number

of these features is limited to approximately 10. This scale allows it to be learned

efficiently using coordinate ascent to directly optimize the target retrieval metric. All

of the score-level features, both heading derived and feedback, correspond to queries

that can be expressed natively in the first pass matching phase of a search system.

Relevance Model Expansion. The basic building block is the Relevance Model

formulation to infer latent words or entities from pseudo-relevant feedback documents

(Lavrenko & Croft, 2001). We derive a distribution over all types of the vocabulary.

In this case, p(D = d|T ) is the relevance of the document to the topic, derived from

score for the document under the query model. The p(V |d) is the probability of the

vocabulary under the language model of the document using that representation.

Embedding-based Expansion. We utilize the entity embedding representation

introduce in Section 3.1.1 to represent entities and then compute embedding-based

similarity for both explicit entity mentions as well as words, two types from the

vocabulary. For the global similarity between dense embedding vectors we use the
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Table 3.5: Examples of topic expansion features across word and entity vocabularies.
All features are for R, I, and H nodes separately. The example topic is: [Antibiotic
use in livestock/Use in different livestock/In swine production]. The entities identified
in the topic are: [Antibiotics, Livestock/ Livestock/ Domestic pig, Pig farming]

Name Description Feature Example

RIH-QL
Representing words from
the root, intermediate,
and leaf subtopics

(antibiotic use livestock
different swine produc-
tion)

RIH-IDs-
Embed

Representing expanded
entities from global em-
beddings from the root,
intermediate, and leaf
subtopics using their IDs

Antibiotics →
Tetracycline.id

Livestock → Cattle.id
Pig farming →
(Animal husbandry).id

H-Names-
Embed

Expansion of entity names
within the leaf subtopic
using global embeddings

Pig farming → (an-
imal husbandry dairy
farming poultry ubre
blanca)

R-Aliases-
Embed

Expansion of aliases of
entity within the root
subtopic using global
embeddings

Tetracycline → (tetra-
cyn sumycin hydrochlo-
ride )
Cattle → (cow bull calf
bovine heifer steer moo
)

cosine similarity. In addition to expanding each subtopic node individually, we also

perform expansion of the complete topic tree as a whole. The embedding vector of

a node (or entire query tree) is represented as the average (mean) of the embedding

vector of each element within it.

3.2.2 Experimental Setup

Data. The primary dataset used for experiments is from the TREC Complex

Answer Retrieval (CAR) track, v2.1 (Dietz et al., 2018), released for the 2018 TREC

evaluation. We explained the CAR dataset in Section 2.2.1.4 in detail. As a brief

reminder, each topic consists of a Wikipedia article’s title, heading, and subheading.

For evaluation, we take advantage of the “Tree Qrela” automatic judgments. These
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judgments consider intermediate paragraph headings, thus containing more relevance

judgments than the older CAR “Hierarchical Qrels”. This experimental protocol

follows the Y2 and Y3 task definitions, performed on the Y1 query data because

automatic judgments are only available on this set. We use the standard V2 of

the paragraph collection for the retrieval. It consists of approximately 30 million

paragraphs from Wikipedia from December 2016.

Knowledge base. We use the non-benchmark articles from Wikipedia as a

knowledge base. These include the full article text, including the heading structure.

It does not include the infobox and other data that was excluded in the CAR pre-

processing. In addition to the text, we use anchor text, redirects, and disambiguation

metadata derived from the article collection and provided in the data.

Evaluation measures. We use the standard measures reported in TREC CAR

evaluations. The primary evaluation measure is Mean Average Precision (MAP). We

report R-Precision, because the number of relevant documents in TREC CAR varies

widely across topics. The NDCG@1000 metric is included following standard practice

in the track. For statistical significance, we use a paired t-test and report significance

at the 95% confidence interval.

System Details. The TREC CAR paragraph collection is indexed using the

Galago 1 retrieval system, an open-source research system. The query models and

feedback expansion models are all implemented using the Galago query language. The

paragraphs are indexed with the link fields to allow exact and partial matches of entity

links in the paragraphs. Stopword removal is performed on the heading queries using

the 418 INQUERY stopword list. Stemming is performed using the built-in Krovetz

stemmer. In our score fusion model we use a log-linear model combination of different

features for ranking. The model parameters, θ are optimized using coordinate ascent

1http://www.lemurproject.org/galago.php
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Table 3.6: Text-based baselines and expansion
methods. * indicates significance over the RH-
SDM run.

Model MAP R-Prec NDCG

RIH-QL 0.110 0.088 0.228
RH-SDM 0.132 0.109 0.248
RH-SDM-RM3 0.127 0.102 0.243
L2R-SDM-RM3 0.142* 0.107 0.257*

Embedding-Term 0.143* 0.119* 0.261*

GUIR (neural) 0.137 0.112 0.237
GUIR-Exp (neural) 0.142* 0.117 0.242

Table 3.7: Learned feature
weights of combination of
SDM and RM3 over different
outline levels using L2R.

Model Weight

RIH-QL 0.288
R-SDM 0.153
H-SDM 0.340
RH-SDM 0.108
RH-SDM-RM3 0.110

to directly optimize the target retrieval measure, Mean Average precision (MAP).

The implementation of the model is available in the open-source RankLib learning-

to-rank library. The implementation details of the entity embeddings is described in

Section 3.1.1.

Query Entity Annotation. The topics in TREC CAR do not have explicit

entity links. To support matching paragraph entity documents, we annotate the

complex topic headings with entities. Entity linking is performed on each heading

for both the train and test benchmark collections. We use the open-source SMAPH2

entity linker, a state-of-the-art approach at the time of our experiments .

Document Entity Annotation. For entity mentions in documents we use the

existing entity links provided in Wikipedia. We note that the entity links in Wikipedia

are sparse and biased. By convention only the first mention of an entity in an article

is annotated with a link. This biases retrieval based on entity identifiers towards

paragraphs that occur early in a Wikipedia article.
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3.2.3 Results

Word-based Retrieval and Expansion. We first evaluate standard text re-

trieval methods for heading retrieval. The results are shown in Table 3.6. The baseline

model, RIH-QL, is a standard bag-of-words query-likelihood model (Ponte & Croft,

1998) on all terms in the topic. All other runs show statistically significant gains

over this simple baseline. The table also shows results for the Sequential Depen-

dence Model (SDM) that uses the root and leaf subtopics of the heading. We also

experimented with other variations (H-QL, RIH-SDM, RH-QL, etc), but these are all

outperformed by RH-SDM. RH-SDM was the best performing unsupervised model for

this collection in TREC 2018. We also evaluate using a relevance model term-based

expansion on top of the best SDM run. We find that the RM3 performance is in-

significantly worse than the SDM baseline, demonstrating the PRF based on words is

challenging in this environment. We attribute this to the sparseness of relevant para-

graphs to the topics, an average of 4.3 paragraphs per topic, with baselines retrieving

on average about half of those, 2.2.

We experimented with combining the baseline systems with additional fine-grained

SDM components from each part of the query (subtopic) separately and weighting and

combining them into a linear model, the L2R-SDM-RM3 method. The features and

learned weights are given in Table 3.7. We observe that the H-SDM feature is the most

important, putting greater emphasis on the leaf subtopic (approximately 2x the root

topic). Combining these baseline retrieval and subtopic heading components results in

significant gains over all the models individually, including RH-SDM. The Embedding-

Term method is the L2R-SDM-RM3 with addition of global word expansion. The

results show a small, but insignificant improvement to the model effectiveness.

2https://github.com/marcocor/smaph
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Table 3.8: Entity-based expansion with varying latent entity models. * indicates
significance over the L2R-SDM-RM3 Baseline.

Model MAP R-Prec NDCG

L2R-SDM-RM3 0.142 0.107 0.257
Entity Embedding 0.154 0.127 0.277
Entity Retrieval 0.160* 0.133 0.284*
Entity Collection PRF 0.172* 0.146* 0.297*

The bottom of Table 3.6 shows a comparison with one of the leading neural ranking

models (at the time that this work is done) from the Georgetown University IR

group (GUIR). It uses the PACRR neural ranking architecture modified with heading

independence and heading frequency context vectors (MacAvaney et al., 2018). The

second row (Exp) adds expansion words of the topic’s query terms. Interestingly,

the learned GUIR neural run does do not improve significantly over the RH-SDM

baseline, the SDM model even slightly outperforms it on NDCG. The learned word-

based expansion methods L2R-SDM-RM3 and Embedding-Term are both statistically

significant over the GUIR base run for MAP, but not statistically significantly different

from the Exp run. This indicates that our methods are comparable to state-of-the-art

word-based expansion models using deep learning for this collection.

Entity Expansion. We study combining the previous word-based representa-

tions with entity representations, and use entities annotated in the query as well as

inferred entities from local and global sources: global embeddings, local entity re-

trieval, and local pseudo-relevance feedback on the paragraph collection. Each of the

entity expansion models is a learned combination of subtopic expansions across the

different entity vocabularies (identifiers, names, aliases, and unigram entity language

models). The results in Table 3.8 show that adding entity-based features improves

effectiveness consistently across all entity inference methods. There are benefits to

using global entity embeddings, but they are not significant over the baseline. The
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local retrieval and collection PRF expansion models both result in significant improve-

ments over the baseline. In particular, the collection entity representation shows the

largest effectiveness gains. Additionally, all of the entity-based expansion methods

show statistically significant improvements over the GUIR-Exp word-based expansion

run. When compared with the baseline word model entity-expansion methods have a

win-loss ratio varying from 2.6 up to 4.6. The best method based on collection feed-

back has 281 losses, 1300 wins, with a win-loss ratio of 4.6. In contrast, the win-loss

ratio for the GUIR-Exp model is 1.1, hurting almost as many queries as it helps.

Consequently, we conclude that entity-based expansion methods more consistently

improve effectiveness for complex topics when compared with word-based expansion

methods.

3.3 Discussion

The work in this chapter was carried out from 2017 to 2019. In this section, we

briefly review subsequent research on retrieval tasks involving entity-centric queries

and documents.These works primarily build upon advancements made after our initial

research, particularly focusing on the application of Transformer models.

Following our exploration of entity-based embeddings for entity retrieval, Gerritse

et al. (2020) investigated using Wikipedia2vec (Yamada et al., 2018) embeddings for

representing both queries and documents in this task. Their approach involved using

the similarity between query and document vectors derived from Wikipedia2vec as a

re-ranking step, subsequent to an initial ranking obtained by a fielded probabilistic

retrieval model on the DBPedia-Entity V2 dataset. In a subsequent study, with the

advent of Transformer architectures, Gerritse et al. (2022) combined E-BERT, an

entity-enhanced BERT model, with the monoBERT cross-encoder re-ranking archi-

tecture for entity retrieval. This approach achieved state-of-the-art results for entity-
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centric queries of DBPedia-Entity V2 dataset, surpassing their previous Word2Vec-

based re-ranking strategy.

Further, the mono-BERT (Nogueira & Cho, 2019) re-ranking architecture achieved

state-of-the-art performance in TREC-CAR complex entity centric queries achieving

an improvement of 2X compared to non-neural and earlier neural baselines.

3.4 Summary

In this chapter, we studied the task of Entity Retrieval that involves retrieving a

ranked list of entities for a specific query. We employ the contextual information latent

in entities’ characteristics such as their relationship with other entities to represent

the queries and documents. We developed an entity embedding model that leverages

relationships within an entity’s summary stemming from other entities mentioned

in the summary for enhanced representation. We applied this model to an entity

ranking task, representing both queries and documents within the model. Combining

this embedding-based ranking with a traditional Language Model retrieval approach

yielded significantly improved performance compared to term-based retrieval alone.

Furthermore, our entity-based embedding ranking outperformed a word-based embed-

ding model. Finally, we created a fusion retrieval model integrating the term-based

Language Model, word-based embedding ranking, and our entity-based embedding

ranking, achieving the most robust results (Contribution 1.1 ).

Further, we developed an entity-aware query expansion method for passage re-

trieval, applicable to complex, multifaceted, hierarchical queries. Our approach com-

bines both probabilistic retrieval techniques and entity embedding vectors. This al-

lows us to incorporate entities from ‘local’ (corpus-specific entities index) and ‘global’

(general knowledge entities obtained from embedding) sources. The resulting expan-

sion model outperforms the learned combination of probabilistic word-based models

by 21%, demonstrating the value of entity-based representations (Contribution 1.2 ).
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However, it’s important to note that later works using BERT-based models have

reported even higher performance levels (Nogueira & Cho, 2019).
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CHAPTER 4

PSEUDO RELEVANT FEEDBACK DOCUMENTS AS
CONTEXTUAL INFORMATION SOURCE

Statement of Contribution

The works described in this chapter, namely CEQE: Contextualized Embeddings for

Query Expansion and CEQE to SQET: A study of contextualized embeddings for query

expansion were published in the ECIR 2021 (Naseri et al., 2021) and Information

Retrieval Journal (Naseri et al., 2022), respectively. The latter work is an extension

of the former. I was the lead author in both of the publications, and designed the

expansion models and the experiments.
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Traditional text processing methods often relied on either high-dimensional word-

based representations or continuous low-dimensional vectors. One example of the

former is Term Frequency-Inverse Document Frequency (TF-IDF) which determines

how important a word is to a document within a larger collection. It considers

how often the word appears in the document (term frequency) while down-weighting

words that are common across many documents (inverse document frequency). On

the other hand, continuous low-dimensional vectors were popularized by models such

as Word2Vec (Mikolov, Sutskever, et al., 2013). Word2Vec uses neural networks

to embed words into a dense vector space which learns term representation by pre-

dicting a word based on its context within a sentence, thereby capturing semantic

and syntactic word relationships. However, both approaches fundamentally assign

context-independent, static representations to words.

Transformer models (Vaswani et al., 2017) leverage attention mechanisms to dy-

namically understand the context of words within text and address the limitation of

static representation. Pre-training on massive amounts of data provides these mod-

els with a rich foundation of language knowledge, further enhancing their contextual

understanding. This makes them significantly more powerful than previous static

models in various NLP and retrieval tasks.

Further, in information retrieval systems, Pseudo-Relevant Documents (PRF) –

which are documents initially retrieved in response to the original query and assumed

to be relevant – have been extensively studied to provide more context and facilitate

query reformulation (query expansion). However, previous work primarily relied on

static term representations, such as term-frequency-based methods and static embed-

ding methods.

With the advent of Transformer-based language models, which represent terms

according to their surrounding context, in this chapter we investigate the central

question of “How can we effectively leverage the context within PRF documents by
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utilizing these models for improved query expansion?”. This research addresses a

fundamental problem in information retrieval where the core matching algorithms

often fail to identify many relevant results in the first candidate pool. To improve

retrieval outcomes, we need more effective core matching algorithms that boost recall,

providing a richer foundation for neural re-ranking methods.

4.1 Unsupervised Query Expansion with Transformers

4.1.1 Word and WordPiece representations

In contextualized models, to address the problem of out-of-vocabulary terms, sub-

word representation such as WordPieces (Schuster & Nakajima, 2012) is used. For

backward compatibility with existing word-based retrieval systems (as well as com-

parison with previous methods) we use words as the matching unit. We first aggregate

WordPiece tokens into a contextualized vector for words. We compute the average

embedding vector of word w by −→w ≜ 1
|w|
∑

pi∈w
−→pi , where pi is a WordPiece of word

w and |w| is the number of WordPieces in the word w.

4.1.2 Contextualized Embeddings for Query Expansion (CEQE)

We propose the CEQE model that follows in the vein of principled probabilistic

language modeling approaches, such as the Relevance Model formulation of pseudo-

relevance feedback (Lavrenko & Croft, 2001). In contrast to these approaches that

are based on static lexical matching, we formulate relevance based on contextualized

vector representations. We build the contextualized feedback model based upon the

core Relevance Model (RM) formulation:

p(w|θR) ∝
∑
D∈R

p(w,Q,D) (4.1)

where θR and R respectively denote the feedback language model and the set of

pseudo-relevant documents, i.e., the top retrieved documents, and w, Q and D rep-
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resent word, query and document respectively. In the original RM formulation, the

joint probability of p(Q,w,D) is broken down as follows:

∑
D∈R

p(w,Q,D) =
∑
D∈R

p(w,Q|D)p(D) (4.2)

=
∑
D∈R

p(w|Q,D)p(Q|D)p(D) (4.3)

=
∑
D∈R

p(w|D)p(Q|D)p(D) (4.4)

where Equation 4.4 is derived from the simplifying independence assumption between

the query Q and term w. This assumption results in a static representation based on

simple word counts and ignores the query explicitly (by assuming that the expansion

term w is conditionally independent of Q given D). It only incorporates evidence in-

directly through P (Q|D). In contrast, the proposed CEQE parameterization doesn’t

assume the term w is independent of the query Q and explicitly incorporates the query

focus based on similarity with contextualized vector representations. More formally:

∑
D∈R

p(w,Q,D) =
∑
D∈R

p(w|Q,D)p(Q|D)p(D) (4.5)

which is the same as Equation 4.3.

With a contextualized model it is no longer possible to simply count document

terms – they must be grouped, simplified, or compared against a query representation.

We explicitly incorporate contextualized query similarity for each word occurrence.

We now break down each of the elements in Equation 4.5 in more detail. Following

common practice, we assume a uniform probability for p(D). p(Q|D) is the posterior

probability of the query given a document from the retrieval model. The retrieval

model can be either a Language model with Dirichlet smoothing or even BM25. For

BM25 the retrieval scores are mapped to a probability distribution by applying the
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Softmax function on the document scores. We propose several methods to calculate

p(w|Q,D) below.

Centroid Representation In this approach, we create a model of the whole

query and then compare it to the contextualized representation of each word mention

(occurrence), mw. In the centroid representation we define σ(Q), the aggregation of

all WordPieces of the query. Note that a representation of a query also includes special

delimiter tokens. For example, in BERT this would include [CLS] and [SEP] tokens

that we find carry contextual importance. We include the [CLS] token in particular

because it is often used as a representation of the input with respect to the target

task. For the query centroid representation we define σ as the mean of its individual

component contextual vectors: we represent query σ(Q) by
−→
Q ≜ 1

|Q|
∑

qi∈Q
−→q , where

qi is a WordPiece token and |Q| is the length of the query in WordPiece tokens.

We then define p(w|Q,D) by comparing the similarity of individual word mentions

to the query centroid representation based on a similarity function δ (e.g., cosine). If

mD
w is a mention of word w in a document D and MD

w is the complete set of mentions

of w:

p(w|Q,D) ≜

∑
mD

w∈MD
w
δ(
−→
Q,

−→
mD

w )∑
mD∈MD

∗
δ(
−→
Q,

−→
mD)

(4.6)

The denominator is a normalization constant that considers all word mentions across

the entire document to form a probability. This approach is novel because the con-

textualized vector mD
w will be different for every occurrence in D because the context

surrounding each mention of word w varies.

Term-based Representation In this section we propose an alternative param-

eterization for p(w|Q,D). Instead of using the centroid of the query to compute a

term’s similarity to the entire query, we compute the similarity for each query term

separately. If q is a query term and −→q is its corresponding contextualized embedding
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vector, this can be formulated as:

p(w|q,D) ≜

∑
mD

w∈MD
w
δ(−→q ,

−→
mD

w )∑
mD∈MD

∗
δ(−→q ,

−→
mD)

(4.7)

To select a term for expansion for the query overall we perform an extra step of pooling

across the similarities of individual words. This step combines the contextualized

word vectors. Function f calculates the semantic similarity of word w with the whole

query by combining the semantic similarity of it with each query term q. We define

fmax(w,Q,D) = maxq∈Q p(w|q,D) and fprod(w,Q,D) =
∏

q∈Q p(w|q,D) as MaxPool

and MulPool, respectively. If Z ′ is a normalization factor that is the sum over the

terms in document D, which is less computationally expensive than summing over all

vocabulary terms, these can be defined as:

p(w|Q,D) ≜
fmax/prod(w,Q,D)

Z ′ (4.8)

The final result of all of these methods is a relevance distribution over terms de-

rived from the contextualized representations in top retrieved documents. The result

is an updated query language model that can be used on its own or combined with

other representations. In our experiments, we follow the standard variant (Abdul-

Jaleel et al., 2004) of Relevance Model, RM3 which is designed to maintain informa-

tion in the original query model as well as the information gained from the behaviour

of the returned documents by linearly interpolating the relevance model with the

original query model:

P ′(w|θR) = λP (w|θR) + (1− λ)P (w|Q) (4.9)

where P (w|Q) is the original query language model which without loss of gener-

ality we confine our experiments to Query Likelihood (QL).
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4.2 Supervised Query Expansion with Transformers (SQET)

We propose SQET, which models the problem of query expansion as a classifi-

cation task to classify the expansion term as relevant or non-relevant to the query.

Given a query Q and an expansion term w, either with a context or without, a BERT-

based encoder computes the relevance score between the query Q and the expansion

term w. Note that SQET is a discriminative (classification) model that learns the

boundary between the relevant and non-relevant classes, rather than a generative

model which learns a distribution of the individual classes. We build the set of can-

didate expansion terms based on the pseudo-relevance documents retrieved using a

traditional IR model.

SQET represents a model that computes the relevancy score between the query

Q and the expansion term w without any context for w. Following the same notation

as Devlin et al. (2019) we feed the query as sentence A and the expansion term as

sentence B: [[CLS], Q, [SEP], w, [SEP]]. We feed the final hidden state corresponding

to [CLS] in the model to a single layer neural network with softmax activation func-

tion which outputs the probability that the term w is relevant to the query Q. This

produces a query expansion term probability distribution over the vocabulary. Fol-

lowing the standard variant of the Relevance Model, RM3 (Equation 4.9) we perform

a linear interpolation of the SQET expansion query terms with the Query Likelihood

score of the original query.

SQET-Context aims to leverage the contextual information of the candidate

expansion term in the retrieved pseudo-relevant documents. As mentioned earlier the

pool of candidate expansion terms is created from the pseudo-relevant documents’

terms. To provide the terms with context we define a fixed window of terms around

the candidate expansion term’s mention in the pseudo-relevant document with size

c. Unlike the model from Dai and Callan (2019), BERT-MaxP, that calculates the

relevance score of the documents’ passages to the query and re-ranks the result based
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on the calculated score, we calculate the relevancy of each term of the pseudo-relevant

document to the query in order to improve the first round of retrieval by expanding the

query with top relevant terms. Since there could be multiple mentions of a candidate

expansion term in the pseudo-relevant document, we define the context of the ith

mention of the candidate expansion term w as context(mi
w).

We form the input of the BERT-based encoder by concatenating the Query Q and

the context of the the ith mention of the candidate expansion term context(mi
w):

[[CLS], Q, [SEP], context(mi
w), [SEP]].

Similar to the SQET model, by feeding the [CLS] final hidden state to a feed

forward model, we get the probability of context(mi
w) being relevant to the query

Q. To determine the relevance score of the candidate expansion term w, we apply

inference using the following three aggregation functions:

• Max represents the probability of the candidate expansion term w by maximum

relevancy score between Q and context(mi
w).

• Weighted Sum (wSum) represent the probability of the candidate expansion

term w by the weighted sum of the relevancy score between Q and context(mi
w)

derived from BERT. The formulation is as follow:

p(w) =
1

Z

∑
mi

w∈Mw

tf(w, context(mi
w))× BERT(Q, context(mi

w)) (4.10)

where Mw is the set of mentions of the candidate expansion term w, tf(w,

context(mi
w)) is the frequency of term w in context(mi

w), BERT(Q,context(mi
w))

is the relevancy score between context(mi
w) andQ calculated by a BERT-based

ranker, and Z is merely a normalizer allowing for the weights to be turned into

a probability distribution.
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• invRank represents the probability of the candidate expansion term w by ag-

gregating the relevancy score between Q and context(mi
w) according to the

inversed log of rank of the context(mi
w). The formulation is as follow:

p(w) =
1

Z

∑
mi

w∈Mw

1

log2(rank(context(m
i
w)) + 1)

× BERT(Q, context(mi
w))

(4.11)

Mw and BERT(Q,context(mi
w)) and Z are defined as mentioned above.

4.3 Experimental Setup

4.3.1 Datasets

We study the models on multiple standard TREC benchmark datasets: Robust,

Deep Learning, and Complex Answer Retrieval (CAR). For SQET we focus on its

behavior in the well-studied adhoc Robust dataset.

• Robust The corpus consists of Tipster disks 4 and 5 containing approximately

528K newswire articles. The evaluation topics are the 250 Robust topics (301-

450, 601-700). We use the titles as queries.

• TREC Deep Learning The 2019 TREC Deep Learning (TREC19-DL) Track

created large labeled datasets for ad-hoc search. We perform the full document

ranking task with the goal of testing new expansion methods to improve effec-

tiveness. The evaluation has 43 test queries from Bing, and the corpus consists

of 3.2 million web documents. Documents are rated on a four point graded

relevance scale. The primary measure is nDCG@10.

• TREC CAR TREC Complex Answer Retrieval (CAR)(Dietz et al., 2018) is

a dataset curated for the TREC Complex Answer Retrieval track introduced in
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2017 to address retrieval for complex topics. We provide more details on the

TREC CAR dataset in Section 2.2.1.4.

Evaluation Metrics. Since we focus on introducing relevant documents to

a candidate pool for downstream ranking, we consider both recall-focused metrics

(Recall@100, Recall@1000, MAP) as well as precision-based measures (P@10/20,

nDCG@10/ 20). For Robust, in order to compare with previous works we report preci-

sion and nDCG at cut-off 20. We report the official primary measure for TREC19-DL,

nDCG@10. For significance testing, we use a paired t-test with significance at the

95% confidence interval.

4.3.2 Intrinsic expansion judgments

Beyond direct retrieval, we also assess term selection quality intrinsically. We

directly measure the utility of individual expansion terms. Following previous work

from Imani et al. (2019), we generate this term utility by performing expansion one

word at a time. Retrieval effectiveness assesses whether a term is good (helps re-

trieval), bad (hurts retrieval), or neutral (has no effect). We pool the top thousand

candidate expansion terms from all candidate expansion methods. These are issued

to the retrieval system with the original query (each with a default weight of 0.5, the

default relevance model expansion weight). This approach follows standard relevance

model interpolation practice defined in Equation 4.9, which removes the dependence

on the original query length (instead of simply appending a word). We measure im-

provement based on recall@1000 with a threshold of 0.001. For Robust this results in

approximately 500k candidate terms. For the intrinsic evaluations only queries with

at least one positive expansion term are used. This is 181 queries for Robust with

10,068 positive terms.
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4.3.3 Baselines

4.3.3.1 Unsupervised: CEQE

We study the behavior of the CEQE model in comparison with standard models

from probabilistic language modeling. For the baseline retrieval we use BM25 because

it is the most widely used first-pass unsupervised ranker used to generate candidate

pools. We compare with two static expansion models (Kuzi et al., 2016) and a proven

pseudo-relevance feedback model, the Relevance Model (Lavrenko & Croft, 2001). We

use the standard relevance model (RM3 variant) that performs linear interpolation of

the RM expansion terms with the original query using the Query Likelihood score.

Static Embeddings For static word embeddings we use GloVe (Pennington et

al., 2014) embeddings. The pre-trained 300 dimensional Glove word embeddings are

extracted from a 6 billion token collection (Wikipedia dump 2014 plus Gigawords

5). These embeddings are the most effective static embeddings for a variety of tasks,

including previous work (Diaz et al., 2016) on query expansion. We use the static

embeddings with two variations. The Static-Embed model (Kuzi et al., 2016) is a

global expansion model using GloVe expansion on the target collection vocabulary.

For a fair comparison with CEQE, we additionally consider a Static-Embed-PRF

variant that has its vocabulary limited to terms appearing in the PRF documents.

4.3.3.2 Supervised: SQET

Similar to the unsupervised model, CEQE, we study the behavior of the SQET

variants in comparison with the standard models from probabilistic language model-

ing: BM25 and RM3.

BM25invRank To validate the effect of the scores obtained by BERT on the ex-

pansion terms’ ranking in the SQET-Context, we replace the BERT-based score with

the BM25 score and use the inverse log rank aggregation approach to calculate the

final score.
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MASK-QE We replace a query term with a [MASK] token in order to see what

terms can be in the position of the masked query term. We take advantage of a

pre-trained BERT model to predict the masked query term.

4.3.4 System Details

All collections are indexed with the Galago1 open-source retrieval system for re-

search. The query models and feedback expansion models are all implemented us-

ing the Galago query language. We perform stopword removal and stemming using

Galago’s stopword list and Krovetz stemmer, respectively.

Contextualized Embedding Model We use BERT because it is the most

widely used contextual representation model. We use the pre-trained BERT (BERT-

Base, Uncased) model with maximum sequence length of 128. for calculating the

contextualized embedding vectors.

• Unsupervised Since the documents in Robust are longer than 128 tokens we

split the documents into chunks with a maximum size of 128 tokens. For the

primary CEQE results in this section we use a single layer of the contextualized

representation, the second to last layer (11) of BERT. This layer was shown to

be the most effective single layer on NER (Devlin et al., 2019) and it was shown

that later layers (before the last) were the most effective word representations

for multiple language tasks (Peters, Ruder, & Smith, 2019) that use contextual

embeddings as features. Initial preliminary experiments confirmed this finding.

• Supervised In SQET-Context, the window size is chosen from {5, 10}. If there

are not enough terms surrounding the candidate expansion term, we pad the

sentence with [PAD] wordPiece token. For the MASK-QE baseline, we observe

that the predicted terms are sensitive to whether the input text is padded. In

1http://www.lemurproject.org/galago.php
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order to conduct our experiments with batched input, we set the maximum

sequence length of BERT for query input to 12 since the maximum length of

tokenized Robust04 queries using WordPiece (Schuster & Nakajima, 2012) is

equal to 10.

Neural ranking models For our neural models we adopt CEDR (MacAvaney

et al., 2019). In particular, to align with the use of the contextualized models we

use the BERT variant. For Robust, we use the CEDR-KNRM model trained by

the authors (MacAvaney et al., 2019). Throughout our experiments we refer to the

CEDR-KNRM as CEDR. For TREC19-DL we use a CEDR variant trained on a

random sample of 1000 MS MARCO train queries with early stopping to terminate

when there is no validation improvement for 20 iterations.

Training - Supervised We fine-tune the SQET variants using a TPU v3 with

a batch size of 128. The SQET model includes approximately 350K negative and

6.6K positive instances. The Context-SQET model consists of approximately 2M

negative and 4K positive instances. To avoid biasing the model towards predicting

non-relevant labels, which are approximately 50 times more frequent in the training

set, we build each batch by sampling an equal number of relevant and non-relevant

expansion terms. For both models, we use Adam (Kingma & Ba, 2014) with the

initial learning rate set to 2 × 10−6, learning rate warmup proportion equal to 0.1 of

the training steps, and linear decay of the learning rate.

4.4 Results

4.4.1 Contextualized Query Expansion

We study how to incorporate contextualized embeddings for the task of unsuper-

vised and supervised query expansion. First, we evaluate the retrieval effectiveness

of our expansion models in combination with unsupervised retrieval systems, such as

BM25. We study this setup because expansion is widely performed on top of these

60



simple and fast unsupervised baselines. We start with CEQE and baselines on the

2019 Deep Learning Track in Table 4.1 and TREC CAR in Table 4.2. After these,

we compare the behavior of CEQE and SQET on the Robust collection.

Deep Learning 19 (Table 4.1) We report the official evaluation measures for

the TREC 2019 Deep Learning Track (Craswell et al., 2019) as well as Recall@1000.

For nDCG@10, the baseline BM25 retrieval is more effective than all expansion meth-

ods. To give an indicator of the BM25 + RM3 parameters, the average parameter

settings across the folds is: 15 feedback docs, 85 expansion terms, and interpolation

weight of 0.4. We observe that a tuned RM3 outperforms the static embedding meth-

ods across all measures. CEQE-MulPool and CEQE-MaxPool also outperform the

static embedding model across all measures. The best performing expansion method

is CEQE-MaxPool, outperforming RM3 (note that this comparison is among the indi-

vidual expansion methods excluding CEQE-MaxPool-RM3comb, TREC 2019 Median

and TREC 2019 Best runs). The interpolation of CEQE-MaxPool and RM3 yields

small improvements over MaxPool, indicating that RM3 is not adding significantly

new information. We note that given the small sample size (43 topics), none of the

unsupervised methods show statistically significant differences between them. As

shown later, that requires performing expansion on top of neural rankings.

Although our experimental setup is based on cross-fold validation (rather than

tuning on MARCO), we include the reported values from the Deep Learning track

overview (Craswell et al., 2019) for reference. Importantly, we observe that the

CEQE-MaxPool outperforms all submitted TREC systems on recall@1000 and is

in the top five for recall@100. Moreover, we observe that the CEQE-MaxPool per-

forms competitively with the TREC 2019 Median run in P@10. It’s noteworthy that

the unsupervised CEQE-MaxPool ‘traditional’ model is only slightly lower than the

median for P@10 and nDCG@10 with runs that include many state-of-the-art neural

models. More specifically, the TREC 2019 Median and TREC 2019 Best are among
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Table 4.1: Ranking effectiveness of CEQE on unsupervised baseline retrieval for Deep
Learning 2019 Track for the task of full document ranking. The superscript † and ‡
denote statistical significance over BM25 + RM3 and Static-Embed, respectively.

Model P@10 nDCG@10 mAP@1000 Recall@100 Recall@1000

BM25 0.6535 0.5730 0.3513 0.4053 0.6950
BM25 + RM3 0.6256 0.5343 0.3975‡ 0.4434‡ 0.7750‡

Static-Embed 0.6186 0.5427 0.3373 0.3973 0.7179
Static-Embed-PRF 0.5605 0.4925 0.3166 0.3715 0.6737
CEQE-Centroid 0.5580 0.5580 0.4144‡ 0.4464‡ 0.7804‡

CEQE-MulPool 0.6442 0.5563 0.3724‡ 0.4295‡ 0.7560‡

CEQE-MaxPool 0.6581 0.5614 0.4161†‡ 0.4506‡ 0.7832‡

CEQE-MaxPool-RM3comb 0.6535 0.5579 0.4178†‡ 0.4507‡ 0.7843‡

TREC 2019 Median 0.6597 0.5834 0.2984 0.3748 0.5484
TREC 2019 Best 0.8093 0.7260 0.4280 0.4670 0.7553

the runs that take advantage of a train dataset with more than 36K queries and are

specifically tuned to improve nDCG metric. However, as stated earlier the CEQE

models does not take advantage of any train data and its focus is to improve recall

by including relevant documents in top 100 or top 1000 retrieved document to later

to be used as a first stage run for the neural re-rankers. Moreover, since CEQE is a

query expansion technique it is prone to drift the query by introducing extraneous

words (Croft et al., 2010) which can result in drop in the performance in terms of

precision-based metrics.

Complex Answer Retrieval (Table 4.2) We follow previous expansion work

on CAR (Dalton et al., 2019), and use BenchmarkY1Tree with the root topic titles

removed. This is the recommended setup from the CAR organizers, and is an updated

version of the widely used hierarchical judgments (and therefore slightly different from

reported hierarchical values (Nogueira et al., 2019)). The baselines are comparable

to the Lucene runs provided by the track organizers.

The CAR collection is particularly challenging for feedback models because there

are few relevant paragraphs per query in the collection, approximately 3.5 on average.

Also, recall for CAR topics is lower by more than 10% for BM25 and 18% for BM25 +
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Table 4.2: Ranking effectiveness of CEQE on unsupervised baseline retrieval for the
Complex Answer Retrieval (CAR) Track. The superscript † and ‡ denote statistical
significance over BM25 + RM3 and Static-Embed-PRF, respectively.

Model mAP@1000 R-Prec Recall@100 Recall@1000

BM25 0.1102 0.0857 0.3680 0.5867
BM25 + RM3 0.1119 0.0881 0.3782 0.6056

Static-Embed 0.1144 0.0895 0.3796 0.5900
Static-Embed-PRF 0.1135 0.0879 0.3880† 0.6014

CEQE-Centroid 0.1124 0.0869 0.3806 0.6138†
‡

CEQE-MulPool 0.1020 0.0801 0.3615 0.6018
CEQE-MaxPool 0.1127 0.0877 0.3801 0.6141†‡

CEQE-MaxPool-RM3Comb 0.1122 0.0871 0.3808 0.6155†‡

RM3 when compared with the other test collections. The PRF feedback parameters

learned on BenchmarkY1Train are 20 feedback paragraphs, 50 feedback terms, and

an interpolation weight of 0.9. This indicates almost all weight is being given to the

original query (which is also longer with multiple Wikipedia headings).

The results show that the CEQE-MaxPool outperforms the existing static methods

for Recall@1000. In fact it provides the only statistically significant improvement over

the BM25 baseline. The interpolation of CEQE-MaxPool and RM3 yields marginal

improvements over MaxPool alone, indicating the CEQE is relatively robust on its

own.

We observe small gains over RM3 from the static embedding models. In particu-

lar, the static-embed-PRF has the best Recall@100 of the expansion runs. The static

Glove embedding has the best MAP score. We hypothesize that requiring the terms

to be in both GloVe and PRF documents is providing a useful filter when there are

few relevant documents retrieved. CEQE is competitive and insignificantly different

in other measures. All in all, the main objective of CEQE is to do query expansion to

include more relevant terms to the query in order to include more relevant documents

in the first stage ranking. Query expansion can introduce query drift due to extrane-
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ous words or weighting of terms (Croft et al., 2010). Thus, they perform better with

recall-oriented metrics compared to precision-oriented metrics.

4.4.1.1 Comparing CEQE and SQET on Robust

We now study the behavior of the CEQE unsupervised model and compare it with

the SQET supervised model on Robust in Table 4.3. All the Static-Embed variants,

CEQE variants and SQET variants outperform the baseline BM25 retrieval method

across all measures. MASK-QE is the only expansion method that performs worse

than the BM25 baseline.

The static embedding models outperform BM25, but do not perform as well as

the Relevance Model (RM3). The Static-Embed-PRF method that only uses terms

in the PRF documents’ vocabulary is more effective across all measures over the

Static-Embed approach with a global vocabulary. We hypothesize that this may be

due to the fact that the query results provide a topically focused vocabulary and

filter out generally similar noise. RM3 significantly outperforms the Static-Embed

method for MAP, but not other measures. To give an indicator of the BM25 + RM3

parameters, the average parameter settings across the folds is: 22 feedback docs, 71

expansion terms, and interpolation weight of 0.3. We observe that all CEQE variants

outperform the static embedding models. The results show CEQE-MaxPool is the

best CEQE variant method. The Centroid method is slightly lower than MaxPool,

and both outperform multiplicative pooling. The CEQE-MaxPool result outperforms

the BM25+RM3 across all measures and in Recall@1000 is significant over both static

embedding methods and BM25+RM3, which demonstrates the utility of context-

dependent embeddings.

The CEQE-MaxPool-RM3Comb which is a combination of CEQE-MaxPool and

RM3 shows a small insignificant improvement over the CEQE-MaxPool result. CEQE-

MaxPool (fine-tuned) shows the result of using MaxPool with ‘fine-tuned’ contextual
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embeddings from a BERT model trained for ranking on Robust. The results show

small and insignificant differences across all measures. It is almost identical to vanilla

embedding effectiveness after being combined with RM3. This indicates that, when

used for CEQE-based expansion, pre-trained models are comparable in effectiveness

to ones fine-tuned for ranking. Therefore, we did not continue conducting experi-

ments with a fine-tuned model for TREC19-DL and CAR. To our knowledge these

are the best unsupervised query expansion results for Robust that do not use external

collections.

The SQET supervised method outperforms the baseline BM25, but does not

outperform the BM25+RM3 baseline. The SQET-ContextinvRank outperforms the

MASK-QE and SQET, but does not outperform the BM25+RM3 baseline on its own.

Examining the results, we hypothesize that this is because of the importance in term

weighting with multiple expansion terms. The SQET-ContextinvRank model is only

trained to classify the boundary between relevant expansion terms and non-relevant,

and the predicted scores are not effective for term weighting in the query language

model. We combine the RM3 and SQET-ContextinvRank using linear interpolation

in SQET-ContextinvRankComb, tuned for average precision. This demonstrates that

combining the signals from unsupervised RM3 model and supervised SQET result in

further gains. The resulting model is significantly better than the RM3 expansion in

recall@100 and recall@1000 metrics.

Finally, the last row of the table, SQET-ContextinvRankCEQE-MaxComb, shows

the result of the linear interpolation of the CEQE-MaxPool and the SQET-ContextinvRank

tuned on mean average precision and that both of models provide gain in the final

results. This model outperforms the BM25+RM3 across nDCG@20, recall@100, re-

call@1000 metrics.
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Table 4.3: Ranking effectiveness on the Robust collection. The superscript † and
‡ denote statistical significance over BM25 + RM3 and Static-Embed-PRF, respec-
tively. Bold indicates the best value in each section of the table.

Model P@20 nDCG@20 mAP@1000 Recall@100 Recall@1000

BM25 0.3657 0.4193 0.2574 0.4165 0.6933
BM25 + RM3 0.3998 0.4517 0.3069 0.4610‡ 0.7588‡

Static-Embed 0.3675 0.4285 0.2615 0.4217 0.7125
Static-Embed-PRF 0.3781 0.4400 0.2703 0.4324 0.7231
CEQE-Centroid 0.3922 0.4462 0.3019‡ 0.4593‡ 0.7653†‡

CEQE-MulPool 0.3847 0.4360 0.2845‡ 0.4517‡ 0.7435‡

CEQE-MaxPool 0.4040‡ 0.4587 0.3086‡ 0.4651‡ 0.7689†‡

CEQE-MaxPool-RM3Comb 0.4042 0.4577 0.3104‡ 0.4656‡ 0.7636‡

CEQE-MaxPool(fine-tuned) 0.3986‡ 0.4528 0.3071‡ 0.4647‡ 0.7626‡

MASK-QE 0.3655 0.4223 0.2539 0.4144 0.6940
SQET 0.3695 0.4307 0.2606 0.4231 0.6991
SQET-ContextinvRank 0.3777 0.4392 0.2835 0.4448 0.7461
SQET-ContextinvRank-RM3Comb 0.4018 0.4575 0.3127 0.4710† 0.7733†

SQET-ContextinvRankCEQE-MaxComb 0.4040 0.4611† 0.3140 0.4756† 0.7783†

Table 4.4: Ranking effectiveness of neural ranking on top of query expansion methods
for Robust. The superscript † and ‡ indicate significance over BM25 + CEDR and
(BM25 + RM3) + CEDR with re-ranking the top 1000, respectively. Bold indicates
the best value in each section of the table.

Model P@20 nDCG@20 mAP@1000 Recall@100 Recall@1000

BM25 + RM3 0.3998 0.4517 0.3069 0.4610 0.7588
BM25 + CEDR (MacAvaney et al., 2019) 0.4713 0.5458 0.3312 0.4983 0.6933
(BM25 + RM3) + CEDR 0.4719 0.5435 0.3500† 0.5192† 0.7570†

(BM25 + CEQE-MaxPool) + CEDR 0.4735 0.5462 0.3532† 0.5258†‡ 0.7719†‡

(BM25 + SQET-ContextinvRank) + CEDR 0.4783 0.5487 0.3475 0.5194 0.7449
(BM25 + SQET-ContextinvRankRM3Comb) + CEDR 0.4741 0.5437 0.3543† 0.5261†‡ 0.7722†‡

4.4.2 PRF effect on Neural Reranking

We now study how PRF methods impact the effectiveness of neural reranking

models. It is important to have effective expansion in the first pass to retrieve suffi-

cient numbers of documents to rerank. The results of our experiments on Robust for

unsupervised CEQE as well as supervised SQET-Context models are shown in Ta-

ble 4.4. Applying neural reranked models baselines designed for document ranking,

CEDR (MacAvaney et al., 2019), on expanded query runs results in significant gains

to average precision, recall@100, and recall@1000 for both RM3, CEQE and SQET-
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Context. Replacing RM3 with CEQE for expansion results in significant improvement

over Recall@100 and Recall@1000. Also, re-ranking the SQET-ContextinvRank model

with CEDR results in highest P@20 and nDCG@20.

4.4.3 Expansion after Reranking

In this section we study how a reranked neural result can be used as a basis for

further expansion and reranking (RQ3). This is a critical step because there must be

a sufficient number of relevant documents in the top ranks for PRF to be effective.

We evaluate multi-round supervised reranking based on expansion runs for Robust

for CEQE-MaxPool model in Table 4.5. The top of the table shows results from

the leading neural ranking and PRF approaches, including Neural PRF (Li et al.,

2018), CEDR, and Birch (Yilmaz, Wang, et al., 2019). The results in this section

all perform re-ranking on 1000 results from the baseline. We experimented with

reranking 100 results and found it consistently performed worse. The baseline model

run is BM25+CEDR followed by RM3 expansion with CEDR reranking, which we

denote as (BM25 + CEDR) + RM3 + CEDR. The results show it outperforms Birch

in nDCG@20 and P@20, as well as its own previous result for P@20 on just BM25.

Replacing RM3 with CEQE for the expansion consistently outperforms the previous

best CEDR results across all measures and significantly over Recall@1000. The runs

compare performing RM3 and CEQE-MaxPool on the CEDR baseline (which reranks

an initial BM25 first run). The second pass results are then reranked again using

CEDR. The result has further improvement over previous approaches. The same

trend continues, with the CEQE-MaxPool outperforming the reranked RM3 run.

A common approach when applying BERT-based neural ranking is to perform

learning-to-rank to combine the BERT and retrieval score. A simple proven approach

is linear interpolation of the underlying retrieval score with neural ranking model

(Yilmaz, Wang, et al., 2019; W. Yang et al., 2019). We apply this to the two best
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Table 4.5: Ranking effectiveness of multi-round neural re-ranking and expansion for
Robust. The superscript † and ‡ indicate significance over BM25 + CEDR and (BM25
+ CEDR) + RM3 baselines, respectively.

Model P@20 nDCG@20 mAP@1000 Recall@100 Recall@1000

Neural PRF-DRMM (Li et al., 2018) 0.4064 0.4576 0.2904 - -
BM25 + CEDR (MacAvaney et al., 2019) 0.4713 0.5458 0.3312 0.4983 0.6933
Birch (Yilmaz, Wang, et al., 2019) 0.4657 0.5325 0.3697 - -

(BM25 + CEDR) + RM3 0.4458 0.5211 0.3321 0.4881 0.7751†

(BM25 + CEDR) + RM3 + CEDR 0.4783 0.5499 0.3574† 0.5291† 0.7751†

(BM25 + CEDR) + RM3 + CEDR Interp 0.4837† 0.5565 0.3739† 0.5440† 0.7751†

(BM25 + CEDR) + CEQE-MaxPool 0.4504 0.5250 0.3366 0.4931 0.7874†‡

(BM25 + CEDR) + CEQE-MaxPool + CEDR 0.4799 0.5516 0.3601† 0.5332† 0.7874†‡

(BM25 + CEDR) + CEQE-MaxPool + CEDR Interp 0.4904† 0.5621† 0.3773† 0.5486† 0.7874†‡

runs, learning the interpolation using the previously described cross-validation setup.

The results demonstrate that linear interpolation with these expansion runs continues

to show gains. The interpolation with CEQE-MaxPool is the best performing, and

compared with the previous Birch shows over 5% relative gain P@20 and nDCG@20

as well as improving MAP. These results show that multiple rounds of expansion and

reranking can continue to result in significant improvements.

4.4.4 Intrinsic Expansion Evaluation

We examine the effectiveness of the expansion approaches to rank positive expan-

sion terms that improve Mean Average Precision (at 1000) when added to the query.

This experiment evaluates a method’s ability to identify good expansion terms in iso-

lation. The results are shown in Table 4.6 for the key expansion models to compare

for Robust. Since a fixed top-k expansion terms are usually selected for expansion

we evaluate the intrinsic evaluation with set-based precision numbers at common

thresholds for the number of expansion terms. The results show that a well-tuned

Relevance Model significantly outperforms query expansion models based on static

embeddings. In contrast, we find that CEQE provides improvements in early ranks for

P@10 and P@20. All the CEQE models significantly improve over static embedding

models across all metrics. And further, we find that CEQE-MaxPool significantly
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outperforms the Relevance Model expansion effectiveness for P@10 and P@20. It is

insignificantly different from the Relevance Model at rank 100. This indicates that

the strength of CEQE is selecting a higher number of “good” terms earlier, allowing

improved effectiveness with fewer expansion terms.

The SQET-ContextinvRank is the best performing model in the early ranks among

all models, but is slightly outperformed by SQET-ContextwSum at rank 100. The

SQETmodel is significantly outperformed by the Relevance Model, SQET-ContextwSum

and SQET-ContextinvRank across all measures. This indicates the power of BERT

when it is provided with the context and term relations. Moreover, SQET-ContextMax

is also outperformed by Relevance Model, SQET-ContextwSum and SQET-ContextinvRank.

This shows that the different context around the candidate term across the corpus

provides valuable information for the ranking of the term. Also, SQET-ContextinvRank

outperforms the BM25invRank highlighting the effect of BERT scores in the ranking.

The poor performance of the MASK-QE demonstrates that since the pre-trained

model is ranking all the terms in its vocabulary, it is a noisy model and cannot gener-

ate a good ranking of expansion terms for the target corpus. We investigate the effect

of combining the knowledge coming from our unsupervised model, CEQE-MaxPool

and our supervised model, SQET-ContextinvRank by calculating the Reciprocal Rank

Fusion (RRF) of their expansion terms ranking. The RRF(CEQE-MaxPool, SQET-

ContextinvRank) significantly outperforms the Relevance Model across all measure.

This shows that both of the two methods provide valuable and different signals in

ranking expansion terms. Also, the RRF improves upon both CEQE-MaxPool and

SQET-ContextinvRank across the P@20 and P@100.

4.5 Qualitative Behavior Analysis

Query-by-Query Analysis. To better understand the ranking behaviour of

our proposed model, we compare the top ranked expansion terms of RM1, CEQE-
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Table 4.6: Intrinsic ranking evaluation of positive expansion terms on Robust. The
superscript † denotes the statistical significance over the Relevance Model. Bold
indicates the best result in each column.

Model P@10 P@20 P@100

Relevance Model 0.1693 0.1419 0.0871
Static-Embed 0.1008 0.0780 0.0511
Static-Embed-PRF 0.1357 0.1083 0.0655

CEQE-MulPool 0.1349 0.1174 0.0737
CEQE-Centroid 0.1751 0.1481 0.0826
CEQE-MaxPool 0.1830† 0.1500† 0.0841

MASK-QE 0.0544 0.0515 0.0414
SQET 0.1207 0.1104 0.0758
SQET-ContextMax 0.1332 0.1085 0.0695
SQET-ContextwSum 0.1763 0.1556† 0.0921
SQET-ContextinvRank 0.1942† 0.1560† 0.0900
BM25invRank 0.1610 0.1336 0.0802

RRF(CEQE-MaxPool, SQET-ContextinvRank) 0.1938† 0.1583† 0.0976†

MaxPool and SQET-ContextinvRank in Table 4.7. We illustrate the performance of

our approach using [Topic 405, cosmic event] and [Topic 685, oscar winner selection]

which performed well in the extrinsic evaluation (more than 10% improvement of

mAP when comparing CEQE-Max and BM25+RM3). The first row has the terms

(unstemmed) with the greatest improvement for the query.

We observe that the CEQE model identifies mostly all of the positive terms from

RM as well as introducing additional relevant terms for both topic 405 and 685. More

generally, we see that the CEQE terms appear to have a stronger semantic relationship

with the query terms. The RM terms appear most loosely related and have additional

noise terms, including general terms like ‘article‘, ‘large‘ and ‘type‘ for topic 405.

We hypothesis, this is because RM focuses on terms that co-occur across multiple

PRF documents, but it does not explicitly model the relationship to the query. In

contrast CEQE explicitly focuses on the query. As a result, the CEQE model produces

fewer terms that co-occur by chance. Further, for topic 405 SQET-ContextinvRank
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Table 4.7: Example query expansion terms for Topic [405 , cosmic events] and [685,
oscar winner selection] in Robust collection. This includes the important intrinsic
positive labels, Relevance Model, CEQE-MAxPool and SQET-ContextinvRank expan-
sion terms. Terms with positive intrinsic labels are bolded.

Topic 405 cosmic events

Positive terms: astronomers, astronomical, bang, big, galaxies, light, matter, particle, particles,
physicist, scientists, space, theory, universe, years

RM: energy, space, solar, particle, earth, radiation, proton, article, ray, large,
universe, type, fluence, magnitude, particles

CEQE-MaxPool: space, universe, radiation, energy, earth, solar, particles, big , years ,
matter, dust, article, ray , bang, galactic , scientists

SQET-Context: universe, years, astronomers, radiation, scientists, bang, matter,
galaxies, dust, energy, physicist, time, big, research, theory, astronomical

Topic 685 oscar winner selection

Positive terms: academy, academys, nominations, nomination, critics, members, award,
awards, branch, ignored, true, films, film, directors, director, filmmaker

RM: best, film, picture, million, academy, years, award, home,
edition, films, man, four, 1, 5

CEQE-Maxpool: film, academy, picture, winners, award, films, million, oscars,
box, presented, awards, director, years, nominations

SQET-Context: awards, oscars, nominations, nominees, years, edition, award, nominated
winners, home, films, dga, winning, film, academy, ua, nomination

ranks more positive expansion terms in higher ranks in comparison with RM1. Also,

the SQET-ContextinvRank rank two terms ‘astronomers‘ and ‘astronomical‘ in the

top ranks that both RM and CEQE-MaxPool have missed. Moreover for topic 685,

SQET-ContextinvRank is able to exclude the digits, while RM is ranking them in top

expansion terms.

Further, Table 4.8 shows the win/loss comparison to BM25 for three expansion

methods: BM25+RM3, CEQE-MaxPool and SQET-ContextinvRank. The CEQE-

MaxPool has the highest wins across three methods. However, CEQE-MaxPool and

BM25+RM3 have similar behavior with losses. The SQET-ContextinvRank model

alleviates the losses by using supervision, but it is more conservative and has the

highest neutrals.
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Table 4.8: Win/Loss comparison to BM25 on Robust.

Model Win Neutral Loss

BM25 - - -

BM25 + RM3 151 26 73
CEQE-MaxPool 154 23 73
SQET-ContextinvRank 149 32 69

4.5.1 Computational Cost Analysis

We use a BERT-based model to produce contextualized embeddings for query

expansion, which incurs similar computational costs as BERT-based reranking meth-

ods like CEDR (MacAvaney et al., 2019). Generating these embeddings is the

most computationally-intensive step of all such methods. Compared to other query

expansion approaches, our work’s computational costs are most similar to BERT-

QE’s (Zheng et al., 2020). Both approaches consist of a query expansion step that

requires processing with a BERT model followed by an (optional) reranking step that

again processes the top document with a BERT model. The core focus of this work

is on effectiveness, although efficiency is an important area for future research.

4.6 Discussion

In this section, we discuss subsequent research to our work that utilizes Trans-

former models for leveraging the context and semantic information within Pseudo

Relevant Feedback (PRF) documents and enhance query representation for better in-

formation retrieval. Additionally, we explore the pioneering studies that utilize large

language models (LLM) like GPT3.5 for query expansion.

Concurrently and following our research on query expansion for sparse retrieval,

researchers have investigated incorporating pseudo-relevance feedback (PRF) tech-

niques to enhance query representations in dense retrieval. Notably, H. Yu et al.

(2021) proposed ANCE-PRF, which combines the original query with PRF passages
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retrieved from an ANCE (L. Xiong et al., 2020) model and encodes them using a

BERT architecture to train a new query encoder for improved dense retrieval rank-

ing. Additionally,. X. Wang et al. (2021) introduced ColBERT-PRF, a vector-based

PRF approach that refines ColBERT’s query-document scoring function by clustering

and selecting discriminative embeddings from pseudo-relevant documents, ultimately

integrating them with ColBERT’s original scoring mechanism to derive a final rele-

vance score.

More recently, Mackie et al. (2023b) proposed a LLM-based approach by leverag-

ing GPT-3 to generate diverse query-specific text formats, such as keywords, entities,

chain-of-thought reasoning, facts, news articles, and essays. They demonstrated that

combining these generated text types outperforms traditional sparse retrieval meth-

ods like BM25 across multiple datasets. Furthermore, their subsequent work (Mackie

et al., 2023a) showed that integrating this generative expansion technique with estab-

lished pseudo-relevance feedback (PRF) methods leads to even greater improvements,

highlighting the complementary strengths of these two approaches.

4.7 Summary

In this chapter, we explored how Transformer models can be employed for the

task of query expansion for more effective information retrieval systems. We built

upon the relevance model (RM) approach, using the top-k retrieved documents in

the first pass retrieval as pseudo-relevant documents and focused on leveraging the

context within the pseudo-relevance feedback models to shift away from word-count

approaches. Transformer models with their inherent attention structure allowed us

to incorporate the context within these documents, leading to enhanced ranking of

relevant expansion terms to user’s original query.

We developed methodologies in both unsupervised and supervised frameworks.

Our unsupervised approach, CEQE, utilizes BERT embeddings to calculate the sim-
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ilarity between a term in a pseudo-relevant document and the query, considering the

term’s context. We show that CEQE outperforms static embedding methods in terms

of MAP and Recall and performs at least as well as the strong word-based feedback

model, RM3 on multiple collections (Contribution 2.1 ). We further show that neural

reranking combined with CEQE results outperforms previous approaches in terms of

MAP and Recall (Contribution 2.2 ).

Our supervised model, SQET, formulates query expansion as a classification task

and leverage Transformer models in a cross-attention architecture to label an ex-

pansion term relevant to the query or non-relevant. The predicted relevancy score

is then used to rank the expansion term and representing how relevant each term

is to the original query. The performance of SQET variants is on par with term

frequency-based feedback models. Moreover, a hybrid approach combining SQET

with RM3, a term frequency-based model, shows additional improvements over using

either method separately (Contribution 2.3 ).
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CHAPTER 5

EXAMPLE DOCUMENTS AS THE CONTEXTUAL
INFORMATION SOURCE

Statement of Contribution

Part of the work presented in this chapter appeared as a full paper in ICTIR 2023

as Huang, Naseri, Bonab, Sarwar and Allan where Huang and I were joint first au-

thors. The large-scale training dataset, Wiki-QBE, the KeyPhrase model results on

the Wiki-QBE dataset and SummPip model results on all the QBE datasets are

contributed by Huang.
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The task of Query By Examples (QBE), where the users express their information

need by providing single or multiple examples instead of formulating an exact query

is a widespread scenario in professional and domain-specific search such as legal case

retrieval (Althammer et al., 2022; Abolghasemi et al., 2022; Askari & Verberne, 2021;

M.-Y. Kim et al., 2019; Shao et al., 2020), scientific literature retrieval (Mysore et al.,

2021; Cohan et al., 2020), and patent retrieval (Fujii et al., 2007; Piroi & Hanbury,

2019). Most of the prior works target the scenario where there is only one example

document, whereas having multiple example documents is a more complicated task

in terms of input representation.

The core research question of this chapter is, “How can the rich context embedded

in query example documents be leveraged to retrieve a ranked list of documents

that are relevant to users’ information needs?”. To address this research question

we leverage capabilities of Transformer architecture in capturing context within a

text. Transformer models, with their self-attention architecture, can capture the

interaction between the tokens within a sentence enabling them to learn the contextual

representation of the input (J. Lin et al., 2021).

This chapter concentrates on developing multiple end-to-end architectures for the

task of query by example retrieval, integrating Transformer-based models to specifi-

cally focus on the query and document representation and improving the performance

of information retrieval systems.

In Section 5.1 we construct the dataset for the QBE task. In Section 5.2, we

present our retrieval strategy as a neural re-ranking strategy. In Section 5.3 we intro-

duce our Passage-based Relevancy Representation wIth Multiple Examples (PRRIME)

model. In Section 5.4 we present the cross-encoder neural re-ranking strategy for the

task of QBE. In Section 5.5 we introduce a multi-task learning strategy for re-ranking

a list of retrieval results as well as generating the exact information need.
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5.1 Query by Example Retrieval Datasets

We build multiple Query By Example (QBE) datasets based on the fact that both

query example documents and the labeled relevant documents are relevant to the

users’ information need. Therefore, we leverage existing keyword-based datasets and

build the input example documents by sampling from the documents judged relevant

to the query. Given a keyword query, we randomly sample N (defined as the query

length) relevant documents as the query and leave the rest of the relevant documents

as the retrieval targets. Following this approach we built two evaluation dataset:

1) Robust04-QBE and 2) Multi-News-QBE. We select query topics with more than

five relevant documents and randomly sample 1 to 5 relevant document and build 5

datasets with 1 to 5 query-documents, respectively. The sampled example documents

in the dataset with k query-documents is a subset of example documents with more

than k query-documents. As an example, from the dataset with 1 query-document to

the dataset with 2 query-documents only one new document is introduced for each

query topic. Table 5.1 shows the statistics of the evaluation datasets, along with the

along with the large-scale training dataset, Wiki-QBE.

Robust04-QBE. It is based on the standard ad-hoc retrieval dataset, Robust04

a high quality and well-studied IR collection for both traditional retrieval models and

neural retrieval models (J. Lin, 2019), where the corpus consists of 528K newswire

articles. Robust04 has 250 query topics, among them 233 have more than five relevant

documents.

Multi-News-QBE. It is based on the Multi-News (Fabbri et al., 2019) dataset,

a large-scale multi-document summarization dataset. The Multi-News dataset origi-

nally is constructed from the articles of the site newser.com which are human-written

summaries of multiple news articles. The human-written summaries are used as the

target text sequence and the news articles cited (i.e., linked) in the summary articles

are used as source text sequence in the summarization task. To build our QBE re-
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trieval dataset, first we collect all the source news articles linked in the newser.com

summary article to create our corpus. We define the source news articles of a sum-

mary article relevant to each other and each one of them can be a query-document

that is covering a query topic which is the summary article. However, to avoid mis-

guiding our retrieval approaches and decrease noise we delete query topics where at

least one of its source document appeared as a source document in other query topics.

Further, we perform text processing on the news article and remove lines that are

social media related text such as “Follow us on Facebook”, texts and error messages

regarding the crawling and fetching webpages like “JavaScript is disabled ...” and

finally placeholder texts such as “Looking for news you can trust?” and “Subscribe

to our free newsletters.”

WikIR-QBE. It is a weakly supervised QBE dataset and is built following the

idea of the WikIR (Frej et al., 2020). In particular, the content of each Wikipedia

article can be used as an example for its title since each article is relevant to its ti-

tle. Huang et al. (2023) assumes that if an article a contains an internal link to another

article at in its first sentence and the anchor text exactly matches the title of article

at, then the content of article a can also be used as an example for at’s title. Finally,

for titles with more than five content examples, 3 examples are randomly sampled as

query documents and the other ones are used as relevant documents. Lastly, the title

and the first sentence of each article are removed, since all the information used to

build the examples for the title is contained in the first sentence of the articles.

5.2 Neural Re-ranking in Query by Example Retrieval

We employ the neural re-ranking strategy in which we first obtain an initial set

of candidate documents using a keyword matching retrieval technique, query likeli-

hood, and then re-rank the small set of candidate documents using the neural models

discussed in Sections 5.3, 5.4, and 5.5.
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Table 5.1: Statistics of proposed QBE datasets. Avg #d+/q denotes the average
number of relevant documents per query.

Wiki-QBE Robust04-QBE Multi-News-QBE

Document count 2.4M 528,155 135,980
Query count 183,837 233 1,036
Query documents 3 {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
Avg. #d+/q 35.10 70.08 6.69

5.2.1 First Stage Retrieval

To obtain the initial query for the first stage of retrieval we adopt three different

approaches: 1) Keyphrase, 2)SummPip, and 3)docT5query.

Keyphrase. We concatenate query documents into one long sequence and ex-

tract key phrases as the query. We select 1- to 3-grams as the candidate phrases,

ranked based on their TF-IDF scores1, and select the top 100 key phrases with their

corresponding weight. We use Galago’s2 query language model and its implementa-

tion of query likelihood model with the default parameter to retrieve the documents

from the collection.

SummPip. We leverage an off-the-shelf unsupervised multi-document summa-

rization model, SummPip (Zhao et al., 2020), to generate a summary for the query

example documents that serves as the query for the term-matching information re-

trieval technique. Galago’s query likelihood model with default parameters is then

used to retrieve ranked list of documents.

docT5query. To explore if the current state-of-the-art question generation meth-

ods can be used to identify the hidden information need (i.e., query) given the query-

documents we take advantage of the doc2query model (Nogueira et al., 2019), a T5

based sequence-to-sequence model trained on (question, passage) pairs from the MS-

1We use https://github.com/boudinfl/pke implementation for TF-IDF scoring.

2https://www.lemurproject.org/galago.php/
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Table 5.2: Query extraction methods for the first stage retrieval. For each column,
the highest value is marked with bold text. At this stage, we select R@100 as the
primary evaluation metric. Subscripts refer to the standard deviation of 5 corpuses.

Method
Wiki-QBE Robust04-QBE Multi-News-QBE

MAP MRR R@100 MAP MRR R@100 MAP MRR R@100

Keyphrase 0.1803(0.0056) 0.3970(0.0095) 0.4812(0.0090) 0.1358(0.0060) 0.5377(0.0202) 0.3127(0.0101) 0.4080(0.0032) 0.6089(0.0085) 0.7738(0.0035)

SummPip 0.1367(0.0066) 0.3298(0.0094) 0.3688(0.0116) 0.1002(0.0064) 0.4464(0.0210) 0.2405(0.0088) 0.3917(0.0060) 0.5987(0.0120) 0.7538(0.0073)

docT5query 0.1502(0.0043) 0.3516(0.0049) 0.4110(0.0068) 0.1353(0.0056) 0.5191(0.0175) 0.3088(0.0076) 0.3674(0.0030) 0.5590(0.0093) 0.7424(0.0028)

Marco passage collection (Nguyen et al., 2016), to generate candidate questions. Since

the input of the doc2query model is passage length we break down our documents

into passages and using the doc2query model we generate questions for each passage.

Next, we select the top 10 questions generated for each passage and concatenate them

to each other and build a mid-point representation for the query-documents. Then,

similar to the Keyphrase approach we extract the key phrases from the mid-point

representation and rank them based on their TF-IDF scores. Finally, we select the

top 100 keyphrases and their corresponding weights and perform the retrieval using

Galago’s query likelihood implementation with its default parameters.

Table 5.2 shows the results of our first-stage retrieval methods. We can see that

the Keyphrase approach outperforms the SummPip and docT5query methods across

all measure for all datasets. Therefore, we select Keyphrase as our approach for

first-stage retrieval, obtaining the initial set of candidate documents.

5.3 Passage-based Relevancy Representation wIth Multiple

Examples (PRRIME)

Employing pretrained language models based on the Transformer architecture (Vaswani

et al., 2017) in neural retrieval models resulted in the state-of-the-art performance in

the text ranking task (J. Lin et al., 2021). Further, scaling up Large Language Mod-

els (LLMs) by pretraining larger decoder-only models on larger and higher quality

corpora resulted in impressive effectiveness in few-shot or zero-shot text generation.
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As a result researchers have modeled ranking as a text generation task to generate

a reordered list of candidates (Ma, Zhang, et al., 2023; Sun et al., 2023; Pradeep

et al., 2023) or alternatively comparing documents (Qin et al., 2023) in a pairwise

setting. However, pretrained language models often face limitations due to their fixed

context-window sizes, which makes processing long documents challenging. For in-

stance, BERT, the first widely-adopted pretrained language model, is constrained

to 512 tokens. Even more recent models, such as those in the GPT family (includ-

ing GPT-3.5 and GPT-4), with their expanded context windows ranging from 4096

to 128,000 tokens, experience performance loss in downstream tasks like question an-

swering across multiple documents, when relevant information is located in the middle

of a long context (N. F. Liu et al., 2023). This limitation makes leveraging pretrained

language model for the task of query by example retrieval more challenging as this

task requires representing one or multiple documents for the query along with the

candidate document for ranking.

Previous work in ad-hoc retrieval given a keyword query, alleviated the fixed

context-window by breaking down the candidate documents into sentences (Yilmaz,

Yang, et al., 2019) or passages (Y. Kim et al., 2021), scoring them independently

with respect to the query, and aggregating the scores to compute the final scores of

the documents. Li et al. (2020) propose a model that aggregates passage relevancy

representation instead of aggregating the passage-based relevancy score.

Inspired by this line of work, we investigate how to combine passage-level rele-

vancy to get the final document-level score in the QBE problem. The QBE task is

more challenging because the query consists of multiple documents instead of a sin-

gle keyword, and to effectively utilize Transformer models, we need to break down

both example and candidate documents into passage-length inputs. Our initial ex-

periments show that merely aggregating the similarity scores between query-passage

and document-passage pairs results in sub-optimal performance.
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Given the poor performance of relevance score aggregation, we investigate aggre-

gating passage-level relevancy representations to achieve a final relevancy score be-

tween query-example documents and the candidate document. Figure 5.1 shows the

architecture of our model, Passage-based Relevancy Representation wIth Multiple

Examples (PRRIME).

In general, given a set of example documents as the query Q and a candidate

document D, due to limited context-window size we break down each document to

passages that can be handled by a Transformer architecture individually. To do so, a

sliding window of k words is applied to the document with a stride of w words. More

formally, Q = {P1Q1
, P2Q1

, ..., P|Q1|Q1
, P1Q2

, ...P|Qm|Qm
} where PiQj

is the i-th passage

of query document j and |Qj| is the number of passages in the query document j.

And D = {P1, P2, ..., P|D|} where |D| is the number of passages in the document D

and Pj is the j-th passage of document D.

Afterwards, we form pairs by concatenating each passage from the set of query

document passages Q with each passage from the set of candidate document passages

D. Each of these concatenated pairs is then treated as an individual input for the

model.

In particular with the BERT Transformer architecture the input is as follows:

Input: [CLS] PiQj
[SEP]Pk

where [SEP] and [CLS] are special tokens which help the model distinguish between

different input segments and identify the overall representation of the input sequences.

To be more specific, the corresponding output of the [CLS] token in the last layer is

parameterized as a relevance representation, r
PiQj

Pk
, between PiQj

and Pk.

Given the passage relevance representations, R = {r
P1Q1
P1

, r
P1Q1
P2

, ..., r
PiQj

Pk
, ...}, PRRIME

summarizes R into a single dense representation using a robust max pooling opera-

tion. Max pooling, widely used in Convolutional Neural Networks (CNNs) (Scherer,

Müller, & Behnke, 2010), effectively extracts position-invariant features.
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Figure 5.1: Overview of the PRRIME model.

The final relevancy score is calculated by linearly transforming the relevance rep-

resentation into a scalar using a feed-forward layer.

System Details. We focus on using 3 example documents as the query in our

experiments. We take advantage of a pre-trained Transformer-based semantic search

model, in particular a BERT model fine-tuned on the MSMarco dataset (Bajaj et al.,

2016)1. For all our datasets, we further fine-tune this checkpoint model for query-

by-example re-ranking. We parse the input sequence into paragraphs with a fixed

length of 250 words and a stride between paragraph of 50 words. We use the relevant

documents as the positive samples and randomly sample negative documents from

the ranked list of the first stage retrieval to form training triplets. We train for 40

epoch with a batch size of 64.

1https://huggingface.co/Capreolus/bert-base-msmarco
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Given the constraints of limited GPU memory, we adopt a strategy that involves

working with a fixed number of passages from both query and candidate documents.

• PRRIME-Adhoc: This approach selects the first, last, and a set of randomly

chosen passages from the middle of the document (for each example document

and candidate document) to provide a broad representation.

• PRIMME-Summ: This approach leverages Large Language Models (LLMs),

in particular GPT3.5-Turbo, in a zero-shot setting to generate a shorter text

representation. This shorter text representation addresses the common infor-

mation need among query examples, the different aspects discussed in each

example, and the questions answered by each. Due to the 16,385 token limit of

GPT3.5-Turbo’s context window, we restrict each example document to 5,000

tokens and truncate any exceeding that length.

We use the following system and user prompts for the GPT3.5-Turbo chat

completion model.

System Prompt:

You are provided with three example documents. Analyze the provided

documents to identify the overarching information need, as well as

the specific contributions and questions addressed by each document.

Your response should have the following sections "summary", "aspects"

and "questions". The definition of each section is as follow:

-- "summary": Briefly summarize each document in no more than 5 sen-

tences. Clearly state the shared information need that connects all

documents.

-- "aspects": Determine how does each individual document contribute

to addressing this common information need. Be specific about the

unique aspects or angles covered.
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-- "questions": Address what specific questions within the broader

information need does each document answer. Write 3 questions for

each document.

User Prompt:

The three example documents are as follow:

Document1: [Document 1]

Document2: [Document 2]

Document3: [Document 3]

Evaluation Metrics. For evaluating retrieval effectiveness at the reranking

stage, we report mean average precision (MAP), mean reciprocal rank (MRR), and

precision of the top 10 retrieved documents (P@10).

Results. Table 5.3 shows the result of PRRIME variants on the three datasets

of QBE that we presented in section 5.1. PRRIME-Adhoc statistically significantly

outperform the Keyphrase baseline and PRRIME-Summ on both Wiki-QBE and

Multi-News-QBE across all evaluation metrics. While PRRIME-Adhoc demonstrates

competitive performance on Robust04-QBE for MAP and P@10, it outperforms the

baseline in Mean Reciprocal Rank (MRR). PRRIME-Summ also statistically outper-

forms Keyphrase on all metrics for Wiki-QBE and on MAP and P@10 for Multi-News-

QBE. We hypothesize that the small number of queries (approximately 200) used

during fine-tuning limits the PRRIME variants’ ability to outperform the Keyphrase

baseline. All in all the improvement achieved by the PRRIME variants shows the

effectiveness of aggregating relevancy representation for the task of query by example

retrieval.
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Table 5.3: PRRIME Model performance on QBE datasets. Subscripts refer to the
standard deviation of 5 corpuses. For PRRIME-Adhoc, statistically significant im-
provements are marked by ⋆ (over Keyphrase), ▲ (over PRRIME-Summ).

Model
Wiki-QBE Robust04-QBE Multi-News-QBE

MAP MRR P@10 MAP MRR P@10 MAP MRR P@10

Keyphrase 0.1803(0.0050) 0.3970(0.0085) 0.1635(0.0038) 0.1371(0.0058) 0.5376(0.0202) 0.2957(0.0088) 0.4081(0.0032) 0.6090(0.0085) 0.1871(0.0005)

PRRIME-Summ 0.2114(0.0033) 0.4552(0.0157) 0.19033(0.0036) 0.1355(0.0041) 0.5260(0.0158) 0.3035(0.0071) 0.4209(0.0019) 0.6076(0.0029) 0.1985(0.0019)

PRRIME-Adhoc 0.2457⋆▲
(0.0023) 0.5080⋆▲

(0.0110) 0.2193⋆▲
(0.0026) 0.1297(0.0053) 0.5426(0.0122) 0.2881(0.0089) 0.4883⋆▲

(0.0085) 0.6937⋆▲
(0.0107) 0.2243⋆▲

(0.0025)

5.4 Cross-Encoder Reranking in Query Example Retrieval

We study cross-encoder neural reranking in query by example retrieval where we

concatenate query-documents and the candidate document as input to the Trans-

former network. However, since the input length of concatenation of multiple doc-

uments is generally longer than input sequence length of conventional Transformer

models such as BERT, we employ Longformer (Beltagy et al., 2020), a long-sequence

Transformer model. Longformer utilizes a local windowed attention mechanism with

a task motivated global attention as a replacement for the standard self-attention

which enables it to process inputs with thousands of tokens. We take advantage of

the Longformer model introduced by Caciularu et al. (2021) which is pretrained on

a Multi-Document corpus (Fabbri et al., 2019) with the goal of capturing cross-text

relationships, particularly aligning or linking matching information elements across

documents. We refer to it as Cross-Document Longformer (CD-Longformer) in our

table of results. Following Caciularu et al. (2021), we tagged sentences of each doc-

ument with begin (<s>) and end of sentence(</s>) tokens as well as labeling begin

and end of documents with the special tokens of begin (<doc-s>) and end of docu-

ment (</doc-s>). Further, we differentiate the query-documents and the candidate

document by special tokens of <query> and <doc>. Figure 5.2 shows the architecture

of cross-encoder reranking using special tokens for query by example retrieval. It is

worth mentioning that exceeding the Transformers input size is inevitable, therefore

for query-documents we set a limit of 2600 tokens and truncate the longest document
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Figure 5.2: Neural reranking using cross-encoder architecture in query by example
retreival

among the query example documents in case of passing this limit. Further, since the

candidate document is only one documents in comparison with the query-documents

that are multiple documents we set the maximum token length to 1400 tokens.

System Details. We use AdamW optimization algorithm (Loshchilov & Hutter,

2017) with a learning rate of 2e-5 for training. We use the positive documents and

randomly sample negative documents from the ranked list of the first stage retrieval

to form training tuples. First, we train on the Wiki-QBE dataset with a batch size

of 24 for 22 epochs. Then we fine-tune it on Robust04-QBE and MultiNews-QBE.

Evaluation Metrics. For evaluating retrieval effectiveness at the reranking stage,

we report mean average precision (MAP), mean reciprocal rank (MRR), and precision

of the top 10 retrieved documents (P@10).

Results. Table 5.4 shows that the CD-Longformer outperforms the baseline sta-

tistically significantly by approximately 24% in terms of MAP@100 on the Wiki-QBE

dataset. However, it performs worse than the baseline on the evaluation datasets

Robust04-QBE and Multi-News-QBE.We hypothesize the reason is the CD-Longformer
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Table 5.4: Cross-encoder reranking results on QBE datasets. Subscripts refer to
the standard deviation of 5 corpuses. Statistically significant improvements of CD-
Longformer are marked by ⋆ over Keyphrase.

Model
Wiki-QBE Robust04-QBE Multi-News-QBE

MAP MRR P@10 MAP MRR P@10 MAP MRR P@10

Keyphrase 0.1803(0.0050) 0.3970(0.0085) 0.1635(0.0038) 0.1371(0.0058) 0.5376(0.0202) 0.2957(0.0088) 0.4081(0.0032) 0.6090(0.0085) 0.1871(0.0005)

CD-Longformer 0.2234⋆
(0.0059) 0.4715⋆

(0.0148) 0.2019⋆
(0.0054) 0.0963(0.0031) 0.3994(0.0125) 0.2231(0.0044) 0.3143(0.0044) 0.4882(0.0031) 0.1629(0.0017)

model is tuned on the latent characteristics of Wiki-QBE documents and the small

number of samples in the evaluation datasets is not enough enough to compensate

when fine-tuning on them.

5.5 Multi-task Query Generation and Re-ranking in Query

by Example Retrieval

Auxiliary training paradigm focuses on transferring knowledge from auxiliary tasks

to improve the target recommendation task. While multi-task learning aims to im-

prove the performance across all tasks, auxiliary learning differs in that high test

accuracy is only required for a primary task, and the role of the other tasks is to

assist in generalization of the primary task. Auxiliary learning has been widely used

in many areas. For example in ranking, Ju et al. (2021) leverage the auxiliary task

of query generation for passage ranking. Further, Abolghasemi et al. (2022) utilized

auxiliary task of representation learning to improve the performance of re-ranking in

query by example retrieval task.

By building on the auxiliary training paradigm, we develop an end-to-end re-

ranking system for query-by-example retrieval, integrating query prediction as an

auxiliary task. Our objective is to enhance the performance of our primary task, re-

ranking candidate documents, by training it alongside with the query prediction task

within a multi-task network framework. This strategy enables the transfer of critical

knowledge from the auxiliary task, notably the user’s exact information needs, to
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Figure 5.3: Overview of the multi-task learning framework.

the target task, resulting in more robust shared feature representations that improve

document re-ranking. Additionally, the inclusion of query prediction enhances model

explainability, offering clearer insights into the final query representation at test time.

Figure 5.3 depicts a high-level architecture of our model. The architecture of query

documents encoder and candidate document encoder is based on the Transformer

model architecture, in particular Longformer (Beltagy et al., 2020) that has a context

window size of 4096 tokens. Additionally, we utilize architecture and the weights from

the pre-trained decoder module of the Longformer-Encoder-Decoder (LED) model to

structure our decoder architecture, initializing it with LED weights.

Objective Functions. Given a set of example documents as the query Q and a

candidate document D, we define the objective functions for each task as follows:

Document Ranking: We adopt the Multiple Negative Ranking Loss (Henderson

et al., 2017) to train the query documents and candidate document encoders. This

loss expects a query Q and a positive document D+ and a set of negative documents

{D−
1 , D

−
2 , ..., D

−
N}. For efficiency and simplicity we use the positive documents of
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other queries in a training batch of stochastic gradient descent as negative documents

for the current query.

Lrank(Q,D+, D−
1 , ..., D

−
N) = − log

(
esim(Q,D+)

esim(q,D+) +
∑N

i=1 e
sim(q,D−

i )

)

where sim is the cosine similarity between representation of query documents Q and

the document D.

Query Prediction: Query prediction is the task of generating a short query, de-

noted as q, conditioned on the input text of query example documents, represented

as Q. The goal of this task to effectively predicting the user’s intent and information

needs. Following is the loss function of the query prediction (qp) task:

Lqp(q,Q) = −
|q|∑
t=1

logP (q(t : t)|q(1 : t− 1), Q),

where |q| denotes the length of query q and q(j : k) represents the subquery extracted

from q beginning at the j-th word and extending to the k-th word.

Total loss: The total loss is a weighted sum of the target task loss Lrank and the

auxiliary task of Lqp defined as follows:

LTotal = α× Lrank(Q,D+, D−
1 , ..., D

−
N) + (1− α)× Lpq(q,Q),

where α is the weight hyper-parameter that balances the contribution of each loss

term to the overall loss, allowing for the adjustment of the model’s focus between

ranking accuracy and query prediction quality.
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System Details. We represent queries by concatenating all associated query doc-

uments and employ the Longformer Transformer architecture (Beltagy et al., 2020) for

both query and candidate document encoding. Longformer’s extended context win-

dow (4096 tokens) accommodates our multi-document query representation. Input

sequences are padded with [PAD] tokens if they fall short of the maximum context

length. While our approach is adaptable to various Transformer architectures, we

note that performance gains may be amplified when utilizing models with greater

depth and dimensionality, at the cost of increased computation and memory require-

ments. For optimization, we use the AdamW optimizer (Loshchilov & Hutter, 2017)

with a learning rate of 3e-5 and train for a single epoch using a batch size of 32.

We validate our method on the three query by example retrieval dataset Wiki-QBE

dataset, Robust04-QBE and Multi-News-QBE.

Our methodology employs a standard two-stage ranking pipeline. For the first-

stage retrieval, we adopt the Keyphrase method, as it demonstrated best performance

in Section 5.2.1. To establish a baseline and isolate the impact of our auxiliary query

prediction task, we train a model variant, Single-Loss-Rerank where the query

prediction loss term Lqp is masked. This allows us to compare with our proposed

model, Aux-Loss-Rerank, which incorporates the auxiliary task during training.

Evaluation Metrics. For evaluating retrieval effectiveness at the reranking

stage, we report mean average precision (MAP), mean reciprocal rank (MRR), and

precision of the top 10 retrieved documents (P@10).

Results. Table 5.5 demonstrates the efficacy of the auxiliary training paradigm

for query-by-example retrieval on the Wiki-QBE and Multi-News-QBE dataset. Com-

pared to the first-pass retrieval (Keyphrase) and single-loss reranking (Single-Loss-

Rerank), the auxiliary training approach (Aux-Loss-Rerank) yields the highest per-

formance across all metrics for Wiki-QBE and Multi-News dataset. Both Single-

Loss-Rerank and Aux-Loss-Rerank shows competitive performance to the Keyphrase
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Table 5.5: Performance of Auxilary training paradigm for query by example retrieval
task on Wiki-QBE dataset. Subscripts refer to the standard deviation of 5 corpuses.
For Aux-Loss-Rerank, statistically significant improvements are marked by ⋆ (over
Keyphrase), ▲ (over Single-Loss-Rerank ).

Model
Wiki-QBE Robust04-QBE Multi-News-QBE

MAP MRR P@10 MAP MRR P@10 MAP MRR P@10

Keyphrase 0.1803(0.0050) 0.3970(0.0085) 0.1635(0.0038) 0.1371(0.0058) 0.5376(0.0202) 0.2957(0.0088) 0.4081(0.0032) 0.6090(0.0085) 0.1871(0.0005)

Single-Loss-Rerank 0.1895(0.0025) 0.4255(0.0109) 0.1768(0.0044) 0.1314(0.0041) 0.5192(0.0099) 0.2951(0.00970) 0.4118(0.0052) 0.6125(0.0104) 0.1932(0.0016)

Aux-Loss-Rerank 0.2110⋆▲
(0.0064) 0.4617⋆▲

(0.0125) 0.1898⋆▲
(0.0061) 0.1372(0.0062) 0.5313(0.0105) 0.3095(0.0090) 0.4508⋆▲

(0.0059) 0.6569⋆▲
(0.0098) 0.2081⋆▲

(0.0013)

model on Robust04-QBE. We hypothesize that the limited number of queries (≈200)

used during fine-tuning is insufficient for the model to outperform the baseline on

Robust04-QBE. This aligns with our observations of PRRIME variants’ performance

on Robust04-QBE datasets in Section 5.3.

Table 5.6 shows the snippets of three example documents given as the query, the

target query topic and the generated query topic by the decoder module. We observe

that while the predicted query topic is not coherent in some places, it was able to

capture the important information such as the place where the band was formed.

This might be helpful for explainability by revealing the core focus of the final query

representation. It is worth mentioning that by leveraging larger large language model

architecture such as Llama2 we can improve upon the fluency of generated text.

5.6 Summary

In this chapter, we studied the task of query by example document where a user

expresses an information need by providing single or multiple example documents.

We focus on exploring how the contextual information embedded in query example

documents could be effectively utilized to retrieve a ranked list of documents that

align with the users’ information need. We leverage Transformer model architectures

which are able to capture the context within a text using their attention mechanism
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to represent query example documents and candidate documents in an information

retrieval system.

First, we constructed three Query-By-Example (QBE) datasets: a large-scale

dataset namedWiki-QBE for training purposes, and two evaluation datasets, Robust04-

QBE and Multinews-QBE. We develop them by leveraging existing keyword-based

datasets and based on the principle of that the query documents and the retrieval

targets in the data collection are both relevant to the users’ information needs (Con-

tribution 3.1 ).

We then introduced three end-to-end Transformer-based rerankers with the goal

of improving the retrieval performance using the contextual information embeded in

the query example documents:

• We developed the Passage-based Relevancy Representation with Multiple Ex-

amples (PRRIME) to overcome the limitations associated with the fixed-input

sequence length of traditional Transformer models. This limitation becomes

particularly challenging when dealing with long query and candidate documents.

PRRIME addresses this by breaking documents into passages and utilizing an

aggregated passage-level relevancy representation. Our findings demonstrate

that PRRIME significantly improves upon the initial stage of retrieval, under-

scoring the effectiveness of its architecture in aggregating passage-level relevancy

signals (Contribution 3.2 ).

• We developed a cross-encoder re-ranking architecture which uses a Transformer

model for long inputs, namely Longformer. We demonstrated its effectiveness

on the dataset that it is trained on by outperforming the first-stage retrieval.

However, our results show that our model might be overfitted on the underlying

characteristics of training corpus since it does not perform well on other datasets

with limited number of instances. This indicates that while effective within its
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training context, the model’s adaptability to diverse data conditions is limited.

(Contribution 3.3 ).

• We introduced an auxiliary training framework employing a dual encoder rank-

ing architecture, which integrates query prediction as an auxiliary task. Our re-

sults indicate that this training method not only improves upon the initial stage

of retrieval but also outperforms the single-loss ranking method. Additionally,

the inclusion of precise short queries contributes to the model’s explainability,

offering clear insights into the final query that is used for ranking (Contribution

3.4 ).

Our findings pave the way toward an effective query by example retrieval frame-

work by utilizing the inherent capability of Transformer models to understand and

encapsulate context.
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Table 5.6

Query Example Docu-
ments

Target Query Topic Predicted Query Topic

Document1: Petrucci
and her sister, Maxine
Petrucci, first formed
Madam X with vocalist
Bret Kaiser and Chris
Doliber. She left Madam
X to join Vixen in 1986
and stayed until 1991.
Roxy returned when
Vixen reunited in 1997,
bringing in her sister
Maxine into the fold,
but the lineup had to be
dissolved the next year
for legal reasons. ...
Document2: She lives
and works in Los Angeles,
California and served
from 2017 to 2019 as
Chief Operating Officer,
Executive Vice President
of Business Affairs and
Operations for The H
Collective, a motion
picture company. ...
Document3: During
its most commercially
successful period from
1987 to 1992, the band
consisted of Jan Kuehne-
mund lead guitar, Janet
Gardner lead vocals,
rhythm guitar, Share
Ross bass guitar, and
Roxy Petrucci drums.
The band’s eponymous
first album was released
in 1988, and reached No.
...

Vixen band. Vixen is
an American rock band
formed in Saint Paul,
Minnesota, in 1980.

Vixen, the only half
the size of the present,
were the first to learn
of the new information
about the upcoming
year’s information about
their progress. Vixen
was formed in St. Paul,
Minnesota, in the year
of their first attempt to
join the band. The band
was led in part by Jule
Kuehnemund, who was
the first person to learn
about it in the form of
a book, and one of the
first-year students.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation, we explored and enhanced tools and techniques for utilizing

contextual features in representing queries and documents, aiming to improve the per-

formance of information retrieval systems. Initially, we studied entities representing

things in the real world and their relationships as a source of contextual information.

Subsequently, we employed Transformer models, whose self-attention mechanisms ex-

cel at capturing contextual nuances in text, to build context-aware representations

for various information retrieval tasks. Specifically, we examined the task of query

expansion, using Transformer models to represent the context of pseudo-relevance

feedback (PRF) documents for ranking terms relevant to the query. Additionally, we

explored the task of query-by-example retrieval, where the user’s information need

is latent in example documents. In this context, we leveraged Transformer models

in various approaches to derive the query representation for an high-performance

ranking system.

In Chapter 3, we introduced an entity embedding model designed to represent

an entity by leveraging crucial related entities tagged in its summary. This em-

bedding model was then employed in an entity ranking task, where both queries

and documents were represented using this model. We integrated this embedding-

based ranking model with a term-based ranking model, specifically Language Model

retrieval, and demonstrated its enhanced performance over traditional term-based

retrieval methods. Additionally, we evaluated its effectiveness against a word-based

embedding model ranking approach, revealing that the entity-based embedding rank-
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ing outperforms its counterpart. We also developed a fusion retrieval model that

combines term-based language model retrieval, word-based embedding ranking, and

entity-based embedding ranking, achieving the best performance. Furthermore, we

applied the proposed entity-based expansion model to a query expansion task aimed

at enhancing entity-centric complex queries retrieval. The expansion framework in-

corporates entities from both local and global knowledge sources: ‘local’ refers to

entities indexed from the corpus, while ‘global’ pertains to those derived from the de-

veloped entity embedding model. Our experiments demonstrated that entity-based

expansion outperforms all baseline word-expansion techniques available at the time

of writing. Later works using Bert-based models (Nogueira & Cho, 2019) achieved

higher performance.

In Chapter 4, we propose supervised and unsupervised methods using Transformer

models for the task of query expansion. We build our methodology based on the

robust query expansion method of relevance model which considers that the top-k

retrieved documents in a first pass retrieval for the query q are relevant to q and

can be used for obtaining relevant terms to the query for expansion. By leveraging

Transformer models we are able to represent the context with these pseudo-relevant

documents, as a result improving the ranking of relevant terms to query for expansion.

Specifically, our unsupervised model, CEQE, utilizes BERT embeddings to calculate

the similarity between a term in a PRF document and the query, taking into account

the term’s context within that document. We demonstrate our unsupervised model,

CEQE, is superior to the static embedding-based expansion models, and performs at

least as well as state-of-the-art word-based feedback models on multiple collections.

Additionally, our supervised model formulate query expansion as a classification

task aiming to determine whether a term is relevant or non-relevant to the query.

Our results show that the performance of SQET-variants is comparable to the term

frequency based feedback models and the linear combination of the SQET model and
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RM3, the term frequency based feedback model that we studied, results in further

improvement comparing using them separately. Our research establishes a robust

foundation for subsequent studies, such as those by Mackie et al. (2023b), which

utilize Large Language Models (LLMs) to generate relevant text from various domains

types—words, entities, questions, and more—in a zero-shot setting to enhance query

expansion.

In Chapter 5, we study the task of query by example (QBE) retrieval and explore

utilizing Transformer architecture to leverage the context within the query example

documents for representing the latent query. We develop three QBE datasets: WikIR-

QBE, a large-scale dataset for training, and two evaluation datasets, Robust04-QBE

and Multinews-QBE. We propose three Transformer-based re-ranking architectures.

Initially, we developed the PRRIME model, which addresses the limited context win-

dow of BERT-based Transformers. This model segments query example documents

and candidate documents into passages, then trains an end-to-end neural ranking ar-

chitecture that aggregates passage-level relevance representations. The results demon-

strate an improvement of 37% and 19% over the first-stage term-only retrieval meth-

ods, which use the top-k ranked terms from tf-idf as the query, on the Wiki-QBE

and MultiNews-QBE datasets. Subsequently, we investigate the cross-encoder rank-

ing architecture for the task of query by example retrieval employing the Longformer

Transformer model, which was introduced for processing longer input texts at the

time of studying this architecture. This approach shows high performance on the

dataset it was trained on, Wiki-QBE, but struggles with transferability across other

datasets – Robust04-QBE and MultiNews-QBE – likely due to overfitting on the text

characteristics of the training set. Finally, we introduced a dual encoder architecture

with an auxiliary query prediction task, which enhances both the first-stage retrieval

phase and the performance of the dual encoder without the auxiliary task by 17%

and 11% on Wiki-QBE and by 10% and 9% on MultiNews-QBE. These approaches
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are among the first to leverage Transformer models for QBE retrieval, paving the way

for future utilization of larger scale language models like GPT-3.5, GPT-4, Gemini,

Llama, etc.

6.1 Future Work

In Chapter 3, we investigate entity-centric retrieval utilizing Word2vec-based em-

beddings. While recent research has explored Transformer architectures for this

task 2.2, most approaches rely on unstructured text representations of entities, em-

ploying mean pooling to derive a single embedding representation. This may lead to

the loss of granular information about entity attributes, hindering the retrieval of rel-

evant results when queries focus on specific attributes. Preliminary studies (Gillick et

al., 2019; Kong et al., 2022) have explored leveraging entity attributes to learn dense

representations for improved retrieval, but further research is needed to develop mod-

els that effectively encode entities attributes to address nuanced user queries. This

research direction holds promise not only for retrieving general entities from open-

source knowledge graphs but also for enhancing search capabilities in diverse domains

such as e-commerce, people search, and movie search.

In Chapter 4, we study query expansion utilizing BERT-based embedding vectors

of terms in conjunction with pseudo-relevance feedback documents. The emergence of

Large Language Models (LLMs) and their impressive zero-shot generation capabilities

have motivated research into leveraging them for query reformulation (Mackie et al.,

2023b), query intent identification (Mao et al., 2023), and utilizing LLMs’ generated

response to the query for retrieval (Jagerman et al., 2023; Gao et al., 2023). How-

ever, existing studies have primarily focused on non-personalized domains. With the

growing adoption of conversational systems across platforms like movie streaming and

e-commerce, a promising research direction lies in employing LLMs for query expan-
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sion that incorporates user behavior and interaction history by leveraging Retrieval

Augmented Generation (RAG) approaches or fine-tuning.

In Chapter 5, we examine the task of query-by-example retrieval, briefly exploring

the use of LLMs for zero-shot summarization and latent query representation, which

yielded suboptimal results. However, multiple avenues exist to leverage LLMs to

enhance query-by-example retrieval. For instance, given the challenge posed by long

documents in this task, one potential research direction involves employing LLMs

with extended context windows, fine-tuning them for embedding representation in a

bi-encoder a dense retrieval approach.
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