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ABSTRACT

MODELING CROSS-LINGUAL KNOWLEDGE IN
MULTILINGUAL INFORMATION RETRIEVAL

SYSTEMS

SEPTEMBER 2024

ZHIQI HUANG

B.Sc., SUN YAT-SEN UNIVERSITY

M.A., UNIVERSITY OF MARYLAND COLLEGE PARK

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

In many search scenarios, language can become a barrier to comprehensively ful-

filling users’ information needs. An Information Retrieval (IR) system equipped with

an extra component of language translation is capable of mapping words in different

languages, enabling it to retrieve documents according to the user’s query regardless

of the language in which the query and documents are expressed. Effectively incor-

porating multilingual knowledge is the key to building the translation component.

Such knowledge can be obtained from dictionaries, machine translation modules, or

multilingual pre-trained language models. For these different forms of multilingual

knowledge, we present cross-lingual knowledge injection, transfer, and language debi-

asing techniques to enhance the effectiveness of Cross-lingual Information Retrieval

vii



(CLIR) and Multilingual Information Retrieval (MLIR). Specifically, by utilizing mul-

tilingual knowledge at various levels—from individual word translations to parallel

and non-parallel corpora—we develop new model architectures and training goals

tailored for information retrieval tasks across diverse linguistic settings.

First, we introduce a mixed attention Transformer layer, which augments mutu-

ally translated words between query and document into the attention matrix and

investigates its effectiveness on CLIR tasks. Next, we study cross-lingual transfer in

the IR models and demonstrate a knowledge distillation framework to address the

data scarcity problem in model training and improve retrieval effectiveness involving

low-resource languages. Then, we focus on a special setting in MLIR, where the query

is in one language, and the collection is a mixture of languages. To address the prob-

lem of inconsistent ranking results between languages, we design an encoder-decoder

model that maps document representations from different languages into the same

embedding space. We also present a decomposable soft prompt to capture unique

and shared properties across languages.

Finally, we introduce a language debiasing method to identify and remove lin-

guistic features from a multilingual embedding space. This approach significantly

diminishes the necessity for parallel data in constructing MLIR models, allowing

for using non-parallel data instead. By reducing language-specific factors from the

training process, we improve the retrieval effectiveness for all linguistic settings in re-

trieval tasks (e.g., monolingual, cross-lingual, and multilingual), thereby facilitating

language-agnostic information retrieval.
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CHAPTER 1

INTRODUCTION

As the primary medium of communication, language plays a pivotal role in de-

signing and implementing Information Retrieval (IR) systems. Retrieval under a

monolingual setting assumes the query and documents are in the same language.

When documents are desired in another language, it is often reasonable to expect

the user to be able to formulate a query in that language. Nevertheless, there are

important needs that cannot be satisfied by monolingual retrieval systems (Oard and

Diekema, 1998):

• In multilingual societies, it is important to access information in different lan-

guages, especially for tasks like government services, healthcare, and education.

• As English is the de facto standard language of science and technology, it also

creates a language barrier for millions worldwide who are not fluent in English.

It is essential to bridge this language gap and make information more accessible

to these people, especially for low-resource language speakers.

• The internet is a multilingual space, with content available in many languages.

Accessing information regardless of language promotes knowledge sharing and

cultural exchange.

Breaking the limitation of language, Cross-lingual Information Retrieval (CLIR)

and Multilingual Information Retrieval (MLIR) can provide a more comprehensive

fulfillment of the user’s information needs. CLIR is the process of retrieving informa-

tion written in a language different from the user’s query. In a particular CLIR task,
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a language pair is given where the user submits the query in one language and the

systems respond by retrieving documents in another language. Compared to CLIR,

MLIR has a more general linguistic setting. It is concerned with retrieval from a

collection where documents in multiple languages co-exist and need to be retrieved in

response to a query. Generally, these tasks require matching queries and documents

in different languages. In addition to the ranking component, the retrieval models

for CLIR or MLIR need to possess some knowledge of translation to map the vocab-

ulary of the query language to that of the documents’ language. Therefore, retrieval

effectiveness depends on knowledge of query document matching and the ability to

bridge the translation gap between query and document. The translation knowledge

can be acquired from different resources, such as a dictionary, a machine translation

module, or multilingual word embeddings.

Based on the Transformer architecture (Vaswani et al., 2017), pre-trained lan-

guage models (PLMs) such as BERT (Devlin et al., 2019) are capable of encoding

linguistic and factual knowledge into their deep neural network parameters. Fine-

tuned on task-specific data, PLMs offer great success for many downstream tasks,

including document ranking. The multilingual versions of PLMs (mPLMs), such

as mBERT and XLM-R (Conneau et al., 2020), provide the possibility of jointly

learning representations for multiple languages with the same model. Because to-

kens in different languages are projected into the same space, these models can also

be adopted as the source of translation knowledge. And like the monolingual set-

ting, fine-tuning mPLMs with multilingual retrieval data enables information retrieval

across languages. However, the models in a multilingual setting are not achieving the

same level of performance as those in a monolingual setting. Even with the help of

powerful mPLMs, challenges like the persistence of translation gaps, data scarcity

on low-resource languages, and ranking inconsistency across languages still exist for

building effective CLIR or MLIR models.
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Under the monolingual retrieval setting, because the query and document use the

same lexical inputs, it is easier for a model to identify words that co-occurred in

both query and document. The co-occurrence becomes mutually translated words

when the query and document are in different languages. We observed that mPLMs

tend to map query terms into the target language’s related terms – i.e., terms that

appear in a similar context – in addition to or sometimes rather than its synonym

translations. Studies on CLIR (Bonab et al., 2020; Nie, 2022) have shown that

the translation gap plays a significant role in the suboptimal results of neural CLIR

models. Therefore, re-introducing the external translation knowledge into the neural

CLIR models effectively reduces the translation gap.

Further, unlike the English-to-English retrieval task, where many resources are

available for model training, the scarcity of retrieval data in other languages, espe-

cially in low-resource languages, makes it challenging to build multilingual retrieval

models. Transferring retrieval knowledge learned from English retrieval data to other

languages is a promising solution to relieve the data scarcity problem.

Moreover, in multilingual search situations, the retrieval collection consists of

documents in multiple languages. The distribution of relevant documents for a specific

query often varies across languages. For example, consider a situation where a user

is searching for academic articles on “climate change adaptation strategies” from a

multilingual collection. Due to regional research focuses, compared to English articles,

the Spanish documents might contain more detailed case studies from South America,

while the French documents could be rich in strategies used in Francophone Africa.

It is important for the retrieval model to evaluate and rank documents irrespective

of their written language, even when the query language is also one of the languages

in the collection. This ensures that users receive the most relevant results, regardless

of linguistic barriers, and promotes an inclusive and comprehensive search experience

for a diverse user base.
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To address the challenges mentioned above, we design new model architectures and

training objectives to effectively incorporate different forms of multilingual knowledge,

from which we will show results in the improvement of both CLIR and MLIR system

performance.

Note that there are some studies (Sun and Duh, 2020; Yang et al., 2020; Zhang

et al., 2021, 2023) focusing on monolingual retrieval tasks on multiple languages,

which also use the term “multilingual retrieval” in their task definition. To avoid

term confusion in this dissertation, we refer to these studies as monolingual retrieval

or in-language retrieval. In our definition, “multilingual retrieval” refers to a retrieval

task involving multiple languages in either query or document, or both.

1.1 Translation Knowledge Injection

From monolingual to cross-lingual, the exact matching of terms in documents

with those in queries becomes translations in two languages. When using mPLMs

for document ranking, multilingual models tend to map query terms into the target

language’s related terms—i.e., terms that appear in a similar context—in addition to

or sometimes rather than translations (Zhan et al., 2020). The translation misalign-

ment weakens the signal of “exact match” in the cross-lingual context, creating the

translation gap between the query and document in the retrieval task.

In Chapter 3, we study the translation gap in cross-lingual document ranking

models. When fine-tuning with cross-lingual relevance data, we inject word-level

translation knowledge as a fixed attention mechanism into the CLIR model. More

specifically, we leverage the external knowledge in the form of a translation table:

a look-up table that provides translation probabilities for a pair of words in two

languages. Our novel network module uses the translation table to create an attention

matrix and parallels it with the Transformer’s multi-head self-attention – both in the

training and inference phase – to improve the model’s cross-lingual understanding.
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We refer to our extended component as Mixed Attention Transformers (MAT) and

create MART (MAT+BERT), a sandwich-like architecture to embed MAT into the

multilingual BERT (mBERT) model. Encoding the translation knowledge into an

attention matrix enables the overall architecture to focus on the mutually translated

words in the input sequence.

Our analysis of the representation shows that applying MAT layers successfully

reduces the translation gap by increasing the cosine similarity of representation of

mutually translated terms in query and document. We also explore the effectiveness

of various external knowledge sources and show the significant gain we get from MART

on the CLIR task. MAT is a generalized architecture capable of capturing any form

of lexical mapping, and it can be integrated with any transformer-based architecture.

• Contribution 1.1. We present a novel Mixed Attention Transformer (MAT)

network to leverage external translation knowledge for CLIR tasks. As a layer

component, we further design a hybrid architecture to embed MAT into the

Transformer model.

• Contribution 1.2. We perform extensive experiments on ten different language

pairs for CLIR training and evaluation, three different resources to obtain trans-

lation knowledge, and different qualities of translations based on available trans-

lation resources for language pairs. Our experimental results demonstrate the

effectiveness of external knowledge sources and the significant improvement of

the MAT-embedded neural re-ranking model over strong baselines on the CLIR

task. In terms of mean Average Precision (mAP), our proposed model out-

performs the neural baseline by 8% on high-resource languages and 12% on

low-resource languages.

5



1.2 Cross-lingual Transfer via Knowledge Distillation

Compared to English-to-English retrieval, CLIR and MLIR tasks usually suffer

from the data scarcity problem where insufficient queries with reliable relevance judg-

ments are available for model training (Sasaki et al., 2018). This issue becomes more

severe when the retrieval tasks involve low-resource languages. Instead of directly

training models on target language using retrieval data, we study how to extract

ranking knowledge from a well-trained English retrieval model and transfer it into

the target languages.

In Chapter 4, we introduce a cross-lingual transfer framework based on knowledge

distillation to transfer English retrieval models to another language. More specifically,

we first train a bi-encoder English retrieval model (Khattab and Zaharia, 2020) as

the teacher, using the multilingual pre-trained encoder. It learns how to do query-

document matching from abundant English retrieval data, such as MS MARCO pas-

sage ranking dataset (Nguyen et al., 2016). Suppose the task is to search English

documents with non-English queries. We then reuse the teacher’s document encoder

and train a new student query encoder. The student model distills retrieval knowl-

edge from the teacher model through a task of cross-lingual token alignment. Unlike

previous approaches (Gritta and Iacobacci, 2021; Li et al., 2022), which align to-

kens using a rule-based algorithm, we conceptualize training as an optimal transport

problem where the cost matrix is the token-level cosine distance, and the optimal

transportation plan acts as a soft token alignment. By separating the learning of

cross-lingual knowledge from retrieval knowledge, the cross-lingual transfer process

only needs bitext data for training. Bitext 1, also known as parallel text or parallel

corpora, contains translations of the same or comparable document in two or more

languages, aligned at least at the sentence level. Unlike retrieval data, which typ-

1https://en.wikipedia.org/wiki/Parallel_text
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ically requires human judgment, bitext data can be extracted through automated

algorithms (El-Kishky et al., 2020a; Heffernan et al., 2022). Therefore, our approach

greatly expands the languages capable of implementing CLIR tasks and covers some

low-resource languages.

• Contribution 2.1. Focusing on low-resource languages, we present OPTICAL:

Optimal Transport distillation for Cross-lingual information retrieval.

• Contribution 2.2. We show that in terms of mAP, our proposed method signif-

icantly outperforms several strong baseline methods on four low-resource lan-

guages from different language families, including a 13.7% improvement over a

method based on neural machine translation. Further analysis demonstrates

that the knowledge distillation step in OPTICAL is an effective and data-

efficient method to transfer retrieval knowledge from monolingual into cross-

lingual settings.

• Contribution 2.3. We extend our language transfer technique to monolingual

retrieval tasks other than English. The experimental results show that our

method effectively improves retrieval performance in a group of 16 languages.

When used as a module in an ensemble retrieval system, it helped to achieve one

of the top submissions in the MIRACL 2 (Multilingual Information Retrieval3

Across a Continuum of Languages) leaderboard.

1.3 Language Prompt for Multilingual Knowledge Transfer

An MLIR system can retrieve documents based on explicit queries formulated by a

human using natural language, regardless of the language in which the documents and

2https://www.wsdm-conference.org/2023/program/wsdm-cup

3Note that this challenge is made of monolingual retrieval tasks in 16 languages which are different
from the concept of MLIR used in this dissertation.
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the query are expressed. Even though CLIR and MLIR are tightly coupled, effective

MLIR models should overcome additional major challenges. For instance, instead of

one pair of languages between query and document, the translation component in the

MLIR model needs cross-lingual knowledge for multiple language pairs. Meanwhile,

it requires the system to perform fairly across languages, that is, to eliminate the

language factors when ranking documents against a query.

In Chapter 5, we study a special case of MLIR, where the query is always written

in English, and the collection is a mixture of languages, known as the one-to-many

setting. Following the idea of cross-lingual transfer, we develop KD-SPD, a multi-

lingual dense retrieval model based on knowledge distillation (KD) and soft prompt

decoder (SPD) for the MLIR task. Using an encoder-decoder architecture, our model

implicitly “translates” the representation of documents in different languages into the

same language embedding space as the query. And the decoding is also a knowledge

distillation process guided by a teacher model built for monolingual retrieval in En-

glish. Again, the distillation training is supported by bitext data instead of retrieval

data between each language pair of query documents. We hypothesize that although

different languages possess unique properties such as distinct grammar or vocabu-

lary, they also have common traits for expressing similar meanings. To capture both

unique and shared features, the decoder input of KD-SPD uses a decomposable soft

prompt (Wang et al., 2023) derived as the product of a low-rank language-specific

matrix and a matrix for the shared feature. Through joint training across multiple

languages, we observe that the learned prompts are capable of reducing language bias

and possessing the transferable capacity to generalize to unseen languages.

• Contribution 3.1. We investigate the one-to-many setting in the MLIR task

and develop a new model combining knowledge distillation and soft prompt

decoding to project the representation of documents in different languages into

the same language embedding space.
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• Contribution 3.2. We conduct extensive experiments on MLIR datasets with a

total of 15 languages from diverse linguistic families and discover that, in terms

of mAP, our proposed method significantly outperforms several strong base-

lines, including 20.2% improvement over multilingual dense passage retriever

(mDPR) (Zhang et al., 2021) and a 9.6% improvement over a multilingual

knowledge distillation method from Sentence-BERT (Reimers and Gurevych,

2020).

1.4 Language Concept Erasure in Dense Retrieval Models

From our previous studies in CLIR and MLIR, we find that retrieval knowledge is

distinct from linguistic knowledge and can be transferred across different languages.

Utilizing parallel corpora, we facilitate such transfer through knowledge distillation

frameworks between multiple languages.

The separation of different types of knowledge during retrieval modeling inspires

us to explore a universal search engine that can effectively retrieve relevant informa-

tion across all linguistic contexts. In the paradigm of natural language understanding

(NLU), this is similar to embedding disentanglement (Tiyajamorn et al., 2021; Wu

et al., 2022), where sentence embeddings are viewed as the combination of semantic

(meaning) embedding and language-specific (syntax or idioms) embedding. For a

particular task, it is preferable to concentrate model training on the semantic embed-

ding while deliberately excluding the language-specific part. This strategy aims to

enhance the model’s ability to function effectively across diverse linguistic environ-

ments, improving its universal applicability and performance.

Therefore, to build a language-agnostic dense retrieval model, in Chapter 6, we

introduce a multi-task learning framework to reduce linguistic influence within the

representation space. Given multilingual inputs, we consider language as a predictable

concept tied to each input utterance and leverage a conceptual erasing task to ob-
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scure the language labels within the output representations. More specifically, during

training, we calculate the cross-correlation matrix between the vectors produced by

a dense retriever and the language labels for each training batch. By minimizing the

mean correlation values across batches, this task prevents all linear classifiers from

detecting the language label, thus reducing linguistic features from the representa-

tions.

While the primary task is learning retrieval knowledge, language concept erasure

serves as an auxiliary task to drive the model toward generating language-agnostic

representations. Concurrently, the retrieval task helps to prevent trivial solutions in

the concept erasure task by ensuring that the model maintains a meaningful represen-

tation throughout the training process. Since the language label or linguistic feature

is an inherent attribute existing in any context of a certain language, the proposed

method is capable of operating on multilingual non-parallel corpora, effectively dimin-

ishing the necessity for parallel data for constructing a language-agnostic retriever.

The dense retrieval models developed using our framework exhibit reduced language

bias in MLIR tasks, especially between English, which carries the retrieval knowledge

during training, and other languages. Benefiting from language-agnostic representa-

tions, these models also demonstrate a substantial improvement in monolingual and

cross-lingual retrieval tasks.

• Contribution 4.1. We develop Language Concept Erasure for Language-Agnostic

Dense Retrieval (LANCER). We formulate the goal of removing language-

specific signals from the model’s representation as preventing any linear classi-

fier from detecting the language label of the model inputs. In conjunction with

retrieval training through ranking loss utilizing English datasets, we devise a

multi-task learning framework that drives the model toward language-agnostic

representations using multilingual non-parallel context.
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• Contribution 4.2. Applied to dense retrieval model training based on the differ-

ent multilingual pre-trained encoders, in terms of nDCG@10, LANCER signifi-

cantly improved retrieval performance on MLIR with both query and document

being multilingual (known as many-to-many setting), including 36.6% improve-

ment over mDPR and 27.6% improvement over mContriever (Izacard et al.,

2021). Evaluated on the MIRACL dataset (in-language retrieval tasks), on

average, it improves mDPR and mContriever by 13.6% and 32.5%, respectively.

1.5 Summary

In this dissertation, we investigate different techniques to model cross-lingual

knowledge in CLIR and MLIR systems. First, in Chapter 3, we obtain word-level

translations from parallel corpora and reintegrate them into neural document rankers.

Then, in Chapter 4, we present a knowledge distillation method to incorporate cross-

lingual knowledge directly from parallel sentences. Meanwhile, we introduce a frame-

work for building models that leverage well-established English dense retrieval models

and transfer retrieval knowledge from English to the target language in a cross-lingual

setting. Extending from CLIR to MLIR, in Chapter 5, we investigate the task of

searching a multilingual collection using English queries and mapping the represen-

tation of documents from different languages into the same English retrieval space to

reduce language bias in multilingual document ranking. Lastly, different from using

English as the pivot language and transferring multilingual to monolingual embedding

space (the approach of KD-SPD), Chapter 6 leverage the concept erasure method to

reduce the language-specific features for all language contexts in the embedding space,

achieving language-agnostic retrieval.

Our approaches are inspired by the extensive research conducted in the fields of

CLIR and MLIR. In the following chapter, we outline the background and related

works to this dissertation.
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CHAPTER 2

RELATED WORK

We start in Chapter 2 by discussing the different forms of cross-lingual knowledge

employed in CLIR studies. Then, we present an overview of neural ranking models

and their adaptations to multilingual retrieval tasks. Lastly, we discuss the challenge

from CLIR to MLIR and the previous works related to MLIR.

2.1 Cross-lingual Knowledge

From a modeling perspective, when a query and candidate documents are in dif-

ferent languages, a translation component is required in addition to the ranking com-

ponent to overcome the vocabulary mismatch between the query language and the

document language. In the CLIR task, the translation occurs between two specific

languages, whereas in the MLIR task, translations are needed for multiple pairs of

languages. This translation process can be executed either explicitly, using dictionar-

ies or machine translation modules, or implicitly, through techniques such as bilingual

word embeddings and multilingual pre-trained language models. Although these ap-

proaches vary, they all strive to enable the retrieval system to effectively integrate

cross-lingual knowledge. In the following sections, we will discuss the details of these

translation components.

2.1.1 Explicit Translation

Dictionary-based Translation. As a long-standing problem in IR, early CLIR

approaches directly adopt the cross-lingual knowledge from a dictionary. The cross-

lingual setting is first explored in SMART (System for the Mechanical Analysis and
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Retrieval of Text). Salton (1970) discussed the possibility of searching English doc-

uments against German queries and vice versa. To tackle the vocabulary mismatch,

queries and documents in different languages are converted into predefined concepts

using a synonym dictionary, known as a bilingual thesaurus. These representations

are then reduced to “concept vector” forms, which allow for effective comparison

between different languages. Later, the appearance of bilingual machine-readable

dictionaries (MRDs) provides a groundwork for constructing query (or document)

translations in CLIR tasks. Early systems translate queries on a word-by-word ba-

sis: for each query term, select the first translation offered by the dictionary. This

strategy exploits the fact that the most commonly used translation is listed first in

some bilingual dictionaries (Davis and Dunning, 1995; McDonnell et al., 1995). Then

Ballesteros and Croft (1997) point out the limitation of word-by-word translation and

present phrasal translation and query expansion methods that can greatly reduce the

error associated with dictionary-based translation.

Moreover, in most MRDs, a word in one language can map to multiple words

(polysemous) in another language. Some senses from MRDs translation are inap-

propriate to the query and introduce ambiguity, eventually leading to poor retrieval

effectiveness (Ballesteros and Croft, 1998). Techniques exploiting term co-occurrence

statistics can disambiguate the translations from dictionaries (Adriani, 2000; Gao

et al., 2002; Liu et al., 2005). In this context, the underlying assumption for utilizing

term co-occurrence data is that accurate translations of individual query terms will

typically appear together as part of a sublanguage (Grishman et al., 1986), whereas

incorrect translations will not. Essentially, this method aims to identify the most

probable translation for a specific query by analyzing the term co-occurrence pattern

within a representative text collection, e.g., the World Wide Web (Maeda et al., 2000)

or a monolingual corpora (Ballesteros and Croft, 1998; Gao and Nie, 2006).
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Corpus-based Approach. Parallel and comparable corpora are another source

of learning cross-lingual knowledge. The knowledge extracted from these corpora

is commonly used in cross-language information retrieval to translate queries. The

basic technique involves token alignment of bilingual text corpora, producing a set of

transition probabilities for each term in a given query. A structural collection of these

probabilities is a translation table. Known as Statistical Machine Translation (SMT),

the translation table is learned based on statistical models. The early approaches

for extracting translations from the parallel corpus are based on the EM algorithm

and the Hidden Markov Model (HMM). The most popular tool for extracting word

or phrase alignment from the parallel corpus is GIZA++(Och and Ney, 2003). As

an ensemble of IBM alignment models (Brown et al., 1993), the training pipeline of

GIZA++ relies on multiple iterations of IBM Model 1, Model 3, Model 4, and the

HMM alignment model (Vogel et al., 1996).

Another category of approach is context vector projection. Relying on an existing

dictionary, these approaches extract more translations from the comparable corpus.

First, the vector for each word is built based on all words co-occurring in a context

window. According to the dictionary, the source-language word vector is then pro-

jected to the target-language word vector. The word vector in the target language is

ranked based on the similarity to the projected vector to identify translations (Déjean

et al., 2002; Sadat et al., 2003). Besides co-occurrence in a context window, Gaussier

et al. (2004) employed latent semantic analysis for deriving word vectors by present-

ing a geometric view of translation extraction. Dependency trees are also used for

modeling context vectors of words (Garera et al., 2009). Hazem and Morin (2014)

combined window- and syntax-based contexts of words to build word vectors. Deriv-

ing correlations between source–target word pairs, Rahimi et al. (2016) proposed a

language modeling approach to extract translations from comparable corpora without

relying on a dictionary.
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Machine Translation. Another way to model cross-lingual knowledge for re-

trieval tasks is to use an off-the-shelf Machine Translation (MT) module independent

from the retrieval module. In the corpus-based approach, we already discussed Sta-

tistical Machine Translation (SMT) using statistical models whose parameters are

derived from the analysis of bilingual text corpora. Herein, we review another type

of MT model, Neural Machine Translation (NMT), and its performance in CLIR sys-

tems. NMT is generally an end-to-end machine translation model that builds on a

neural network. Since integrating the attention mechanism, NMT systems have seen

a remarkable improvement in translation quality. Most commonly, an attentional

NMT model consists of three components: (a) an encoder that computes a represen-

tation for each source sequence; (b) a decoder that generates one target symbol at a

time; (c) the attention mechanism that computes a weighted global context concern-

ing the source and all the generated target symbols (Klein et al., 2017). Named the

sequence-to-sequence (Seq2Seq) model, the network architecture of an NMT model

is usually a stack of Recurrent Neural Networks (RNNs) or Transformer layers (Bah-

danau et al., 2014; Vaswani et al., 2017). Studies have shown that a well-performed

NMT model depends on extensive language resources for training (Ott et al., 2018).

It learns cross-lingual knowledge from the corpus and integrates it into the network

parameters. Yao et al. (2020b) employed the Transformer-based NMT model as the

query translation module and showed that with top translation output, NMT outper-

forms SMT in terms of translation quality and leads to better retrieval performance.

However, Bonab et al. (2020) showed that with limited data available for training,

NMT struggles to match the performance of SMT. Concerns have been pointed out

for applying NMT as a module for query translation (Sarwar et al., 2019; Yao et al.,

2020a):
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• As a component in CLIR, query translation has to be real-time, while the ad-

vanced NMT model built with multiple network layers may fail to cope with

the requirement of processing speed.

• NMT models generally pay great attention to syntactic structure, which is less

important when translating queries for retrieval. The focus on the fluency of

the output may reduce the accuracy and coverage of the translation.

• Compared to SMT, NMT is less efficient in learning cross-lingual knowledge. Its

performance is highly dependent on the vast amount of training data, making

SMT a preferable choice for languages with limited resources.

2.1.2 Implicit Translation

Utilizing Word Embeddings. Incorporating cross-lingual knowledge through

dictionary-based translation, corpus-based translation, and machine translation mod-

ules typically entails executing explicit translations. To search the documents, CLIR

or MLIR systems employ a two-stage pipeline: translate first, then retrieve. In con-

trast to explicit translation, some research efforts focus on performing translation

implicitly. Bilingual word embeddings create the opportunity to skip the translation

step. As discussed in the previous subsection, early studies in using dictionaries as

a translation medium explored the use of predefined “concept vectors” to represent

words, converting the query and document into vector forms (Salton, 1970, 1973).

This is also knowns as the one-hot encoding of word embeddings. Different from pre-

defined vectors, the learned word embedding techniques, on the other hand, depend

on a training task to derive a low-dimensional vector (compared to the vocabulary

size) for each vocabulary term (Mikolov et al., 2013a; Pennington et al., 2014). These

vectors capture semantic and syntactic similarities between the corresponding words,

reflecting their relationship within the embedding space (Mikolov et al., 2013b). Simi-

lar to single-language word embedding, bilingual word embeddings represent lexicons
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of different languages in a shared embedding space. As a result, query-document

matching can be performed in a shared vector space for two languages, where words

that have similar meanings in two different languages are mapped close to each other.

The underlying assumption is that the embedding space contains cross-lingual knowl-

edge. Utilizing bilingual word embeddings to represent queries and documents serves

as an implicit translation approach. One of the earliest works in this direction is from

Vulić and Moens (2015), who proposed a model to learn bilingual word embeddings

using document-aligned comparable data. Once all the words in both languages are

represented in a shared space, they computed query and document representations

using the distributional semantics model to calculate their matching score based on

the cosine similarity metric. Bonab et al. (2020) assessed the effectiveness of sev-

eral bilingual word embeddings under a cosine similarity-based scoring framework

for retrieval and found bilingual word embedding can bring similar pairs of words in

two languages close together but often keeps the words that are translations of each

other farther apart than expected. This is because cross-lingual word embeddings

are learned from surrounding words of a target word but not from the translation of

that word. They referred to this phenomenon as the translation gap and proposed

a smart shuffling approach to include translation knowledge into word embeddings,

improving CLIR performance.

Multilingual Pre-trained Language Models. One of the main limitations

of static word embeddings or word vector space models is that words with mul-

tiple meanings are conflated into a single representation. In contrast, contextual

language models like ELMo (Peters et al., 2018), BERT (Devlin et al., 2019), and

RoBERTa (Liu et al., 2019) employ deep neural networks (multiple layers of LSTMs

or Transformers) and attention mechanisms to learn context-dependent representa-

tions of input tokens based on their surrounding context. Instead of optimizing for

a particular task, these models are focused on learning contextualized representation
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through pre-training tasks. BERT and RoBERTa are pre-trained on the Masked

Language Modeling (MLM) objective, also known as the Cloze task (Taylor, 1953).

Raffel et al. (2020) introducing a unified encoder-decoder framework, Text-to-Text

Transfer Transformer (T5), that converts all text-based language problems into text-

to-text pre-training tasks. These pre-training tasks effectively capture general lin-

guistic patterns and greatly enhance the performance of various natural language

processing (NLP) tasks. Extending the pre-training task to the multilingual setting

creates the multilingual versions of pre-trained language models (mPLMs), such as

mBERT (Devlin et al., 2019), XLM-R (Conneau et al., 2020) and mT5 (Xue et al.,

2021). Unlike BERT, which is trained on English Wikipedia and the Toronto Books

Corpus, mBERT is trained on up to 104 languages from Wikipedia. Besides datasets,

additional cross-lingual pre-training objectives are also applied to improve the pre-

training of multilingual language models. Based on the RoBERTa model, XLM-R

includes a translation language modeling (TLM) objective to predict a masked En-

glish word within a pair of parallel sentences. The development of mPLMs allows for

jointly learning contextualized representations for multiple languages within the same

vector space. Studies have shown that mPLMs possess multilingual knowledge and

are capable of performing cross-lingual transfer in their representation space (Pires

et al., 2019; Wu and Dredze, 2019). By fine-tuning using specialized task data, the

mPLMs can be applied to various multilingual tasks, including CLIR and MLIR,

demonstrating substantial improvements over static word embedding approaches.

Our approaches for incorporating cross-lingual knowledge utilize both explicit and

implicit translation methods. In this dissertation, mPLMs serve as the basic textual

encoder for all the methods discussed. Despite the high quality of the contextualized

representations, we focus on three limitations of applying mPLMs to CLIR and MLIR

tasks: (1) Similar to bilingual word embeddings, the translation gap still exits in

mPLMs (Zhan et al., 2020); (2) Fine-tuning mPLMs requires cross-lingual retrieval
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data, which are often costly to acquire, especially for low-resource languages (Sasaki

et al., 2018); (3) mPLMs exhibit performance variations across different languages in

many downstream tasks, including retrieval. This phenomenon, known as language

bias, hinders the ability of mPLM-based retrieval systems to rank documents fairly

across languages (Wu and Dredze, 2020).

To bridge the translation gap, we combine multilingual contextualized representa-

tion with dictionary knowledge (Chapter 3). Then, instead of using retrieval data for

training, we introduce a knowledge distillation framework for cross-lingual transfer via

bitext data (Chapter 4). Finally, we present two methods to minimize language bias

in mPLMs-based retrieval models: (i) utilize English as a pivot language and form

language features as a soft prompt to map representations from various languages into

the English retrieval space. (ii) erase language-specific features from model output

and focus the retrieval training on the language-agnostic representations. (Chapter 5

and Chapter 6).

2.2 Neural Ranking Models

2.2.1 Model Architecture

The development of the neural ranking model ties in with the approaches of rep-

resenting the query and document in vector space. In earlier works, based on deep

learning ideas, words in both the query and document are represented using static

word embeddings (Mikolov et al., 2013a). To contextualize a bag of words, kernel

methods are employed to construct query-document interactions. Guo et al. (2016)

proposed the DRMM, which uses different matching histogram strategies to convert

the pair-wise similarity matrix between query terms and document terms. Starting

from the same similarity matrix, K-NRM (Xiong et al., 2017) applied kernel pooling

to transform word-word interactions into ranking features. Instead of static word

embeddings, Li and Cheng (2018) took an adversarial learning approach to jointly
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learn language alignment through translation knowledge and cross-lingual matching

using relevance judgments. Bonab et al. (2020) proposed translation-oriented bilin-

gual word embeddings and combined them with DRMM matching model for CLIR

tasks.

To take advantage of the contextualized representation, one paradigm to incorpo-

rate PLMs for document ranking tasks follows a cross-encoder architecture. A special

[CLS] token is prepended to the input sequence to support the downstream applica-

tion. Because embedding of the special token is contextualized based on other tokens

in the input sequence, once fine-tuned, they are effective across various tasks, in-

cluding retrieval tasks. For the cross-encoder architecture, the model takes the query

document concatenation as the input. An embedding produced from the [CLS] token

is fed into a feed-forward perceptron layer to produce a ranking score (Dai and Callan,

2019; MacAvaney et al., 2019; Nogueira and Cho, 2019). However, retrieval models

that employ cross-encoders are computationally intensive and typically depend on a

lexical-based sparse retrieval method as an initial step to identify relevant informa-

tion. Thus, they are often known as the reranking model or re-ranker. The dense

retrieval model based on bi-encoder architecture is introduced to overcome the sparse

retrieval bottleneck. In this context, the model usually contains two encoders that

process the query and document separately. Khattab and Zaharia (2020) proposed a

late interaction dense retriever named ColBERT, which delays the interaction until

the scoring function. The scoring function applies the maxsim operation on each

query token to softly search against all document tokens to find the best token that

reflects its context and then sums over all the query tokens. Karpukhin et al. (2020)

proposed Dense Passage Retriever (DPR) that further simplifies the representations

of query and document into two vectors, respectively, and employs the dot-product

as the scoring function. Since the query and document are encoded separately, the

document collection can be indexed offline, and a search of the top-K documents
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is equivalent to finding the K nearest document embeddings to the query embed-

ding (Johnson et al., 2019). Dense retrieval based on bi-encoders can be applied

autonomously to search the entire collection or integrated with reranking models to

generate preliminary ranking lists. This approach has already demonstrated efficacy

in English retrieval tasks (Gao and Callan, 2022; Xiong et al., 2021).

Both cross-encoder and bi-encoder models for English can be configured for CLIR

and MLIR by substituting the underlying PLMs with their multilingual counterparts.

Yu et al. (2021) explored the performance of cross-encoder on CLIR tasks by combin-

ing the masked language model pre-training task with the retrieval fine-tuning task.

Nair et al. (2022) and Lawrie et al. (2023) extended ColBERT to the multilingual set-

ting by replacing BERT with XLM-R and evaluating on CLIR and MLIR datasets.

Utilizing mPLMs is an effective method for incorporating cross-lingual knowledge

when constructing CLIR or MLIR models. Nevertheless, this strategy also inherits

the limitations of mPLMs, as mentioned in the prior subsection.

2.2.2 Model Training

In general, the training of neural retrieval models requires queries and documents

labeled with relevance scores. This can either be explicit relevance judgments (e.g.,

human-annotated datasets) or implicit feedback (e.g., click data). The most common

loss function used in training cross-encoders is the binary cross-entropy loss for binary

relevance tasks or a ranking loss such as pairwise hinge loss if the model needs to learn

from a ranking context. The model aims to minimize the loss to correctly predict

the relevance of the document to the query (Nogueira and Cho, 2019). Similar to

cross-encoders, dense retrieval models are trained on datasets of query-document

pairs. However, the training sets must be carefully designed to include negative

examples (non-relevant documents) alongside positive examples to effectively train

the dense representations. Negative examples are commonly sampled from the ranked
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list of lexical-based retrieval methods, such as BM25 (Zhan et al., 2021). In-batch

data can also be used to expand on negative examples for each training instance.

Xiong et al. (2021) proposed an asynchronous learning mechanism that selects hard

training negatives globally from the entire corpus, using the previous index generated

by the previous model checkpoint. After retrieval data is collected, contrastive loss,

such as margin-based loss, is commonly employed. These loss functions typically

involve a positive pair (query and relevant document) and one or more negative pairs

(query and non-relevant documents), aiming to maximize the distance between the

query’s embedding and the embeddings of non-relevant documents while minimizing

the distance to relevant document embeddings.

A straightforward approach to building neural retrieval models for CLIR and

MLIR tasks follows the same training paradigm of retrieval tasks in English, substi-

tuting the English retrieval data with the retrieval data in target languages. How-

ever, in practice, the distribution of resources for pre-training mPLMs is not uniform

across all languages, leading to an imbalance in the data available for different lan-

guages. This disparity has been observed to result in a performance gap between high-

resource and low-resource languages across various downstream tasks. Consequently,

commonly known as the language bias issue, mPLMs tend to exhibit enhanced effec-

tiveness in languages with abundant resources, while their performance in languages

with limited data remains suboptimal (Wang et al., 2020; Wu and Dredze, 2020).

Retrieval models built on such mPLMs models can inherit the language bias. More-

over, because English is the dominant language on the internet, digital devices, and

academia (Blodgett et al., 2020), compared to the scale of labeled query-document

in English, the training of CLIR and MLIR models also faces the data scarcity prob-

lem (El-Kishky et al., 2020b). The limited availability of relevance judgments within

target languages severely restricts models’ ability to develop effective retrieval knowl-

edge (Litschko et al., 2022a,b). Prior studies focused on building CLIR and MLIR
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datasets for better training or evaluation. Datasets based on human annotations,

such as NeuCLIR (Lawrie et al., 2024) and LAReQA (Roy et al., 2020), have been

proposed for model evaluation. To mitigate the data scarcity in model training,

large-scale synthetic training data generation involves two main simulation strategies:

translating English retrieval datasets into target languages or building pseudo-labels

using a corpus in target languages. For example, Sasaki et al. (2018) proposed a

large cross-lingual retrieval collection, WikiCLIR. It uses the title of articles in target

languages linked from Wikipedia pages as the query to simulate relevance. Bonifacio

et al. (2021) built a multilingual passage ranking dataset, mMARCO, by translating

the queries and passages in MS MARCO into the target language using Neural Ma-

chine Translation (NMT) models. Thakur et al. (2023) leveraging the recent advances

in generative and autoregressive Large Language Models (LLMs) to generate queries

in target languages with minimal supervision.

This dissertation focuses on neural retrieval models, covering both cross-encoder

document reranker and bi-encoder dense retriever. Chapter 3 focuses on cross-encoder

document reranker for the CLIR task. With limited cross-lingual retrieval labels for

training, we introduce word-level translation knowledge into mPLMs to address the

translation gap. For bi-encoders, instead of simulating retrieval labels in target lan-

guages to support the model training, we suggest employing cross-lingual knowledge

transfer using bitext data to tackle the data scarcity issue. Chapter 4 studies knowl-

edge transfer via cross-lingual token alignment for multi-vector dense retrieval models,

and Chapter 5 extends such knowledge transfer to multiple language pairs. Based

on the findings of knowledge transfer in CLIR and MLIR tasks, Chapter 6 explores

language concept erasure, an approach to removing language-specific signals in mul-

tilingual embedding space, and encouraging the training of dense retrieval models to

focus on language-independent retrieval knowledge.
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2.3 From Cross-lingual to Multilingual

While CLIR involves searching between two distinct languages, MLIR, by defini-

tion, allows for any language to be used as input for both queries and documents.

Given that there are more than 7000 languages worldwide 1, in practice, the language

setting of MLIR is narrowed down to a set of query languages and a set of document

languages. Even though CLIR and MLIR are tightly coupled, effective MLIR models

need to overcome additional major challenges. For instance, realistically, the distribu-

tion of relevant documents across languages differs for each query. How can an MLIR

model perform document ranking independent of its language to retrieve documents

consistently? Methods for MLIR are categorized as (1) Fusion-based methods that

first break MLIR into a group of CLIR sub-tasks and then merge results from mul-

tiple retrieval runs (Savoy, 2003; Savoy and Berger, 2005). From an IR perspective,

the merging step depends on the assumption of the relevant distribution (Le Calvé

and Savoy, 2000) or ranking score distribution (Manmatha et al., 2001), which often

leads to sub-optimal results. (2) Direct methods that build the index for the entire

collection and return one ranked list over multiple languages in the collection (Rahimi

et al., 2015; Sorg and Cimiano, 2012). This line of research depends on different mul-

tilingual language modeling techniques. As previously discussed, the development

of language models (e.g., mPLMs) often leads to language bias, later resulting in

inconsistent retrieval performance across different languages.

In this dissertation, we developed MLIR models categorized under the direct

method. These models fundamentally aim to handle and process multiple languages

effectively within a single framework. To tackle language bias, Chapter 5 introduces a

knowledge distillation approach by using English as the pivot language. This strategy

involves transforming the representations from multiple languages into the English

1https://en.wikipedia.org/wiki/Lists_of_languages
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embedding space, thus facilitating query document matching across languages. Chap-

ter 6 advances this concept by targeting and eliminating language-dependent features

from the representations of queries and documents in a dense retrieval model. This

process reduces the influence of language that could skew retrieval outcomes and en-

courages retrieval to focus solely on content relevance. The primary objective of these

methods is to refine the model’s capability to rank documents by their relevance to

the query, independent of the language in which they are in. This is achieved by en-

suring that the core semantic content of the query and document guides the retrieval

process rather than linguistic characteristics.
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CHAPTER 3

TRANSLATION KNOWLEDGE INJECTION

Pre-trained language models (PLMs) offer big gains for many downstream tasks,

including document ranking (Yates et al., 2021; Zhan et al., 2020). The multilingual

versions of such models (mPLMs) provide the possibility of bypassing the translation

step and jointly learning many languages within the same model. Although big gains

are expected with such joint training, in the case of cross-lingual information retrieval

(CLIR), the models in a multilingual setting are not achieving the same level of

performance as those in a monolingual setting (Bonab et al., 2020; Ruder et al., 2019).

Reviewing the pre-training task of mPLMs, we find that the token representations

in different languages are generated by the context rather than their translations.

This raises the same concerns of translation gap pointed out by Bonab et al. (2020)

in the static word embeddings. When developing the neural ranking models, though

semantic similarity signals can tackle term mismatch problems, the exact matching

of terms in documents with those in queries is still the most important signal in ad-

hoc retrieval (Guo et al., 2016). In the monolingual retrieval task, it is easier for

the neural model to identify the query terms that occur in documents because of the

same lexical form. However, in the cross-lingual setting, such co-occurrence becomes

mutually translated words. Projecting words in different languages into the same

hyperspace, mPLMs tend to “translate” query terms into related terms – i.e., terms

that appear in a similar context – in addition to or sometimes rather than synonyms

in the target language (Pires et al., 2019). This property creates difficulties for the
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model in connecting terms in multiple languages that co-occur in both query and

document.

To address this issue, we build a novel Mixed Attention Transformer (MAT) to

incorporate external word-level translation knowledge, such as a dictionary or transla-

tion table. We design a hybrid architecture to embed MAT into the transformer-based

deep neural models. By encoding the translation knowledge into an attention matrix,

the model with MAT is able to focus on the mutually translated words in the input

sequence. Experimental results demonstrate the effectiveness of the external knowl-

edge and the significant improvement of MAT-embedded neural reranking model on

CLIR task.

The work described in this chapter, namely Mixed Attention Transformer for

Leveraging Word-Level Knowledge to Neural Cross-Lingual Information Retrieval,

was published in CIKM 2021 (Huang et al., 2021). I was the lead author who de-

signed the model architecture and conducted the experiments.

3.1 Word-Level Knowledge for Translation Attention

Our goal is to incorporate additional knowledge from external translation refer-

ences into a transformer architecture to enable it to more accurately connect query

and document tokens based on translations. We define translation reference as a large

structural dataset containing knowledge to translate words from one language to an-

other, e.g., a human-constructed dictionary or a translation table built from parallel

corpora. Suppose there exists a word-level translation reference T . Given word ws in

the source language and wt in the target language, T (wt, ws) returns the probability

of ws being translated to wt.

T (wt, ws) = P (wt|ws, T )
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Algorithm 1: Generate translation attention matrix.

Input: [q, d] and T (·, ·)
Output: M tr

1 Initialize M tr as a m×m zero matrix.
2 for each token wk in the input sequence do
3 M tr

kk = 1
4 end
5 for each query token wi do
6 for each document token wj do
7 M tr

ij = M tr
ji = T (wj, wi)

8 end

9 end
10 M tr ← RowNorm(M tr)

return: M tr

We assume the query is in the source language with length of mq words and the

document is in the target language with length of md words. Therefore, the concate-

nation of query and document [q, d] has length m = mq + md + 2 (including special

token [CLS] and SEP). Then we construct an m × m translation attention matrix

M tr based on [q, d] and T (·, ·) by symmetrically assigning translation probabilities

between query tokens and document tokens. We provide detailed instructions for

constructing M tr in Algorithm 1.

Note that the kth row of M tr represents the attention weights of kth token in

the input assigned across all the input tokens. In Algorithm 1, lines 2-4 guarantee

each token, including out-of-vocabulary words, is assigned a weight to itself and the

self weight is the upper bound of all of its translation probabilities. If qi and dj are

mutually translated words, they get their translation probabilities to each other from

lines 5-9. Finally, the row normalization ensures that the attention weights for each

input token sum up to 1.

To encode rare words with limited vocabulary size, pre-trained language models of-

ten use Byte Pair Encoding (BPE), which splits words into sub-word units. Evidence

shows that self-attention treats split words differently than non-split ones (Correia
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Figure 3.1: A simple example for generating M tr.

et al., 2019). Therefore, we use tokens before BPE to query the translation reference

and assign the same attention weight to all parts of the same word. The dimension

m of M tr is the same as the length of the [q, d] sequence tokenized by a pre-trained

language model. A simplified example for generating M tr with query “cat” and doc-

ument “katze” (German translation of cat) is shown in Figure 3.1.

3.2 Mixed Attention Transformers for CLIR

3.2.1 Architecture of Mixed Attention Transformers (MAT)

To inject M tr into a transformer-based model, we design a novel transformer net-

work named Mixed Attention Transformer (MAT) by combining multi-head attention

with translation-based attention. The multi-head attention (Vaswani et al., 2017) is

the core of the transformer architecture, which consists of n different attention heads.

Given the vector representations as the hidden states h, each head computes the

dot-product attention:

Attentioni(h) = softmax
(W q

i h ·W k
i h√

d/n

)
W ν

i h

where h is a d dimensional hidden vector for an input sequence. In BERT, the W q
i ,

W k
i and W ν

i are matrices with size d/n × d. Thus, each head projects to a different

subspace of size d/n, learning different information.
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Then the outputs of the multi-head attention, MH(·), are n heads concatenated

and linearly transformed:

MH(h) = W o[Attention1, . . . ,Attentionn]

In parallel to multi-head attention, we introduce the translation attention head de-

noted as TH(·). Inspired by the scaled dot-product attention, we replace the atten-

tion weights learned from matrices W q
i and W k

i by the fixed attention weights in M tr.

Then, the multi-head attention becomes a single fixed attention head as follows

TH(h) = W o
TH

(
M tr(W ν

THh)
)
,

where both W o
TH and W ν

TH are trainable matrices in TH(·) with dimension d× d. By

matrix multiplying with M tr, the translation attention head is capable of reducing the

distance between mutually translated tokens in the token representation hyperspace.

Therefore, the attention matrix M tr “pays attention” to all these pairs of words and

TH(·) tends to “pulls” their hidden representations closer in the hyperspace. In the

following, we prove the effect of M tr on hidden states.

Lemma 3.1 Let convex combinations of vectors A and B be αA+ βB and βA+αB

where α + β = 1. Then, the cosine similarity between αA + βB and βA + αB is

greater or equal to the cosine similarity between A and B.

Proof.

Sim(αA + βB, βA + αB) =
(αA + βB) · (βA + αB)

∥αA + βB∥∥βA + αB∥

≥ (α2 + β2)A ·B + αβ(∥A∥2 + ∥B∥2)
(α2 + β2)∥A∥∥B∥+ αβ(∥A∥2 + ∥B∥2)

≥ A ·B
∥A∥∥B∥

.

Therefore, Sim(αA + βB, βA + αB) ≥ Sim(A,B).
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Suppose query word wi and document word wj are the translations of each other

with probability p > 0, and words other than wj in documents all have zero translation

probability with wi. Then, the only two non-zero weights in the ith row of M tr are

self attention (M tr
ii ) and attention on wj (M tr

ij ):

M tr
ii =

1

(1 + p)
; M tr

ij =
p

(1 + p)

Similarly for wj, the non-zero weights in the jth row are M tr
jj = 1/(1 + p) and M tr

ji =

p/(1 + p). If we ignore the trainable matrices in TH(·) and directly multiply M tr

with hidden states h, the translation attention output of wi and wj are a convex

combination of each other’s hidden representations:

TH(hwi
) =

1

1 + p
hwi

+
p

1 + p
hwj

TH(hwj
) =

1

1 + p
hwj

+
p

1 + p
hwi

According to Lemma 3.1, because p > 0,

Sim
(
TH(hwi

),TH(hwj
)
)
> Sim(hwi

,hwj
)

Thus, when p is significant, the words in the query and document are likely to be

translated to each other. The attention matrix M tr “pays attention” to all these pairs

of words and “pull” their hidden representations closer in the hyperspace.

The complete attention mechanism in MAT is a combination of the attention

outputs from both MH(·) and TH(·). We first employ a residual connection around
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each type of attention output, followed by layer normalization, denoted as LN(·),

resulting two sub-layer outputs. Then we sum two sub-layer outputs:

SublayerMH(h) = LN(h + MH(h))

SublayerTH(h) = LN(h + TH(h))

h′ = SublayerMH(h) + SublayerTH(h)

and apply the summed result to the position-wise feed-forward networks (FFN):

FFN(x) = max(0, xW1 + b1)W2 + b2

The final output of MAT is another residual connection around the output of FFN:

MAT(h) = LN(h′ + FFN(h′))

The complete MAT architecture is depicted in Figure 3.2 (middle). The left and

right of Figure 3.2 are two types of attention components in MAT. The benefits of

this network architecture are that the MAT can attend to both contextual information

from multi-head attention and cross-lingual knowledge from the translation attention

head during training. Because we keep the multi-head attention mechanism and share

the FFN sublayer, MAT contains a vanilla transformer network. This design allows

MAT to be easily embedded into recent transformer-based pre-trained models and

fully leverage the pre-trained weights.

3.2.2 Embed MAT into Pre-trained Language Models

Qiao et al. (2019) analyzed different ranking models based on BERT and found

that the cross-encoder approach, which applies BERT on the concatenated [q, d] se-

quence and uses the last layer’s representation of the [CLS] token as the matching
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Figure 3.2: (left) Multi-Head Attention. (right) Translation Attention Head. (middle)
Mixed Attention Transformer Layer.

Figure 3.3: MAT layers in BERT document ranking model.

feature, gives the best performance. We use the same BERT in the cross-encoder set-

ting as a re-ranker to discuss how to embed MAT into a transformer-based pre-trained

language model.

MART (MAT+BERT), the new model architecture we proposed, keeps the em-

bedding layer and add-on network while replacing some of the Transformer layers in

the middle by MAT. During fine-tuning, the BERT layers close to the output (higher

layers) are more sensitive than the lower layers (Zhao and Bethard, 2020). Also,

another study on BERT (Tenney et al., 2019) has shown that most local syntactic

33



phenomena are encoded in lower layers while higher layers capture more complex

semantics. Considering the fine-tuning efficiency and semantic quality of the token

representations, the layer replacement should start from the higher layers of BERT.

Moreover, in the Last-Int ranking approach, the output score is only based on the

[CLS] token in the last BERT layer. Therefore, we keep the last BERT (Base) layer

as the output layer and start to embed MAT from the 11th layer. Figure 3.3 shows

an example of the hybrid architecture based on a BERT-based ranking model where

MAT layers are embedded into 10th and 11th layers of BERT. Using the same hidden

dimension as BERT, each MAT layer introduces only about 1.18M new parame-

ters compared to the BERT layer. At initialization, MAT is able to use pre-trained

weights of its corresponding BERT layer. This compatibility increases the fine-tuning

efficiency and reduces the training data requirement.

3.3 Experimental Setup

3.3.1 Datasets

CLIR Dataset. We create our training and evaluation data from the Cross-

Language Evaluation Forum (CLEF) 2000-2008 campaign for bilingual ad-hoc re-

trieval tracks (Braschler, 2001, 2002a,b, 2003; Peters, 2005, 2006, 2007, 2008, 2009).

We use the text fields of the documents to construct our retrieval corpus and discard

other metadata. We concatenate the title and description fields of a topic and con-

sider it as our query. We consider all the topics and relevance judgments from all

the tracks to show the consistent effectiveness of MAT across several cross-language

retrieval settings on both high- and low-resource languages.

Translation Resources. Our goal is to leverage translation resources as external

knowledge into the query-document matching process. We use sentence-level parallel

data with GIZA++ toolkit (Och and Ney, 2003) to construct a translation table,

which we use to generate M tr. Translation tables for European languages are based
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on the Europarl v7 sentence-aligned corpora (Koehn, 2005). For our limited-resource

(in terms of both parallel data and relevance judgments) setting based on Somali and

Swahili languages, we use the translation tables provided by Zhang et al. (2020).

Forward Setting: Non-English Query and English Documents. In this

setting, we use non-English queries against an English document collection. To eval-

uate cross-lingual matching performance, we use human translation of a fixed query

set to obtain queries in different languages. While we have translations of queries in

different languages, we keep the content and language of the retrieval corpus fixed.

We have both high-resource and low-resource CLIR settings in our experiments. In a

high-resource setting, for example, French-English, we have a larger size of sentence-

level parallel data and relevance judgments compared to a low-resource setting. In

our experiments, we used four high-resource language pairs: French (Fre-Eng), Ital-

ian (Ita-Eng), German (Deu-Eng), and Spanish (Spa-Eng). For each language, we

selected queries from the CLEF C001 – C350 topic set. We took the intersection

of the topic ID and removed topics without any relevant documents, resulting in

246 overlapped queries across four languages. For cross-language information re-

trieval involving low-resource languages, we experiment on Somali (Som-Eng) and

Swahili (Swa-Eng). Bonab et al. (2019) provided Somali and Swahili translations of

151 English queries from the CLEF C001 – C200 topic set, and we use those queries

in our setting. The collection of English documents is the Los Angeles Times corpus

comprised of 113K news articles.

Backward Setting: English Query and Non-English Documents In this

setting, we use English queries to search document collections in four languages:

French (Eng-Fre), Italian (Eng-Ita), German (Eng-Deu) and Spanish (Eng-Spa). For

each language, we create a retrieval corpus from a combination of sources which we

report in Table 3.1. As the retrieval corpus varies for each language, relevance judg-

ments are not available for all the English topics from CLEF C001 – C350 topic set.
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Table 3.1: Summary of CLIR setting. The first four rows indicate the backward and
the last row indicates the forward setting.

CLIR Setting Collection Source Collection Size Query Size

Eng-Fre Le Monde, Sda French 129,689 185
Eng-Ita La Stampa, Sda Italian 144,040 176
Eng-Deu Der Spiegel, Frankfurter Rundschau 153,496 184
Eng-Spa EFE News 94-95 452,027 156

Xxx-Eng Los Angeles Times 94 113,005 246

Thus, for each CLIR setting, we have a different number of queries in the backward

setting compared to the forward setting. Table 3.1 provides information about query

sets and document collections in both settings.

3.3.2 Implementation Details

Passage Re-ranker. Nogueira and Cho (2019) fine-tuned mBERT on MS MARCO

passage retrieval dataset to create a passage ranking model. We refer to this model

checkpoint as m2BERT and further fine-tune it with cross-lingual relevance judg-

ments. To prepare the input sequence for m2BERT we concatenate a query and a

document separated by a special [SEP] token from mBERT’s vocabulary. We prefix

the concatenated sequence with the special [CLS] token from mBERT’s vocabulary.

We obtain the last layer representation of this sequence from m2BERT, but only use

the representation of the [CLS] token, and pass it through a linear combination layer

to obtain the probability of the document being relevant to the query. At test time,

given a query, m2BERT computes the probability for each document independently

and obtains a document ranking after sorting with these probability scores. Because

the mBERT input sequence is limited to 512 tokens, longer documents are split into

segments by 512 tokens, and [CLS] representations from all document segments are

averaged to obtain a representation for fine-tuning. MacAvaney et al. (2019) used

the same approach for monolingual retrieval.
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Evaluation. For evaluating retrieval effectiveness, we follow prior works on the

CLEF dataset (Bonab et al., 2020; Litschko et al., 2019) and report mean Average

Precision (mAP) of the top 100 ranked documents and precision of the top 10 retrieved

documents (P@10). We determine statistical significance using the two-tailed paired

t-test with p-value less than 0.05 (i.e., 95% confidence level).

Model Training. We train all neural re-ranking models using pairwise cross-

entropy loss (Dehghani et al., 2017). We use all the positive documents from the query

relevance judgments and randomly sample negative documents to form training pairs.

All models are trained using Adam’s optimization algorithm (Kingma and Ba, 2015)

with a learning rate of 2e-5, batch size 16, and 100 epochs with an early stopping

strategy. Given the limited number of queries in each language, we use 5-fold cross-

validation for robust evaluation. For each fold, the training, validation, and test

data are 60%, 20%, and 20% of the query set, respectively. The reported evaluation

metrics are averaged across 5 folds. We also fix the random seed to guarantee that

all models receive the same training data. For the validation queries, we re-rank the

top 100 documents and use mAP to select the best-performing model.

3.3.3 Baselines

We compare MART with the methods in the following

• SMT+BM25: We first use the GIZA++ toolkit (Och and Ney, 2003) to build

translation tables from parallel corpora. We select top-10 translations from the

translation table for each query term and apply Galago’s1 weighted #combine

operator to form a translated query. Then we use the Galago’s implementation

of Okapi BM25 (Robertson et al., 1995) with default parameters. It serves as

one of our baselines. Moreover, the training data for neural re-ranking models

are sampled based on the top 500 retrieved documents by SMT+BM25.

1https://www.lemurproject.org/galago.php/
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• NMT+BM25: Leveraging OPUS-MT (Tiedemann and Thottingal, 2020), an

open-source NMT project for many languages, we build this baseline by first

translating the query into the same language as the documents using an NMT

model. Then, we run BM25 to retrieve documents.

• m2BERT: To create the m2BERT baseline, we begin with the pre-trained

checkpoint provided by Nogueira and Cho (2019). This checkpoint is a result

of fine-tuning the multilingual BERT (mBERT) architecture with MS MARCO

passage ranking dataset (Nguyen et al., 2016). We further fine-tune it with

training data from a specific CLIR setting. We use the same fine-tuning ap-

proach described in section 3.3.2 for this baseline and our proposed model to

ensure a fair comparison.

• MART-PLB: This is a variant of MART. In order to evaluate the effect of

external knowledge on MAT, we replace Mtr by an identity matrix so that

each token is only paying attention to itself. Therefore, instead of injecting

translation knowledge into the model, we design a “placebo” attention matrix

for MAT. Using MART-PLB as a controlled experiment, we are able to evaluate

the effect of external knowledge.

In order to provide an empirical upper bound on retrieval performance, we use

human translation of the queries and apply BM25 as the retrieval technique, denoted

as Human+BM25. The human translations of the queries are obtained from the

CLEF dataset, as they have a common topic ID for the same queries across different

languages.

3.4 Results

3.4.1 Performance on High-resource Languages

Table 3.2 lists evaluation results on both Forward (top) and Backward (bottom)

settings for language pairs with high translation resources. Based on BM25, the
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Table 3.2: Model performance on forward and backward settings for high-resource
languages. The highest value for each column is marked with bold text. Statistically
significant improvements are marked by † (over SMT+BM25), ‡ (over NMT+BM25)
and ⋆ (over BERT).

English
Docs

(Forward)

Model
Fre-Eng Ita-Eng Deu-Eng Spa-Eng

mAP P@10 mAP P@10 mAP P@10 mAP P@10

Human+BM25 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940

SMT+BM25 0.3618 0.3492 0.3561 0.3431 0.3588 0.3354 0.3624 0.3317

NMT+BM25 0.4029 0.3682 0.3637 0.3282 0.3586 0.3306 0.3623 0.3310

m2BERT 0.3802† 0.3799† 0.3652 0.3545 0.3582 0.3335 0.3819† 0.3693†

MART-PLB 0.3859† 0.3666† 0.3701 0.3689† 0.3593 0.3501† 0.3824† 0.3676†

MART 0.4126†⋆ 0.3935†‡⋆ 0.3944†‡⋆ 0.3732†‡⋆ 0.3862†‡⋆ 0.3770†‡⋆ 0.3953†‡⋆ 0.3830†‡⋆

English
Queries

(Backward)

Model
Eng-Fre Eng-Ita Eng-Deu Eng-Spa

mAP P@10 mAP P@10 mAP P@10 mAP P@10

Human+BM25 0.2955 0.3054 0.2629 0.2892 0.2970 0.3060 0.2518 0.2436

SMT+BM25 0.2258 0.2319 0.1883 0.1852 0.2614 0.2424 0.1985 0.2088

NMT+BM25 0.2397 0.2584 0.1943 0.2119 0.2603 0.2734 0.2477 0.3532

m2BERT 0.2841† 0.2875† 0.2635† 0.2605† 0.3241† 0.3246† 0.2355† 0.2285†

MART-PLB 0.2807† 0.2823† 0.2713† 0.2771† 0.3262† 0.3230† 0.2389† 0.2351†

MART 0.3002†‡⋆ 0.3108†‡⋆ 0.2823†‡⋆ 0.2846†‡⋆ 0.3433†‡⋆ 0.3414†‡⋆ 0.2558†⋆ 0.2439†⋆

difference between NMT and SMT is due to translation quality. We can see that

NMT outperforms SMT on both forward and backward translation of French and

Italian tasks. They perform similarly on German tasks. In Spanish, NMT models

show a different translation quality between forward and backward.

As a neural re-ranker, m2BERT significantly improves upon SMT+BM25 on all

language pairs in the backward setting (English queries) and two language pairs in the

forward setting (English docs) while performing on par with SMT+BM25 for Deu-

Eng and Ita-Eng languages. While fine-tuned on English document retrieval dataset,

m2BERT can transfer to the cross-lingual task with small amount of fine-tuning data.

This agrees with the previous finding by Pires et al. (2019) that mBERT is able to

generalize across languages.

We observed substantial improvements on the retrieval performance when trans-

lation knowledge is incorporated into MART. For all language setting combina-
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tion in Table 3.2, MART performs significantly better than the BERT architecture

(m2BERT) in terms of both mAP and P@10. MART improves m2BERT by 8% on

the forward and 7% on the backward settings in terms of mAP. This comprehensive

comparisons with vanilla BERT based ranker demonstrate the effectiveness of the

MAT-embedded model.

Replacing Mtr by the identity matrix in MART-PLB, the translation attention

head degenerates to two additional feed-forward layers. MART-PLB behaves insignif-

icantly different comparing to the vanilla BERT architecture on all languages. Such

results indicate that the performance gain in MART relies on injecting the external

knowledge, not from adding new parameters. When Mtr becomes non-informative,

the translation attention head is ineffectual.

Comparing MART with human translation, we can see that in the forward setting,

correct translation with the basic retrieval model still beats the neural CLIR model.

However, in the backward setting, MART achieves roughly the same as (Eng-Fre,

Eng-Spa) or better than (Eng-Ita, Eng-Deu) human translation. We hypothesize

that in the backward setting, translation tables provide higher-quality translations,

which enable better semantic matching between query and document tokens.

3.4.2 Performance on Low-resource Languages

The evaluation results for two language pairs with limited translation resources

on the forward setting are shown in Table 3.3. We make several observations. First,

different from high-resource languages, we can see that, on the Somali-English task,

NMT performs worse than SMT due to the limited resources for NMT model training.

Then, m2BERT mostly underperforms SMT+BM25 for both Somali and Swahili lan-

guages. Note that Somali is not included in the mBERT pre-training. Even if Swahili

is included, there are only a small number of Swahili sentences in the pre-training

data. The low performance of m2BERT on low-resource language pairs demonstrates
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Table 3.3: Model performance for low-resource languages on Forward setting. The
highest value for each column is marked with bold text. Statistically significant
improvements are marked by † (over SMT+BM25), ‡ (over NMT+BM25) and ⋆
(over m2BERT).

Model
Som-Eng Swa-Eng

mAP P@10 mAP P@10

Human Translation 0.4563 0.3940 0.4563 0.3940

SMT+BM25 0.1948 0.1865 0.2184 0.2152

NMT+BM25 0.1589 0.1380 0.2247 0.2113

m2BERT 0.1986 0.1772 0.2055 0.2089

MART-PLB 0.2049 0.1972†⋆ 0.2130 0.2106

MART 0.2207†‡⋆ 0.2135†‡⋆ 0.2348†⋆ 0.2151

that absence or inadequate pre-training data on a particular language leads to poor

performance on target tasks involving those languages.

On the other hand, the MART model achieves the highest mAP performance for

both Somali and Swahili languages. The consistent and significant improvements in

terms of mAP over compared methods make MART the best model in our experi-

ments. Due to the lack of pre-training data, the translation gap is more critical in

low-resource language pairs. The performance of MART for Somali and Swahili lan-

guages proves that leveraging external translation knowledge can help to bridge the

translation gap. Moreover, the experiments with the placebo setting, similar to those

for the high-resource languages, have shown no significance in performance compared

to m2BERT. These results strengthen the conclusion that the translation attention

matrix is the key component of MAT.

Human translation leads neural ranking models by a large margin in CLIR tasks

involving low-resource languages. This is expected because, with less sentence-level

parallel data, the CLIR models often suffer from low quality of translations.

3.4.3 Analysis of Token Representations

To study the influence of MAT on the translation gap in neural CLIR, we compare

the token representation from each layer between m2BERT and MART. Specifically,
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(a) Deu-Eng (b) Swa-Eng

Figure 3.4: The comparison of layer-wise token representations.

both models are fine-tuned on Deu-Eng and Swa-Eng training data. Figure 3.4 shows

the distances between contextualized token representations in two model architec-

tures where the x-axis represents layers from low to high and the y-axis is the cosine

similarity. We focus on two types of word pairs (one from query and another from

document) in an input sequence: (i) Mutually translated words, where all pairs of

words that are translations of each other according to the external translation knowl-

edge are selected; and (ii) Random non-translated words, where we randomly sample

10 pairs of words which are not translations of each other. We compute the average

cosine similarity of the token representations at each layer for all selected word pairs

in the test data of Deu-Eng (high-resource) and Swa-Eng (low-resource).

From the diagrams in Figure 3.4, we can see that, in general, the similarity of

token representations increases as the layer gets higher. Also, mutually translated

words always have smaller cosine distances than non-translated words. The closer

lines between two types of word pairs in Swa-Eng prove that the translation gap

is more critical in resource-lean languages. We can also see that in the 10th and

11th layers, the similarity of two types of words in m2BERT drops for both language

pairs. According to the previous analysis (Pires et al., 2019), one hypothesis for such

drop is that before fine-tuning on MS MARCO dataset, mBERT was pre-trained on
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surrounding contexts for language modeling, it needs more contextual information to

predict the missing words correctly. Therefore, mBERT favors text sequence pairs

that are closer in their semantic meanings. Such models trained on surrounding

context are not as effective for ad-hoc document ranking with respect to keyword

queries (Qiao et al., 2019).

MART shows the same behavior as m2BERT up to the MAT layers. The repre-

sentations of mutually translated words in MAT layers become similar to each other

in terms of cosine distance. This matches the design purpose of MAT. Meanwhile,

because MAT keeps the native multi-head attention from BERT layer, the similarity

of non-translations still drops in MAT layers. The increased similarity between mu-

tually translated words and the decreased similarity between non-translated words

demonstrate that the model is bridging the translation gap with the help of external

knowledge.

3.4.4 Effect of Translation Resources

From the previous results, we have seen that the translation attention matrix is

critical to the success of MAT. As a knowledge injection model, it is palpable that

the quality of the knowledge affects the model performance. In this experiment, we

study the effect of different sources of external knowledge on the MART. Besides the

translation table built from parallel data, we use two different translation knowledge

for Mtr generation: Panlex dictionary (Kamholz et al., 2014) and multilingual word

embedding, MUSE (Conneau et al., 2017). To obtain translation probability for a

single word in Panlex, we uniformly distribute weights to all possible translations.

In MUSE, we use the five nearest neighbors of a word in the target languages as its

potential translations and assign translation probability based on their normalized

cosine similarity. In order to cover different languages and retrieval settings, we
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Table 3.4: MART performance for different external knowledge. The highest value
for each column is marked with bold text. “–” if language is not supported.

External
Knowledge

Forward Backward

Deu-Eng Swa-Eng Eng-Deu

mAP P@10 mAP P@10 mAP P@10

Parallel Corpus 0.3862 0.3770 0.2348 0.2151 0.3433 0.3414

Panlex 0.3713 0.3612 0.2265 0.2073 0.3326 0.3360

MUSE 0.3693 0.3580 – – 0.3335 0.3348

select Deu-Eng (high-resource) and Swa-Eng (low-resource) from forward setting and

Eng-Deu from backward setting for this experiment.

Table 3.4 shows the results of all compared sources of translation knowledge. We

observe a performance drop on both alternative knowledge resources. For Panlex,

although the translations are more precise than those in a translation table, they do

not provide a broad coverage of words. Multilingual word embeddings are learnt from

the contexts of words, not their translations. Therefore, given a word, the embeddings

of semantically similar words are often closer than those of its translations to the

embedding of a word (Bonab et al., 2020). Thus, using multilingual word embeddings,

the problem of the translation gap will not be completely resolved.

3.4.5 Ablation Study on Model Architecture

In this section, we empirically study the effects of different numbers and positions

of MAT layers in a MART model. We further train and evaluate the MART with

various combinations of MAT layers. It is worth mentioning that given the number of

layers in BERT architecture, there exist exponential number of possible combinations.

We only explore several representative models. Leaving the last layer as the output

layer, we still focus on the higher Transformer layers of BERT architecture. For

models with a single MAT layer, we investigate MART with MAT embedded at 9th,

10th, or 11th layer. For double MAT layers, we use the previous results from MAT at
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(a) Deu-Eng (b) Swa-Eng

(c) Eng-Deu

Figure 3.5: The performance comparison of different MART model architectures.

10th and 11th layers. We also consider an architecture with three MAT layers where

9th, 10th and 11th layers in BERT are all replaced by the MAT layer.

Figure 3.5 shows the performance of different MART model architectures on Deu-

Eng, Swa-Eng and Eng-Deu. We can see that all model variants have a similar

pattern across three selected CLIR tasks. Because higher BERT layers are more

sensitive to fine-tuning (Zhao and Bethard, 2020) and their hidden representations

capture complex semantic information (Tenney et al., 2019), the retrieval performance

for the single MAT layer increases from MAT at the 9th layer to MAT at the 11th

layer. The double MAT layer can further boost performance from the single-layer

approach. We also can see that models get less improved when 9th in replaced by

MAT. This pattern indicates that the token representations after the 8th layer (the
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input of the 9th layer) do not contain enough semantic information. Thus, it is too

early to apply the translation attention.

3.5 Summary

In this chapter, we bridged the translation gap in neural CLIR models by in-

corporating external translation knowledge. First, we build an attention matrix for

mutually translated words between query and document based on the translation re-

source. Then using the attention matrix, we design a new translation attention head

and show that it is able to reduce the cosine distance between hidden representa-

tions of mutually translated words. Finally, the complete architecture of MAT is a

combination of multi-head attention and translation attention head with shared feed-

forward networks. As a layer component, we further design an architecture to embed

MAT into Transformer-based CLIR models. Our comprehensive experimental results

demonstrate the effectiveness of external knowledge and the significant improvement

of the MAT-embedded neural model on the CLIR task.

However, we can see that in this approach, the cross-lingual knowledge is extracted

as the static word translations prior to model training. And tuning of the model

parameters still relies on the cross-lingual retrieval data. The lack of high-quality

retrieval data often limits the performance of models in CLIR tasks. In the next

chapter, we will investigate cross-lingual knowledge transfer to construct CLIR models

without requiring retrieval labels between two languages.
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CHAPTER 4

CROSS-LINGUAL TRANSFER VIA KNOWLEDGE
DISTILLATION

In this chapter, we focus on retrieval data scarcity, another challenge that prevents

CLIR models from achieving similar performance as the monolingual (e.g., English)

retrieval models. PLM-based dense retrieval models, such as DPR (Karpukhin et al.,

2020) and ColBERT (Khattab and Zaharia, 2020), have shown promising performance

on English retrieval tasks. This success is mainly due to two key factors: (i) The un-

supervised pre-training of context-aware transformer architectures with an enormous

number of parameters over large corpora. (ii) The fine-tuning for the downstream

learning-to-rank task with a relatively large collection of relevance judgments, such

as the MS MARCO passage ranking dataset (Nguyen et al., 2016).

Replacing the backbone encoder from PLMs with mPLMs (multilingual PLMs) al-

lows for the joint learning of many languages with the same model. Because mPLMs

project tokens in different languages into the same space, fine-tuning these mod-

els with a cross-lingual retrieval dataset, similar to the monolingual setting, enables

cross-language information retrieval. However, both factors leading to the success

of monolingual information retrieval have defects in the cross-lingual setting. First,

due to the unbalanced pre-training data in different languages, mPLMs have already

shown a performance gap between high and low-resource languages in many down-

stream tasks (Wang et al., 2020; Wu and Dredze, 2020). Cross-lingual retrieval models

built on such mPLMs can inherit the language bias, leading to suboptimal results for

low-resource languages. Second, compared with the English-to-English retrieval task,

the lack of cross-lingual training data with reliable relevance judgment, i.e., human
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relevance judgments, especially for low-resource languages, makes it more challenging

to learn cross-lingual retrieval models.

Studies have attempted to address the data scarcity problem in CLIR. Sasaki

et al. (2018) proposed a large cross-lingual retrieval collection, WikiCLIR, based on

the linked foreign language articles from Wikipedia pages. Because Wikipedia articles

in a specific language are edited mainly by native speakers, the cross-lingual contents

in WikiCLIR are of high quality. But the relevance judgments are synthetically gen-

erated based on mutual links across pages. On the other hand, Bonifacio et al. (2021)

built a multilingual passage ranking dataset, mMARCO, by translating the queries

and passages in MS MARCO into the target language using Neural Machine Transla-

tion (NMT) models. Because MS MARCO is generated from query logs, the relevance

judgments in mMARCO are more credible than WikiCLIR. Still, the automatically

generated cross-lingual content created by NMT models is not comparable to human

writers, especially for resource-lean languages.

Different from training monolingual retrieval models, the cross-lingual retrieval

data serves two purposes during the model training: (i) the languages of the query and

document provide cross-lingual knowledge, and (ii) the relevance label of the query

and document provide retrieval knowledge. In the previous chapter, cross-lingual

knowledge is first extracted from a parallel corpus and stored as translation tables

for models to inquire. In this chapter, we separate the learning of retrieval knowl-

edge from the learning of cross-lingual knowledge and use the semantic closeness of

bitext data to transfer an English retrieval model to the target language. Specifi-

cally, we present OPTICAL: Optimal Transport distillation for Cross-lingual infor-

mation retrieval. Following the dense retrieval paradigm, we first train a bi-encoder

English-to-English retrieval model, similar to the ColBERT architecture (Khattab

and Zaharia, 2020), as the teacher model. Suppose the CLIR task is to search English

documents with non-English queries. To devise a complete student model for this
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CLIR task, we then reuse the teacher model’s document encoder and train a new stu-

dent query encoder for non-English queries. After training, given parallel queries, the

non-English token representations generated by the student’s query encoder should be

similar to the English token representations generated by the teacher’s query encoder.

The student model distills the retrieval knowledge from the teacher model in a

cross-lingual setup. We form the distillation training as an optimal transport prob-

lem (Peyré et al., 2019) where the cost matrix is the cross-lingual token cosine dis-

tance. The optimal transportation plan serves as a soft token alignment. Since the

teacher model has already learned query-document matching, the distillation train-

ing can concentrate solely on cross-lingual knowledge as a general text encoder. As a

result, we can employ bitext data, a collection of parallel and comparable documents,

to train the student query encoder. Compared to cross-lingual relevance labeling,

bitext data can be mined by automatic algorithms (Heffernan et al., 2022), making

it more practical for languages with limited resources.

The work described in this chapter, namely Improving Cross-lingual Information

Retrieval on Low-Resource Languages via Optimal Transport Distillation, was pub-

lished in WSDM 2023 (Huang et al., 2023a). I was the lead author who designed the

model architecture and conducted the experiments.

4.1 Cross-lingual Knowledge Distillation

Our goal is to incorporate the knowledge of query document matching from a well-

learned monolingual retrieval model into a multilingual transformer-based retrieval

architecture, such that it is capable of generating contextual representations under

the cross-lingual setting and thus performing query document matching in different

languages. In this section, we first introduce the monolingual retrieval model known

as the teacher model. Then we present the optimal transport knowledge distillation

framework and training of the student model. Finally, we combine the components
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from both the teacher and student models to fulfill a CLIR task. To better describe

our approach, we focus on the CLIR case of searching an English collection with a

non-English query as an example to describe our method.

4.1.1 Teacher Model

The teacher model M contains two components: query encoder EMq and document

encoder EMd
. Given a query q and a candidate document d, the score of matching

between q and d, Sq,d, is then computed as the:

Sq,d =

|q|∑
i=1

|d|
max
j=1

EMq(qi) · ET
Md

(dj) (4.1)

where EMq(qi) is the i-th token representation of the query and EMd
(dj) is the j-th

token representation of the document. The scoring function applies the maxsim op-

eration on each query token to softly search against all document tokens to find the

best token that reflects its context and then sums over all the query tokens. The pri-

mary goal of the teacher model is to provide knowledge of query document matching

regardless of the language. Therefore, we select the English MS MARCO passage

ranking dataset for teacher model training because of its size. Similar to ColBERT,

we prepend special tokens [Q] and [D] to the query and passage tokenization, re-

spectively, and expand the query to a fixed length L using the [MASK] token. Unlike

ColBERT, we initialize the teacher model using mBERT, instead of BERT. Since

mBERT has a larger vocabulary that covers a more diverse set of languages, the

student can benefit from the multilingual pre-trained token representation.

4.1.2 Optimal Transport Knowledge Distillation

The student model shares the same architecture as the teacher. Note that if

the document collection for the CLIR task remains in English, then the document

encoder of the student model ESd
can be a copy of the teacher’s document encoder,

50



EMd
. Here, we focus on the design of the query encoder of the student model, ESq ,

which handles non-English queries. Assume that q is an English query and q̂ is a

non-English parallel query. The token representation of q generated by EMq contains

rich knowledge for query document matching. If we could let ESq “behave” like EMq ,

namely, if the output of ESq with q̂ is close to the output of EMq with q, then the

token representations generated by ESq can have a similar retrieval performance to

the teacher model. Therefore, the training objective of knowledge distillation is to

reduce the distance between the outputs of the teacher and student query encoders

given parallel inputs (sentences). Next, we define the distance from q̂ to q in the

vector space of ESq and EMq . Suppose the tokenizer tokenizes q into Lq tokens and q̂

into Lq̂ tokens. We expand them to the same length L by appending [MASK] tokens.

After encoding by ESq and EMq , q̂ and q are represented by a bag of vectors of size

L, respectively. We define the distance from q̂ to q as follows:

D(q̂, q) = arg min
fJ1..LK→J1..LK

1

L

L∑
i=1

1− ESq(q̂i) · ET
Mq

(qf(i)) (4.2)

where f is a bijective (one-to-one correspondence) function which maps the token

index from q̂ to q. Intuitively, the distance definition is equivalent to finding a token

mapping from q̂ to q that minimizes the average cosine distance among L token pairs.

Despite the same semantics of q̂ and q as a whole, different languages have different

token arrangements. When L increases, using brute force to find the mapping f

becomes computationally intractable. Therefore, we approximate the calculation of

D(q̂, q) as an optimal transport problem (Peyré et al., 2019). First, we assign equal

mass to the tokens in q̂ and q by defining a uniform source probability distribution, µs,

on q̂ and a uniform target probability distribution, µt, on q: µs(i) = 1
L

and µt(j) = 1
L

where 1 ≤ i, j ≤ L.

The set of transportation plans between these two distributions is then the set of

doubly stochastic matrices P defined as
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P = {γ ∈ (R+)L×L | γ1L = µs, γT1L = µt} (4.3)

where 1L is a L-dimensional vector of ones and γ is called a transportation plan.

We redefine the distance between q̂ and q as a Wasserstein (earth mover’s) distance

between distribution µs and µt. Then the computation of such distance become an

optimal transport (OT) problem:

γ0 = arg min
γ∈P

〈
γ,C

〉
F

(4.4)

where
〈
·, ·
〉
F

is the Frobenius inner product, γ0 is the optimal transportation plan

(or OT matrix) and C ≥ 0 is a L× L cost function matrix of term C(i, j), reflecting

the “energy” needed to move a probability mass from q̂i to qj. In our setting, this

cost is chosen as the cosine distance between two tokens:

C(i, j) = 1− ESq(q̂i) · ET
Mq

(qj)

In general, the linear programming solution to find γ0 has a typical super O(n3)

complexity that is still computationally intractable (Cuturi, 2013). To overcome such

intractability, we employ the Inexact Proximal point method for Optimal Transport

(IPOT) (Xie et al., 2020) algorithm to compute the OT matrix. Specifically, the IPOT

algorithm iteratively solves the OT problem by adding a proximity metric term to

the original OT definition. At step t, we have:

γ(t+1) = arg min
γ∈P

{〈
γ,C

〉
F

+ β · B(γ,γ(t))
}

where B(γ,γ(t)) =
∑L

i,j γij log
γij

γ
(t)
ij

−
∑L

i,j γij +
∑L

i,j γ
(t)
ij is the Bregman divergence

used as a proximity metric term to penalize the distance between the solution and

the latest approximation. It provides a tractable iterative scheme toward the exact
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Algorithm 2: Inexact proximal point method for optimal
transport (IPOT).

Input: Probability mass function of source and target
{µs, µt}, cost matrix C and step size β.

Output: Approximated OT matrix γ̃
1 Function IPOT(µs, µt,C, β):
2 b← 1

L
1L, γ(1) ← 11T

3 G← exp(C/β)
4 for t = 1, 2, 3 . . . N do
5 Q← γ(t) ⊙G // Hadamard product

6 for k = 1, . . . K do // Set K = 1 in practice

7 a← µs

Q b
, b← µt

QTa

8 end

9 γ(t+1) = diag(a)Qdiag(b)

10 end

11 γ̃← γ(N+1)

12 return γ̃

OT solution where the step size is controlled by β. The implementation details for

IPOT are in Algorithm 2. Using the approximated OT matrix, we define the loss of

the distillation as the total transportation cost:

loss :=
〈
γ̃,C

〉
F

(4.5)

During training, we hold the teacher query encoder constant by removing its param-

eters from the computational graph and use the loss to update the student query

encoder. Given each pair of q̂ and q, minimizing the loss will lead the model to re-

duce the cosine distance between tokens according to the transportation plan. And

because EMq is fixed, the essence of knowledge distillation is to push non-English

token representations generated by ESq towards their corresponding English token

representations generated by EMq . Moreover, though designed as the query encoder,

the textual data of q̂ and q used for distillation do not have to be the query from

a CLIR dataset. A group of parallel sentences with a broad vocabulary coverage is

adequate to train the student query encoder. Compared to the CLIR data, which
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Figure 4.1: Model building pipeline for OPTICAL. This figure is based on CLIR task
between Swahili query and English documents.

often require human relevance judgments, bitext data are easier to acquire, especially

for low-resource languages.

4.1.3 Cross-lingual Query Document Matching

In this section, we focus on a CLIR task of searching English documents using

a non-English query to introduce the OPTICAL framework. The document encoder

in the student model can be directly copied from the teacher model (ESd
←EMd

).

At test time, the matching score of q̂ and d is calculated based on equation (4.1)

using ESq and ESd
. A complete overview of the model building pipeline is shown in

Figure 4.1. In fact, OPTICAL can be extended to different language settings in the

CLIR task. For example, suppose the task requires searching non-English documents

using an English query. In this case, the student model can reuse the teacher’s query

encoder and train a non-English document encoder using knowledge distillation. More

generally, if the query is in X and the collection is in Y , where X and Y are both

non-English languages, we can build the student model by training two knowledge

distillations: X to English for query encoder and Y to English for document encoder.
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4.2 Experimental Setup

4.2.1 Dataset

CLIR Settings. We focus on searching English collections with queries in low-

resource languages (Cieri et al., 2016). We consider four low-resource languages in

our experiments: Swahili, Somali, Tagalog, and Marathi. According to linguistic

classification1, they belong to four different language families: Niger-Congo (Swahili),

Afro-Asiatic (Somali), Austronesian (Tagalog), and Indo-European (Marathi). To

fully evaluate the performance of the proposed method, we also include three medium

to high-resource languages: Finnish, German, and French.

Evaluation Data. We create a unified evaluation dataset for all language pairs

considered in our experiments. The data are from the Cross-Language Evaluation

Forum (CLEF) 2000-2003 campaign for bilingual ad-hoc retrieval tracks (Braschler,

2002b). The query is a concatenation of the title and description fields of the topic

files. In total, there are 151 queries from the CLEF C001 – C200 topic (queries with

no relevant judgments are removed). The collection of English documents is the Los

Angeles Times corpus, composed of 113K news articles. For Finnish, German, and

French, their queries are provided by CLEF campaign. For low-resource languages,

Bonab et al. (2019) provided Somali and Swahili translations of English queries. And

we hired bilingual human experts from Gengo2 service to translate English queries

into Tagalog and Marathi.

Retrieval Training Data. To guarantee a consistent performance of the teacher

model on the monolingual retrieval task, we randomly sample a subset of 7 million

triples from the MS MARCO passage ranking dataset for the training of the teacher

model. The baselines, which involve synthesizing the CLIR dataset with different

methods, all use the same subset of triples.

1https://en.wikipedia.org/wiki/List_of_language_families as of 05/01/2023.

2https://gengo.com
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Bitext Data. To support the cross-lingual knowledge distillation, we use the

parallel sentences from the CCAligned dataset (El-Kishky et al., 2020a). In our

exploration of re-ranking comparison (Section 4.3.2), the distillation is trained based

on a random sample of up to 2 million parallel sentences for each language pair. Note

that for Somali and Marathi, the total number of parallel sentences in CCAligned

is less than 2 million. Thus, we use all the parallel sentences available for these

two languages (360K for Somali and 750K for Marathi). Moreover, there are other

parallel corpora for the languages studied in our experiments that could help us to

create larger training data. We use only CCAligned to ensure the consistency of the

data quality in our experiments.

4.2.2 Implementation Details

We initialize the ColBERT query and document encoder components in both

teacher and student models using pre-trained mBERT. We set the max length of all

query encoders at L = 32 and truncate the document at 180 tokens. There are two

model training tasks in our experiments. One is the retrieval training task. This is

the main task of training the teacher model and the other neural baselines. Given

a query, relevant passage, and non-relevant passage triplet, the models are trained

using pairwise cross-entropy loss with a learning rate of 3× 10−6 and a batch size of

64 for 200K iterations. The other training task is knowledge distillation. In this

task we train the student model using bitext data. We set the step size to β = 0.5

and number of iterations to N = 100 for the IPOT algorithm. We use the cost of

the optimal transportation as the loss and build a batch size of 256 with gradient

accumulation. The student model is trained with a learning rate of 5 × 10−5 for 3

epochs of the available bitext data. Regarding the NMT models used in some of our
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baseline methods, we use the off-the-shelf OPUS-MT (Tiedemann and Thottingal,

2020) from the Helsinki NLP group3.

Evaluation. While we train models on passages for the retrieval task, our goal

is to rank documents whose length is usually longer than 180 tokens. We split large

documents into overlapping passages of fixed length with a stride of 90 tokens and

compute the score for each query passage pair. Finally, we select a document’s maxi-

mum passage score as its document score (Nair et al., 2022). Again, for CLEF dataset,

we report the mean Average Precision (mAP) and the precision of the top 10 (P@10)

ranked documents. We determine statistical significance using the two-tailed paired

t-test with p-value less than 0.05 (i.e., 95% confidence level).

4.2.3 Compared Methods

First-Stage Retrieval. We employ a two-stage retrieval approach for addressing

the CLIR problem, where first we obtain an initial set of candidate documents using

a lexical matching retrieval technique (i.e., Okapi BM25) and then re-rank the initial

set of candidate documents using a neural re-ranker. We select Recall@100 as our

primary evaluation metric for the first-stage retrieval to collect the most relevant

documents. We investigate different strategies for our initial ranking stage that we

elaborate in the following:

• SMT+BM25: We translate the query based on a Statistical Machine Trans-

lation (SMT) method. More specifically, we first build a translation table from

the CCAligned for each language pair using the GIZA++ toolkit. Then we

select the top 10 translations from the translation table for each query term

and apply Galago’s weighted #combine operator to form a translated query.

Finally, we run BM25 with default parameters to retrieve documents.

3https://huggingface.co/Helsinki-NLP
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• NMT+BM25: Neural machine translation models based on the encoder-

decoder architecture are empirically better than SMT in terms of translation

quality (Yao et al., 2020b). Thus, we build this baseline by first translating

the query into English using an NMT model. Then we run BM25 with default

parameters to retrieve documents.

• Human+BM25: For a comprehensive comparison, we also provide an empir-

ical upper bound on the initial ranking stage. We use CLEF English queries as

the human translations and apply BM25 as the retrieval technique.

Neural Re-ranking. In the second retrieval stage, to provide the best initial

rank list for neural re-ranking, we select the rank list from either SMT+BM25 or

NMT+BM25 based on their Recall for each CLIR language pair. Including the pro-

posed method, all the neural models rerank the top 100 documents of the initial rank

list. We compare OPTICAL with the following methods:

• mColBERT: Because the encoders in the teacher model are based on a mul-

tilingual pre-trained language model, we can directly run the teacher model on

the CLIR evaluation data in a zero-shot setting.

• Code-Switch: There are data augmentation methods that can help the train-

ing of cross-lingual tasks. Qin et al. (2021) proposed a code-switching framework

to transform the monolingual training data into data in mixed languages. We

apply the code-switch method to the queries in MS MARCO triples. More

specifically, we randomly switch 50% of the English query words into their

translations in the target language according to the Panlex dictionary.

• Translate-Train: Bonifacio et al. (2021) built a multilingual passage ranking

dataset, mMARCO, by translating MS MARCO into target languages using

the correspondent OPUS-MT models (Tiedemann and Thottingal, 2020). Nair
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Table 4.1: Size of language data resource and OPUS-MT model performance.

(a) OPUS-MT model performance on low resource languages.

NMT Models Swahili (SW) Somali (SO) Tagalog (TL) Marathi (MR)

Train./eval. data available 9M/386 0.8M/4 8M/2,500 5M/10,369

Translation direction EN-SW SW-EN EN-SO SO-EN EN-TL TL-EN EN-MR MR-EN

BLEU scores 26.0 31.3 16.0 23.6 26.5 35.0 18.2 29.8

(b) OPUS-MT model performance on medium or high resource languages.

NMT Models Finnish (FI) German (DE) French (FR)

Train./eval. data available 45M/10,690 86M/17,565 180M/12,681

Translation direction EN-FI FI-EN DE-EN EN-DE EN-FR FR-EN

BLEU scores 40.4 50.9 47.3 55.4 50.5 57.5

et al. (2022) showed that retrieval models trained using this synthetically gen-

erated CLIR dataset could outperform BM25 with query translation and the

zero-shot neural approach in high-resource languages. We adopt this method

as another baseline.

• Translate-Test: Like NMT+BM25, we can first let the NMT model trans-

late the evaluation query into English and then perform English-to-English

query document matching using a well-trained English retrieval model (i.e.,

the teacher model).

• Human+ColBERT: We also provide an empirical upper bound on the re-

ranking stage. We use human translations of the evaluation query and apply the

teacher model to re-rank the top 100 documents from the rank lists generated

by the Human+BM25.

4.3 Results

4.3.1 First-Stage Retrieval Comparison

Table 4.2 shows the results of our first-stage retrieval methods. We can see that

the NMT+BM25 approach outperforms SMT+BM25 in Recall@100 for all languages
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Table 4.2: First-stage retrieval comparison. For recall columns, the highest value is
marked with bold text. Note that the first row is an upper-bound reference.

(a) First-stage retrieval comparison on low resource languages.

First-Stage
Retrieval

Swahili Somali Tagalog Marathi

mAP Recall mAP Recall mAP Recall mAP Recall

Human+BM25 0.4569 0.7621 0.4569 0.7621 0.4569 0.7621 0.4569 0.7621

SMT+BM25 0.2184 0.4359 0.1948 0.4254 0.1636 0.6195 0.1059 0.3289

NMT+BM25 0.2135 0.4934 0.1466 0.3670 0.3501 0.6799 0.1795 0.4277

(b) First-stage retrieval comparison on medium or high resource languages.

First-Stage
Retrieval

Finnish German French

mAP Recall mAP Recall mAP Recall

Human+BM25 0.4569 0.7621 0.4569 0.7621 0.4569 0.7621

SMT+BM25 0.3052 0.6049 0.3906 0.6946 0.4037 0.7541

NMT+BM25 0.3753 0.7248 0.4087 0.7420 0.4315 0.7585

except Somali. Referring to the evaluation in Table 4.1, the failure of NMT+BM25

on Somali is mainly due to poor translation quality. Moreover, human translation

performs better than machine translation, and the margin is larger in low-resource

(Table 4.1a) than high-resource (Table 4.1b) languages, indicating higher difficulty in

building machine translation systems in low-resource languages. Based on recall, we

choose the ranked lists from NMT + BM25 for the reranking step for all languages

except Somali, for which we use SMT+BM25 as the initial retrieval method.

4.3.2 Re-ranking Comparison

Table 4.3 lists the evaluation results of both the first-stage retrieval methods and

neural re-ranking models. For the zero-shot setting, we can see that mColBERT can

improve the initial ranking on high-resource languages while it fails on low-resource

languages. Similar to other downstream tasks (Wang et al., 2020; Wu and Dredze,

2020), the CLIR model based on a multilingual pre-trained language model also inher-

its the language bias in the pre-training step, causing the performance gap between

low and high resource languages in document ranking. Using dictionary knowledge

60



Table 4.3: A comparison of model performance. ▷ are reported as the upper bound
reference. The highest value is marked with bold text. Statistically significant im-
provements are marked by † (over Translate-Train) and ‡ (over Translate-Test).

(a) Model performance on low resource languages.

Retrieval Methods
Swahili Somali Tagalog Marathi

mAP P@10 mAP P@10 mAP P@10 mAP P@10

▷ Human+BM25 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940

SMT+BM25 0.2184 0.2152 0.1948 0.1865 0.1636 0.0934 0.1059 0.0984

NMT+BM25 0.2135 0.2113 0.1466 0.1380 0.3501 0.3179 0.1795 0.1795

▷ Human+ColBERT 0.5019 0.4344 0.5019 0.4344 0.5019 0.4344 0.5019 0.4344

mColBERT 0.1953 0.1795 0.1355 0.1212 0.3414 0.2960 0.1448 0.1556

Code-Switch 0.2420 0.2258 0.1845 0.1682 0.3542 0.2934 0.1573 0.1662

Translate-Train 0.2234 0.2185 0.1707 0.1649 0.3692 0.3252 0.1619 0.1722

Translate-Test 0.2643 0.2530 0.2126 0.2086 0.3827 0.3339 0.2141 0.2258

OPTICAL 0.3129†‡ 0.2901†‡ 0.2477†‡ 0.2365†‡ 0.4188†‡ 0.3623†‡ 0.2414†‡ 0.2384†

(b) Model performance on medium or high resource languages.

Retrieval Methods
Finnish German French

mAP P@10 mAP P@10 mAP P@10

▷ Human+BM25 0.4569 0.3940 0.4569 0.3940 0.4569 0.3940

SMT+BM25 0.3052 0.2821 0.3906 0.3437 0.4037 0.3772

NMT+BM25 0.3753 0.3583 0.4087 0.3580 0.4315 0.3881

▷ Human+ColBERT 0.5019 0.4344 0.5019 0.4344 0.5019 0.4344

mColBERT 0.3791 0.3272 0.4509 0.3807 0.4512 0.3868

Code-Switch 0.3831 0.3404 0.4553 0.3827 0.4589 0.3993

Translate-Train 0.4043 0.3576 0.4713 0.3967 0.4666 0.4020

Translate-Test 0.4418 0.4024 0.4811 0.4080 0.4984 0.4318

OPTICAL 0.4228 0.3874† 0.4832 0.4067 0.4764 0.4119

for cross-lingual data augmentation, the Code-Switch method performs better than

mColBERT. However, the word-level translation knowledge used in Code-Switch does

not consider the context of the switched terms, which could cause the semantics of

the code-switched data to diverge from the original one. Comparing Code-Switch to

Translate-Train, we can see that Translate-Train outperforms Code-Switch in high-

resource languages. With the support of the NMT model, the Translate-Train method

can generate better query translations in high-resource languages, which leads to a

higher quality of CLIR training triples than the Code-Switch method. However,

in low-resource languages Swahili and Somali, Translate-Train cannot consistently
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outperform Code-Switch. This is because the NMT model does not have enough

training resources, and the generated query translations are of lower quality. Instead

of building a CLIR dataset for model training, the Translate-Test method translates

the query to English using an NMT model and then ranks the document based on a

monolingual neural retrieval model. With the help of two neural models at test time

(translation and document ranking), this two-step approach becomes the strongest

baseline in our experiment.

Finally, we can see the effectiveness of OPTICAL in low-resource languages. Our

method consistently and significantly improves the first-stage retrieval results. In

low-resource languages, OPTICAL substantially outperforms all baselines, including

the Translate-Test method. In high-resource languages, OPTICAL also achieves solid

performance. It outperforms the Translate-Train method in all three languages. And

it is a surprise to us that OPTICAL exceeds the Translate-Test on German in terms of

mAP. Moreover, the results of OPTICAL in Table 4.3 are only based on a maximum

of 2M parallel sentences (there are only 360K for Somali and 750K for Marathi). No

cross-lingual relevance judgment is used in the distillation step, making OPTICAL

data feasible and easy to build. At the same time, we can see that using human

translation with a neural ranking model (Human+ColBERT) still leads the CLIR

setting with the same model architecture by a large margin in low-resource languages.

4.3.3 Analysis of Knowledge Distillation

To study how the student model behaves after OPTICAL distillation, we compare

the token representations of the same query generated by different models.

Student query encoder in low-resource language. We consider three types

of token representations. First, we encode the English query using the mColBERT

query encoder. Note that the mColBERT query encoder is the same as the OPTI-

CAL teacher encoder, which provides the knowledge to the student query encoder
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(a) Example query comparison. (b) Overview of all test queries.

(c) Example query comparison. (d) Overview of all test queries.

Figure 4.2: t-SNE visualization of query tokens. This group of figures compares
Tagalog (upper) and French (bottom) with the same example query (left) and set of
queries (right).

during the distillation. Then we encode the same corresponding Tagalog query us-

ing both mColBERT and OPTICAL student query encoders. Finally, we use t-

SNE (Van der Maaten and Hinton, 2008) to project these high-dimensional vectors

to two-dimensional space. Figure 4.2a visualizes an example query. In English, the

query is “What is the schedule predicted for the European single currency?” The

parallel Tagalog query is “Ano ang hinuhulaang iskedyul para sa iisang uri ng pera

sa Europa?” Figure 4.2b provides an overview of all test queries in both English and
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Tagalog. We can see that when used in a zero-shot setting, the English and Tagalog

token representations generated by the teacher model have a clear language bound-

ary. Although starting from a multilingual pre-trained language model, mColBERT

is only trained on MS MARCO English data, so only English tokens have knowledge

of query document matching. Therefore, we observe (in Table 4.3a) a large retrieval

performance gap on the same model between the English query (i.e., Translate-Test)

and the query in the low-resource languages (i.e., mColBERT). On the other hand,

Tagalog token representations generated by the student encoder are much closer to

English token representations. More importantly, by reducing the transportation cost

of the parallel sentences, OPTICAL can push Tagalog word vectors toward their cor-

responding English vectors. Eventually, Tagalog words that are close to their English

translations can also obtain retrieval knowledge because the English token represen-

tations are generated by the teacher model. This matches the design purpose of

OPTICAL.

Student query encoder in high-resource language. We repeat the same

analysis but for French queries. Figure 4.2c shows the t-SNE visualization of the

same query in French (Quelles sont les prévisions pour la mise en place de la mon-

naie unique européenne? ). Figure 4.2d provides the overview of all test queries in

both English and French. Different from low-resource languages, we can see that

English and French words are already mixed in the representation space, so there is

no clear language boundary. Tokens in French are already close to their translations

in English. This explains why the effect of knowledge distillation from OPTICAL is

more significant in Tagalog than in French.

4.3.4 Effect of Bitext Data Size

OPTICAL results in Table 4.3 are based on a maximum of 2M bitext data used

for training distillation. In this experiment, we study the effect of bitext data size on
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Figure 4.3: Performance with respect to bitext data size.

OPTICAL. We select two low-resource languages with a relatively larger collection

of parallel sentences in CCAligned: Swahili (2M) and Tagalog (6.6M). Then we train

OPTICAL using different sizes of the bitext data: 100K, 500K, 1M, 2M, and for Taga-

log, we also experiment on 4M bitext data. Figure 4.3 shows the mAP performance

with respect to the size of bitext data. As expected, more bitext data with larger

vocabulary size and broader semantic coverage lead to better reranking performance.

For Swahili, OPTICAL exceeds the Translate-Test method with a set of only 100K

parallel sentences. For Tagalog, starting from 500K, OPTICAL performs better than

Translate-Test. This demonstrates that OPTICAL is data-efficient.

4.3.5 Reduce High-resource to Low-resource

We hypothesize that the strong performance of the Translate-Test method on

high-resource languages is mainly because of the excellent translation quality from

the NMT models. Yet a large amount of training data is a prerequisite for the

success of NMT. In this experiment, we turn high-resource to low-resource language

by limiting the training data size of the NMT models. For French and German,

the OPUS corpora have more than 800M parallel data in total, and the CCAligned

dataset alone has 15M pairs for each language. We follow the same architecture of the
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Table 4.4: mAP comparison of reducing high-resource to low-resource.

Retrieval
Methods

Limited size of NMT model training

French German

5M 10M 5M 10M

Translate-Test 0.3820 (-19.8%) 0.4525 (-5.0%) 0.3971 (-17.8%) 0.4667 (-3.4%)

OPTICAL (2M) 0.4764 0.4832

OPUS-MT model but only use subsets with sizes of 5M and 10M pairs, respectively,

from CCAligned for training. We compare Translate-Test with the suboptimal NMT

models and OPTICAL in Table 4.4. The drops on mAP of Translate-Test indicate the

performance of the Translate-Test heavily relies on the NMT model which is data-

hungry. Moreover, the knowledge distillation step in OPTICAL and the training

of the NMT model use the same type of data, i.e., the bitext data. Therefore, for

learning the translation knowledge in the CLIR task, OPTICAL is more data efficient

than the NMT model.

4.4 Summary

This chapter addresses the data scarcity issue for training CLIR models. We

present OPTICAL, an optimal transport knowledge distillation framework for CLIR

tasks involving low-resource languages. OPTICAL builds CLIR models by separat-

ing the retrieval knowledge from the translation knowledge. First, the teacher model

learns the retrieval knowledge in a monolingual setting. Then we design a knowl-

edge distillation loss based on the optimal transport costs to transfer the retrieval

knowledge to the student model in a cross-lingual setting. We achieve the cross-

lingual transfer only based on bitext data which greatly reduces the data required

for building CLIR models. Our comprehensive experimental results show that OP-

TICAL significantly outperforms other baselines in low-resource languages, including

66



the NMT models. Further analysis demonstrates the effectiveness of the knowledge

distillation step in OPTICAL.

In the next chapter, we expand the idea of cross-lingual knowledge transfer from

CLIR to MLIR. We will focus on searching a multilingual collection using English

queries and explore a model architecture that can unify the representation of docu-

ments from different languages into a monolingual (e.g., English) embedding space.
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CHAPTER 5

LANGUAGE PROMPT FOR MULTILINGUAL
KNOWLEDGE TRANSFER

In this chapter, we expand the scope of CLIR to MLIR, allowing both query and

document to be expressed in any language (or within a group of languages). Consid-

ering the language setting in CLIR as a one-to-one scenario, we refer to the language

setting in MLIR as the many-to-many scenario. The extension of language setting

creates two major challenges: (i) From a language perspective, the translation compo-

nent in the MLIR models needs cross-lingual knowledge for multiple language pairs.

(ii) From a retrieval perspective, the ranking component in the MLIR models needs

to perform consistently across languages. Motivated by many real-world applications,

such as web search, where the retrieval collection includes documents from multiple

languages (Chaware and Rao, 2009), we first focus on one-to-many setting of MLIR,

where the query is in English, and the collection is a mixture of languages.

The data scarcity and language bias issues in CLIR become more challenging in

the context of MLIR. First, to learn query-document matching knowledge on mul-

tiple language pairs effectively, a model built using multilingual relevance judgment

requires access to retrieval training data that covers the languages present in the

target collection. However, the scarcity of training data between two languages in

CLIR is exacerbated with multiple language pairs in MLIR (Lawrie et al., 2022).

Therefore, it is preventing training to achieve broad language coverage. Second, due

to the unbalanced pre-training data in different languages, language bias causes per-

formance to vary from one CLIR task to another. However, Xu et al. (2001) found

that in MLIR, the distribution of relevant documents to a given query often differs
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Figure 5.1: Average score given to parallel documents in Arabic and Russian by
mDPR (Zhang et al., 2021). Documents are translated by mMARCO (Bonifacio
et al., 2021).

in different languages – which highlights the challenges in designing effective MLIR

models that also perform fairly across languages. Therefore, language bias leads

to inconsistent ranking results in MLIR tasks, even among high-resource languages.

To demonstrate this case, we pair the test queries from TREC 2020 Deep Learning

Track (Craswell et al., 2020) with their relevant passages translated into Arabic and

Russian by mMARCO (Bonifacio et al., 2021). Then for each language, we score

query-document pairs using mDPR (Zhang et al., 2021). Figure 5.1 illustrates the

difference in ranking the same set of relevant documents in these two languages. We

observe that mDPR scores Russian documents higher than their Arabic version. We

argue that such inconsistency in MLIR would lead to sub-optimal ranking results,

e.g., highly relevant documents in Arabic have lower scores than slightly relevant

documents in Russian.

In the previous chapter, we learned that it is possible to transfer a monolingual

retrieval model to a target language through cross-lingual knowledge distillation. To

address additional challenges in MLIR setting, we could transfer a monolingual (e.g.,

English) retrieval model to multiple languages using multi-task knowledge distilla-

tion. Each task is a cross-lingual knowledge transfer from English to one language
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in the collection. Following this idea, we present KD-SPD,1 a multilingual dense re-

trieval model based on knowledge distillation (KD) and soft prompt decoder (SPD)

for the MLIR task. KD-SPD does not require any multilingual relevance labels for

training, thus automatically solving the data scarcity issue in low-resource languages.

Our approach solely requires monolingual retrieval training data in English, which we

obtain from MS MARCO (Nguyen et al., 2016), and a large collection of parallel and

comparable documents for cross-lingual knowledge transfer. We first adopt a dense

passage retrieval (DPR) model built for English as the teacher model. Unlike token-

level representations in the ColBERT architecture, the representation of the DPR

model is at the document level. The ranking score is computed as the dot-product of

representations between the query and document. Since the teacher has the ability

to do query-document matching, we freeze its document encoder and then minimize

the distance between the representations generated by the teacher for any English

document and the representations learned by KD-SPD for its parallel or comparable

version in other languages. Therefore, our approach implicitly “translates” the rep-

resentation of documents in different languages into the same language embedding

space. Moreover, we hypothesize that although different languages possess unique

properties such as distinct grammar or vocabulary, they also have common traits for

expressing similar meanings. To capture these unique and shared features, KD-SPD

uses a decomposable soft prompt, which is derived as the product of a shared matrix

and a low-rank language-specific matrix for each language. Through joint training

across multiple languages, we observe that the learned prompts are capable of re-

ducing language bias and possess the transferable capacity to generalize to unseen

languages.

1KD refers to the model training framework, and SPD refers to the model architecture.
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The work described in this chapter, namely Soft Prompt Decoding for Multilingual

Dense Retrieval, was published in SIGIR 2023 (Huang et al., 2023b). I was the lead

author who designed the model architecture and conducted the experiments.

5.1 Design Overview

Given a query q in language X and a target collection DY which contains doc-

uments in language set Y = {Y1, Y2, . . . YK}, suppose dki—the ith document in lan-

guage Yk—has the ground truth relevance label Rel(q, dki), then the aim is to design

an MLIR model f that retrieves a list of documents from DY such that

f(q, dki) ≥ f(q, dlj), ∀ Rel(q, dki) ≥ Rel(q, dlj) (5.1)

where f(·, ·) indicates the ranking score calculated by the model. To build model f ,

we first assume there exists an oracle model g for the retrieval task in language X.

Thus, given q and monolingual collection DX , g satisfies:

g(q, dxi) ≥ g(q, dxj), ∀ Rel(q, dxi) ≥ Rel(q, dxj) (5.2)

We can achieve (5.1) with model f ′ if for any d∗ in Y and its translation dx in X,

the model matches the oracle:

f ′(q, d∗) = g(q, dx)

Suppose both f ′ and g follow the architecture of dense retrieval, the ranking score

calculation is the dot-product of the query and document embeddings, thus:

f ′
E(q)f ′

D(d∗)
⊤ = gE(q)gD(dx)⊤
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where f ′
E and gE are query encoders; f ′

D and gD are document encoders for f ′ and g

respectively. We then reuse gE as the query encoder of f ′. With f ′
E = gE, we have:

gE(q)
(
f ′
D(d∗)− gD(dx)

)⊤
= 0 (5.3)

It is safe to assume gE(q) is a nonzero vector. Therefore the goal of finding f ′ is

equivalent to reducing the embedding distance between parallel documents. In our

method, we retrain gD as the teacher model by removing its parameters from the

computational graph and train f ′
D as the student model.

Note that in practice, the oracle model g does not exist. We can use an off-

the-shelf English-to-English (monolingual) dense retrieval model as a substitute for

g. Because gD is fixed, the essence of knowledge distillation training is to push

multilingual document representations generated by f ′
D toward their corresponding

English document representations generated by gD. Moreover, equation (5.3) suggests

that the training of f ′
D does not rely on either query q or ground truth relevant

judgment. A group of parallel or comparable sentences from English to any other

language involved in the collection is adequate to train f ′
D. Parallel or comparable

sentences between two languages are often referred as bitext data. Unlike multilingual

retrieval data, which often require relevance labels, bitext data are easier to acquire,

especially for low-resource languages (Heffernan et al., 2022).

5.2 Soft Prompt Decoder

We focus on the design of the document encoder of the student model, f ′
D, which

handles multilingual documents. In general, the function of f ′
D is similar to a neural

machine translation model. The difference is that f ′
D translates the input text into

an embedding in the target language rather than into natural language text. Thus,

we build f ′
D based on the encoder-decoder architecture. For the encoder component
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(a) Soft prompt decomposition. (b) Multilingual document encoder.

Figure 5.2: SPD model architecture.

of fD, we exploit multilingual pre-trained language models (i.e., mBERT or XLM-R).

The token representation generated by the encoder is then forwarded to the decoder

component. However, unlike the decoder with an auto-regressive generation process,

we present a soft prompt-based decoder (SPD) architecture.

5.2.1 Soft Prompt Matrix

We consider f ′
D a multitask model where translating (mapping) each language in

the multilingual collection into the target language space is viewed as a single task.

Using the language name as the task identifier, a prompt Pk ∈ Rl×d for language

Yk with the same dimension as the token embedding d and vector length as l is

used as input to the decoder. Thus, the prompt matrix serves as the language-based

decoding initialization vector. Inspired by prompt decomposition from multitask

prompt tuning (Wang et al., 2023), we decompose Pk into two parts, as shown in

Figure 5.2a: language-specific low-rank vectors uk ∈ Rl and vk ∈ Rd for language

Yk (in the figure, Yk = ar or Yk = zh), and a shared prompt P∗ ∈ Rl×d across all
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languages. The language-specific prompt can be parameterized as Wk = uk · v⊤
k ,

which has the same dimension as the shared prompt P∗. The final prompt P̂k for

language Yk is then formulated as follows.

P̂k = P∗ ⊙Wk = P∗ ⊙ (uk · v⊤
k ) (5.4)

where ⊙ denotes the element-wise product between two matrices. The shared prompt

enables efficient knowledge sharing across all source languages and commonalities

across translation tasks. Meanwhile, the language-specific vectors allow each trans-

lation task to maintain its parameters to encode language-specific knowledge. Ad-

ditionally, prior studies on multitask prompt learning also showed that soft prompt

learned from multitask data could be efficiently transferred to a new task (Su et al.,

2022; Vu et al., 2021). In section 5.5.4, we show that with a shared prompt, the SPD

has a better zero-shot transfer ability toward new languages.

5.2.2 Cross-attention Decoder

The decoder network follows a cross-attention-based multi-layer transformer ar-

chitecture. Each layer has two sub-layers. The first is a multi-head query-key-value

(QKV) cross-attention module, and the second is a position-wise fully connected feed-

forward network. We employ residual connection and layer norm around each of the

sub-layers.

Let Tdk ∈ R|dk|×d denote the token representations generated by the encoder

component for document dk in language Yk, where |dk| is the number of tokens in dk.

The first decoder layer applies the cross-attention module between Tdk and prompt

matrix P̂k. On the mth head, the attention mechanism is defined as follows:

Attentionm = Softmax
(W q

mP̂k ·W k
mTdk√

d/M

)
W v

mTdk
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where M is the number of heads and W q
m, W k

m and W v
m are matrices with dimension

d/M×d. Thus, the prompt matrix has different attention weights over encoder token

representations in each subspace projection (head). The output of the multi-head

QKV cross-attention module is the concatenation of M heads with linear projection:

CrossAttention(P̂k,Tdk) = W o[Attention1, . . . ,AttentionM ]

We further define the output of the attention-based sub-layer with the residual con-

nection and layer norm:

hdk = LN
(
P̂k + CrossAttention(P̂k,Tdk)

)

where LN(·) denotes the layer norm operation. Because P̂k is the query element in

the cross-attention module, we use the prompt matrix to query the information from

the encoder output and store it in a hidden representation hdk which has the same

dimension as the prompt matrix. Next, we apply the second sub-layer and generate

the output of the first decoder layer for dk, H1
dk
∈ Rl×d:

H1
dk

= DecoderLayer1(P̂k,Tdk) = LN(hdk + FFN(hdk))

where FFN(·) denotes the fully connected feed-forward network with a rectified acti-

vation function. Then we use the hidden representation from the previous layer (i.e.

H1
dk

) to query the encoder output again in the next layer, that is:

Hn+1
dk

= DecoderLayern+1(H
n
dk
,Tdk)

until reaching the maximum layer N designed for the decoder. Finally, we average

HN
dk

over the prompt vector dimension as the document embedding in the target
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Figure 5.3: Model building pipeline for MLIR.

language space. A complete architecture of fD is depicted in Figure 5.2b.

f ′
D(dk) = MeanPool(HN

dk
)

5.3 Multilingual Dense Retrieval

Knowledge Distillation Training. Assume that dEn is the English version of dk.

From the property of the oracle g, we know that the document embedding of dEn

generated by gD contains rich knowledge for query-document matching in English.

Equation (5.3) suggests that if we could let f ′
D “behave” like gD, namely, if for any dk,

the output of f ′
D(dk) is close to the output of gD(dEn), then the document embedding

generated by f ′
D can have a similar retrieval performance as g in the English domain.

Therefore, we use the English document encoder gD as the teacher model and our

multilingual document encoder f ′
D as the student. During training, we define the

distillation loss as the mean square error (MSE) between two embeddings and sample

B examples from each of K languages to form a batch.
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loss :=
1

KB

K∑
k=1

B∑
i=1

|f ′
D(ski)− gD(eki)|2 (5.5)

where ski is a sentence in language Yk and eki is its parallel (translation) in English.

Query-document matching. In this section, we discuss an MLIR task of searching

multilingual collections using an English query to introduce the KD-SPD framework.

The query encoder in the final retrieval model can be directly copied from the teacher

model in the English domain. Specifically, at test time, the matching score of q and

d∗ is calculated based on the dot-product between gE and f ′
D:

f ′(q, d∗) = gE(q)f ′
D(d∗)

⊤

An overview of our MLIR model building pipeline is shown in Figure 5.3. In fact,

we can also apply KD-SPD to other language settings in MLIR task. For example,

suppose the task requires searching an English collection using queries in multiple

languages. In this case, KD-SPD can be built as a query encoder, and the retrieval

model can reuse the teacher’s document encoder. More generally, if the MLIR task

involves a query language set X and a collection language set Y , we can consider

English as a bridge to build KD-SPD via two knowledge distillations: X to English

for query encoder and Y to English for document encoder.

5.4 Experimental Setup

5.4.1 Dataset

Evaluation Data. We focus on retrieval from multilingual collections with En-

glish queries. To comprehensively evaluate model performance on this MLIR task,

we create three test sets with various combinations of collection size, relevance dis-

tribution, and language settings. Table 5.1 shows the statistics of our evaluation

datasets.
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• CLEF. The data is from the CLEF 2000-2003 campaign for bilingual ad-hoc

retrieval tracks (Braschler, 2002b). We include documents in French, German,

and Italian to build a multilingual collection. Among the CLEF C001 – C200

topics, we only consider a topic with human-annotated relevant documents in

all three languages as a valid query, leading to 133 queries in total.

• mTREC. The query and relevance judgments are from the test split of the

passage ranking task from the TREC 2020 Deep Learning Track Craswell et al.

(2020). There are three relevance judgment levels marked by {3,2,1}, with 3 be-

ing most relevant. We build the multilingual collection from mMARCO (Boni-

facio et al., 2021). We select translated passages in four languages: Arabic,

Chinese, Russian, and Indonesian, to form a large-scale multilingual collection.

• LAReQA. LAReQA (Roy et al., 2020) is a benchmark for language-agnostic

answer retrieval from a multilingual candidate pool. It is built based on two

multilingual question-answering datasets: XQuAD Artetxe et al. (2019) and

MLQA Lewis et al. (2019). The query is formed using the question, and the

collection is formed by breaking contextual paragraphs into sentences. Each

query (question) appears in 11 different languages2 and has 11 parallel relevant

sentences (answers). To match our MLIR setting, we evaluate English queries

on a collection of sentences in 11 languages (including English).

Bitext Training Data. To support the multilingual knowledge distillation, we

use the parallel sentences from the CCAligned dataset (El-Kishky et al., 2020a). To

train one KD-SPD model covering all three evaluation datasets (15 languages3), we

sample 4 million parallel sentences per language except English. For English, to be

consistent with other languages, we sample another 4 million sentences and pair each

2Languages in LAReQA (ISO code): ar, de, el, en, es, hi, ru, th, tr, vi, zh

3List of training languages (ISO code): ar, de, el, en, es, fr, hi, id, it, pt, ru, th, tr, vi, zh
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Table 5.1: Summary of MLIR evaluation datasets. Avg. #d+/q denotes the average
number of relevant documents per query.

Dataset Statistics CLEF mTREC LAReQA

Number of Queries 133 54 1,190
Number of Docs 241K 35.2M 13,014
Languages in collection 3 4 11
Avg. #d+/q 13.5 66.8 1.0

sentence with itself. Thus, our training data comprises 60 million sentence pairs in 15

languages. We also append a language code to each sentence pair for SPD to identify

the language of the input document.

Retrieval Fine-tuning Data. For a competitive baseline, we further fine-tune

an mDPR baseline (see section 5.4.3) using cross-lingual triples from mMARCO. We

sample 6 million cross-lingual triples per language to form a multilingual training set

for languages in CLEF and mTREC. Because languages in LAReQA are not fully

covered by mMARCO, we use mDPR on LAReQA without fine-tuning. Note that

our KD-SPD model does not use this data.

5.4.2 Implementation Details

We initialize the encoder component of the SPD model using XLM-R model

and the decoder component (including prompt matrices) using the Xavier initial-

ization (Glorot and Bengio, 2010). We train the SPD as a student model using bitext

data. To learn the retrieval knowledge in the English domain, we employ the docu-

ment encoder of ANCE (Xiong et al., 2021) as the teacher. When testing, the query

encoder of the final model is also a reuse of the query encoder of ANCE (except

in section 5.5.3, where we investigate the impact of different teachers). For hyper-

parameters, we set the length of the prompt token vector l = 30 and the number of

SPD decoding layers N = 6. We truncate the input sequence length at 180 tokens

and sample 4 examples per language to build a mini-batch. The model is trained

with a learning rate of 2×10−5 for one epoch of all bitext data. For evaluation on the
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CLEF dataset, where the document length is usually longer than 180 tokens, we split

long documents into overlapping passages of fixed length with a stride of 90 tokens

and compute the score for each query passage pair. Finally, we select a document’s

maximum passage score as its ranking score (Nair et al., 2022).

Evaluation. We examine the top 100 ranked documents and report comprehen-

sive metrics. In addition to mean Average Precision (mAP) and precision of the top

10 (P@10) ranked documents, we also include normalized Discounted Cumulative

Gain (nDCG@10), mean reciprocal rank (MRR), and recall (R@100). We determine

statistical significance using the two-tailed paired t-test with p-value less than 0.05

(i.e., 95% confidence level).

5.4.3 Compared Methods

From a modeling perspective, we compare KD-SPD with both non-neural and

neural approaches. From the system design perspective, we compare KD-SPD with

end-to-end solutions and pipeline solutions via rank list merging. For non-neural

baselines, we generally consider a three-step pipeline to address MLIR. First, we

break the collection into subsets by language and translate the query to each subset

language. Since the translated queries and subset collection are in the same language,

we then use a lexical-based sparse retrieval technique (e.g., BM25) to obtain a ranked

list for each language. Finally, we merge language-specific ranked lists into a final

ranked list. We investigate different strategies of translation and ranked list merging

that we elaborate below.

• SMT. We translate the query based on a Statistical Machine Translation (SMT)

method. Specifically, we first build a translation table from the parallel corpus

for each language pair using GIZA++. Then we select the top 10 translations

from the translation table for each query term and apply Galago’s #combine
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operator to form a translated query. Finally, we run BM25 with default param-

eters to retrieve documents in the same language as the query translation.

• GMT. We translate the query into the collection languages using Google Trans-

lation4. Then, we run BM25 with default parameters to retrieve documents from

each subset collection using the translated query. Note that because Google

Translation is an evolving system, the results regarding GMT are not guaran-

teed to be reproducible.

• +RR. We merge multiple rank lists in the round-robin (RR) style, that is,

iteratively extracting the top-ranked document from K languages in random

order to be the next K of the final rank list.

• +Score. We merge multiple rank lists by ranking scores generated by the

retrieval component. Scores within each rank list are min-max to range [0, 1].

The non-neural baselines are the combination of translation with merging strate-

gies: SMT+RR, SMT+Score, GMT+RR, and GMT+Score. As a dense retriever, we

compare KD-SPD with other dense retrieval methods in the following:

• mDPR. Models that follow the dense passage retriever (DPR) paradigm have

proven to be effective for many retrieval tasks. Zhang et al. (2021) extended

DPR to non-English languages by changing the underlying pre-trained language

model from BERT to multilingual BERT (mBERT). We adopt the checkpoint

of mDPR trained on MS MARCO dataset (Nguyen et al., 2016). For CLEF

and mTREC, which have fewer languages in the collections, we further fine-

tune mDPR using the mMARCO dataset (Bonifacio et al., 2021). We apply

mDPR to MLIR in two ways: First, we break the MLIR task into multiple

CLIR tasks by language and use mDPR to retrieve documents from subset

4https://translate.google.com/
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collections. Then we merge the rank lists from different CLIR tasks, named

mDPR+RR and mDPR+Score, respectively. Second, we apply mDPR as an

end-to-end solution for MLIR, in which we use it to directly index and search

from the multilingual collection.

• KD-Encoder. There are methods that can transfer the knowledge from a

model built for a monolingual task to a multilingual model, enabling it to ad-

dress the same task in a multilingual setting. Reimers and Gurevych (2020)

proposed a knowledge distillation method to create multilingual versions from

the same monolingual models. We refer to this idea as the KD-Encoder and

apply it to the MLIR task. To compare with our approach, we adopt the same

teacher model and train KD-Encoder with the same bitext data.

5.5 Results

5.5.1 Retrieval Performance

Table 5.2 lists the evaluation results on the three MLIR datasets. Comparing non-

neural approaches, we can see that methods based on GMT outperform those based on

SMT. For document collections with mostly high-resource languages, the GMT-based

methods can also achieve higher nDCG, precision, and MRR scores than end-to-end

neural approaches (i.e., GMT+Score on CLEF). It highlights that translation quality

is an important factor in MLIR.

Usually, for a pipeline approach, the error can accumulate for each step and lead

to a sub-optimal result (Ferreira et al., 2019). In MLIR, without evaluating the

content with respect to the query, merging rank lists only based on the score or rank

within the sub-collection will cause errors from multiple languages to accumulate.

However, comparing the pipeline with the end-to-end approach of mDPR, we can

see that end-to-end mDPR does not show a consistent advantage over the pipeline
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Table 5.2: A comparison of model performance. The highest value is marked with
bold text. For KD-SPD, statistically significant improvements are marked by † (over
mDPR) and ‡ (over KD-Encoder).

(a) Model performance on CLEF.

Methods
CLEF

mAP nDCG@10 P@10 MRR R@100

SMT+RR 0.1348 0.2540 0.2429 0.4017 0.3732

SMT+Score 0.1459 0.2737 0.2421 0.4679 0.3508

GMT+RR 0.1783 0.3732 0.3474 0.5793 0.4118

GMT+Score 0.1950 0.3806 0.3474 0.6140 0.4206

mDPR+RR 0.1823 0.3412 0.3165 0.5448 0.4330

mDPR+Score 0.1941 0.3433 0.3203 0.5364 0.4401

mDPR 0.2025 0.3466 0.3195 0.5367 0.4504

KD-Encoder 0.1973 0.3883 0.3594 0.5641 0.4315

KD-SPD 0.2200†‡ 0.4160†‡ 0.3714†‡ 0.6356†‡ 0.4689‡

(b) Model performance on mTREC.

Methods
mTREC

mAP nDCG@10 P@10 MRR R@100

SMT+RR 0.0242 0.0557 0.0630 0.1592 0.0778

SMT+Score 0.0187 0.0468 0.0648 0.1060 0.0661

GMT+RR 0.0653 0.1735 0.1870 0.3965 0.1872

GMT+Score 0.0522 0.1570 0.1685 0.3970 0.1691

mDPR+RR 0.0490 0.1358 0.1537 0.2913 0.1324

mDPR+Score 0.0492 0.1459 0.1574 0.3154 0.1300

mDPR 0.0549 0.1675 0.1870 0.3954 0.1291

KD-Encoder 0.0639 0.2208 0.2293 0.4556 0.1629

KD-SPD 0.0748†‡ 0.2414†‡ 0.2556†‡ 0.5067†‡ 0.1705†

(c) Model performance on LAReQA.

Methods
LAReQA

mAP nDCG@10 P@10 MRR R@100

SMT+RR 0.2678 0.3858 0.2332 0.6610 0.4415

SMT+Score 0.2269 0.3407 0.2126 0.6527 0.3506

GMT+RR 0.5717 0.6178 0.556 0.7139 0.8345

GMT+Score 0.5063 0.5671 0.5178 0.7091 0.8002

mDPR+RR 0.4935 0.5223 0.5163 0.6493 0.8394

mDPR+Score 0.4852 0.5142 0.4462 0.6452 0.8418

mDPR 0.4452 0.5031 0.4462 0.7653 0.7970

KD-Encoder 0.5931 0.6058 0.5730 0.7673 0.8805

KD-SPD 0.6265†‡ 0.6316†‡ 0.6049†‡ 0.7904†‡ 0.8912†
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Figure 5.4: Parallel document analysis for MLIR models.

mDPR. There are two plausible reasons. First, like other multilingual models, mDPR

is based on a multilingual pre-trained language model and also inherits the language

bias in the pre-training step. Second, the fine-tuning steps of mDPR only focus on

ranking documents within the same language space. These two reasons cause the

ranking score generated by mDPR to be inconsistent across languages. Moreover,

KD-Encoder performs better than mDPR on mTREC and LAReQA. Such results

suggest that mapping parallel text from different languages to the same location in the

vector space via knowledge distillation can efficiently transfer monolingual retrieval

knowledge to multilingual settings. Finally, with the support of soft prompt decoding,

KD-SPD achieves the best retrieval performance among all compared methods. In

terms of precision-oriented metrics, it consistently and significantly outperforms both

mDPR and KD-Encoder.

5.5.2 Analysis of Knowledge Distillation

To study how SPD behaves after knowledge distillation, we compare the rank

distance and score difference of parallel relevant documents in the rank lists gener-

ated by different models. In this experiment, again, we take advantage of parallel

translations in mTREC and build duplicate relevant documents in four languages.

Thus, for each query, there are semantically similar relevant documents in different
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Table 5.3: Ablation I: Decoder architecture. The numbers in the bracket show differ-
ences in percentage to KD-Encoder.

Model
Parameter

Size
CLEF

mAP nDCG@10 P@10 MRR R@100

KD-Encoder 278.6M 0.1973 0.3883 0.3594 0.5641 0.4315

KD-SPD 320.0M (+14.8) 0.2200 (+11.5) 0.4160 (+7.1) 0.3714 (+3.3) 0.6356 (+12.7) 0.4689 (+8.7)

KD-UTSPD 284.5M (+2.1) 0.2075 (+5.2) 0.4023 (+3.6) 0.3722 (+3.6) 0.5964 (+5.7) 0.4576 (+6.0)

languages. Given a query, we locate all parallel relevant documents in four languages

within the top 1,000 candidates from rank lists generated by mDPR, KD-Encoder,

and KD-SPD, respectively. Then we compute the maximum rank distance and score

difference among the four parallel documents. The equation to compute the score

difference is as follows:

S =
1

|Q|

|Q|∑
i=1

1

|Rqi|
∑

dkj∈Rqi

(
max
k∈Y

f ′(qi, dkj)−min
k∈Y

f ′(qi, dkj)
)

where Q is the query set, Rqi is the set of relevant documents for the query qi, and Y

is the language set. The averaging rank distance can also be obtained in a similar way.

Figure 5.4 shows the results averaged over 54 queries in mTREC. We can see that KD-

SPD has the smallest rank distance and score difference over parallel documents. The

rank and score of parallel documents reflect the language bias in MLIR models. Thus,

KD-SPD is less biased toward languages when ranking documents from a multilingual

collection. Moreover, because the query embedding is fixed given the same query, the

low mean and standard deviation values indicate that KD-SPD is able to generate

similar embeddings for parallel documents in different languages. This matches the

model design purpose.
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Table 5.4: Ablation II: Effect of Teacher model. Significance tests with respect to
KD-SPD (ANCE) are marked in ▲.

Teacher
CLEF LAReQA

mAP nDCG@10 P@10 MRR R@100 mAP nDCG@10 P@10 MRR R@100

ANCE 0.2200 0.4160 0.3714 0.6356 0.4689 0.6265 0.6316 0.6049 0.7904 0.8912

coCondenser 0.2487▲ 0.4546▲ 0.4008▲ 0.6826▲ 0.4976▲ 0.6501▲ 0.6694▲ 0.6436▲ 0.8012 0.9172

5.5.3 Ablation Study of Decoder

In this section, we conduct experiments on two aspects that could affect the per-

formance of KD-SPD: the number of layers in the decoder and the choice of the

teacher model for distillation.

Decoder architecture. Following the idea of weights share in Transformers De-

hghani et al. (2019); Jaegle et al. (2021), we replace the multi-layer (6-layer) decoder

with a recurrent decoder block. Instead of N distinct layers, a decoder block has the

same architecture as one decoder layer and is called recurrently for N = 12 steps.

The weights of a decoder block are shared between steps. After each step, we add a

temporal embedding τ ∈ Rl×d to the hidden states.

Hn+1
dk

= τn + DecoderBlock(Hn
dk
,Tdk)

This approach significantly reduces the size of model parameters. Named universal

transformer-based SPD (UTSPD), Table 5.3 shows its performance, compared to

KD-Encoder and KD-SPD. We can see that only with 2.1% more parameters, KD-

UTSPD performs better than KD-Encoder. By reducing the parameter size, we show

that the performance gain in SPD mainly relies on the prompt design and decoder

component based on the cross-attention module. Because reducing parameters limits

the model’s generalization ability, there is a performance drop from distinct layers to

shared weights.
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Table 5.5: Zero-shot evaluation of KD-SPD. Significance tests are marked by † (over
mDPR) and ‡ (over KD-Encoder).

(a) Zero-shot CLIR: English-to-Finnish.

Retrieval
Method

CLEF Finnish

mAP nDCG@10 P@10 MRR R@100

SMT 0.0739 0.1179 0.0900 0.1390 0.1828

GMT 0.1613 0.2562 0.1560 0.4591 0.4251

mDPR 0.1682 0.2143 0.1300 0.3095 0.5010

KD-Encoder 0.1845 0.2796 0.1920 0.4537 0.5237

KD-SPD 0.2286†‡ 0.3321†‡ 0.2220†‡ 0.5092†‡ 0.5958†‡

(b) Zero-shot MLIR: A collection of German, Italian, and Finnish documents.

Retrieval
Method

CLEF DE-IT-FI

mAP nDCG@10 P@10 MRR R@100

SMT+RR 0.1099 0.2245 0.208 0.4096 0.2909

SMT+Score 0.1269 0.2242 0.218 0.3726 0.2974

GMT+RR 0.1263 0.2748 0.254 0.5039 0.3384

GMT+Score 0.1447 0.2806 0.258 0.5101 0.344

mDPR+RR 0.1481 0.2734 0.268 0.391 0.3974

mDPR+Score 0.1728 0.3002 0.282 0.4816 0.4083

mDPR 0.1952 0.3377 0.306 0.5175 0.4107

KD-Encoder 0.1963 0.4262 0.382 0.6753 0.4152

KD-SPD 0.2174†‡ 0.4494†‡ 0.4100†‡ 0.7099†‡ 0.4545†‡

Teacher model The teacher model bounds the retrieval performance of KD-SPD.

We hypothesize that a better teacher model in the English domain can lead to a

better SPD model for MLIR task. Based on the leaderboard of MS MARCO passage

ranking, we replace ANCE with coCondenser (Gao and Callan, 2022) for knowledge

distillation. To be consistent with coCondenser, we also change the pre-trained mul-

tilingual language model used in SPD from XLM-R to mBERT. The evaluation of

SPD trained with different teacher models is shown in Table 5.4. In general, KD-SPD

learned from coCondenser performs better than the one learned from ANCE. This

suggests that improvements with respect to the retrieval performance in the English

domain can be transferred to MLIR task via KD-SPD.
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5.5.4 Zero-shot Transfer

We explore the zero-shot ability of KD-SPD. For documents in languages that

are not observed in the training data, we first define the language-specific vectors by

averaging all trained language-specific vectors from known languages. Then KD-SPD

follows the same steps as other languages to generate a prompt matrix for the new

language. Thus, the knowledge learned from observed languages will be passed to the

new language using the shared prompt matrix.

In this study, we focus on Finnish as the target language and use a collection of

54,694 Finnish documents from the CLEF dataset. We use this language because

Finnish, a member of the Uralic language family, is distinct from the 15 languages

used in training. Among the 133 English queries in the CLEF dataset, 50 have rel-

evant annotations in the Finnish collection, forming a new set of test queries. We

highlight that no training data from Finnish was used. The results in Table 5.5a

show the performance of KD-SPD in CLIR task between English and Finnish, and

we observe that KD-SPD significantly outperforms other methods, demonstrating the

transferability of knowledge from the prompt matrices to new languages. Next, we

expand the evaluation to a more challenging multilingual setting, combining Finnish

with German and Italian. The resulting collection contains both observed and unob-

served languages. Table 5.5b shows KD-SPD’s zero-shot performance in the MLIR

setting, where it still achieves the best results. This highlights KD-SPD’s strong

ability to transfer knowledge in a zero-shot scenario.

5.6 Summary

In this chapter, we presented a knowledge distillation (KD) framework based on

soft prompt decoding (SPD) to address the language bias issue in the MLIR task.

Using the soft prompt matrix as a task indicator, KD-SPD can implicitly translate

documents from multiple languages into the same embedding space as the query lan-
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guage. We proposed prompt decomposition to enable efficient knowledge sharing

across all target languages. Our knowledge distillation framework transfers knowl-

edge from a well-trained English retrieval model to KD-SPD, greatly reducing the

data requirements for building MLIR models. Experimental results on three quali-

tatively different MLIR evaluation datasets show that KD-SPD significantly outper-

forms other baselines. Further analysis demonstrates that KD-SPD has less language

bias and better zero-shot transfer ability toward new languages.

Language, while serving as a carrier for retrieval knowledge during model training,

can also become a barrier for models to function across different linguistic settings. In

the previous two chapters, we introduced methods for transferring retrieval knowledge

across multiple languages by utilizing parallel corpora. In the next chapter, we explore

the idea of removing linguistic knowledge from the embedding space. We will focus on

constructing language-agnostic retrieval models through a language concept erasure

task during the training to minimize the influence of language-specific information.
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CHAPTER 6

LANGUAGE CONCEPT ERASURE IN DENSE
RETRIEVAL MODELS

When fine-tuning PLMs for specific downstream tasks, language inherently plays a

critical role as the carrier of information. Typically, the task knowledge that the model

learns from the training data is heavily affected by the language of that data (Joshi

et al., 2020). Consequently, the model tends to exhibit a performance bias toward

the training language, often resulting in suboptimal performance on the same task in

unseen languages (Nooralahzadeh et al., 2020). This limitation also applies to building

retrieval models. In theory, a document’s relevance to a query should transcend

language barriers in most cases, excluding language-specific information needs. In

practice, however, the training typically encapsulates relevance in a limited set of

languages. For languages not covered in the training data, the model has to retrieve

documents in the so-called zero-shot manner, leading to a performance gap between

the observed and non-observed languages.

In Figure 6.1, we demonstrate this performance gap by leveraging parallel queries

and documents in 11 languages from the LAReQA dataset (Roy et al., 2020). Given

the same retrieval task, we gradually increase the number of possible languages used

in queries and documents from 1 (English-only) to 11 languages. At each stage,

we randomly assign a language from all possible languages to each query and docu-

ment. We evaluate three dense retrievers with different backbone encoders that are

all fine-tuned using MS MARCO passage ranking dataset (Nguyen et al., 2016). We

observe that while retrieval performance in English-only settings is competitive, the
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Figure 6.1: nDCG@10 decreases while the number of languages used in queries and
documents increases. Results based on parallel data from LAReQA.

introduction of additional languages results in performance reductions across all mod-

els. Specifically, mDPR (Zhang et al., 2021), which is based on mBERT, shows the

most sensitivity to multilingualism. In contrast, mContriever (Izacard et al., 2022)

performs better due to its contrastive pre-training across multiple languages. The

most robust encoder is LaBSE (language-agnostic BERT sentence embedding) (Feng

et al., 2022), benefiting from its pre-training on translation ranking tasks that utilize

millions of parallel sentences.

In Chapters 4 and 5, we learned that retrieval knowledge is distinct from linguistic

knowledge and can be transferred across different languages. Utilizing parallel cor-

pora, we facilitate such transfer through knowledge distillation frameworks between

multiple languages. Inspired by the separation of different types of knowledge dur-

ing multilingual retrieval modeling, we now explore a universal search engine that

can effectively retrieve relevant information across all linguistic contexts, including

monolingual (in many languages), cross-lingual, and multilingual. Different from

transferring the retrieval knowledge from a well-trained English model into models

for target languages, this chapter shifts focus to the training phase of dense retrieval

models. We minimize the influence of language-specific information from the training

data to enhance the model’s ability to learn language-agnostic retrieval knowledge.

In the paradigm of natural language understanding (NLU), this idea is similar to em-
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bedding disentanglement (Tiyajamorn et al., 2021; Wu et al., 2022), where sentence

embeddings are viewed as the combination of semantic (meaning) embedding and

language-specific (syntax or idioms) embedding. For a particular task, it is preferable

to concentrate model training on the semantic embedding while deliberately exclud-

ing the language-specific part. This strategy aims to enhance the model’s ability

to function effectively across diverse linguistic environments, improving its universal

applicability and performance.

In this Chapter, we introduce Language Concept Erasure for Language-Agnostic

Dense Retrieval (LANCER), a multi-task learning framework designed to reduce lin-

guistic influence within the representation space of dense retrieval models. Given

multilingual inputs, we consider language as a predictable concept tied to each input

instance and design a concept erasure task to obscure the language labels within the

output representations. More specifically, borrowing the concept of guardedness from

Ravfogel et al. (2023), we first demonstrate that a zero cross-covariance matrix be-

tween features and certain labels prevents any linear classifier from detecting those

labels. Based on this foundational understanding, we calculate a cross-correlation

matrix between the vectors produced by a dense retriever and the language labels for

each training batch. By minimizing the mean correlation values across batches, we

enhance the model’s language agnosticism.

While the primary task is learning retrieval knowledge, language concept erasure

serves as an auxiliary task to drive the model toward generating language-agnostic

representations. Concurrently, the retrieval task helps to prevent trivial solutions in

the concept erasure task by ensuring that the model maintains a meaningful repre-

sentation space throughout the training process. Since learning is less affected by

the language of data, our method only employs retrieval data in English, such as

MS MARCO, for retrieval learning. For the concept erasure task, since the language

label is an inherent attribute tied to any context of a certain language, LANCER is

92



Table 6.1: Language identification accuracy of logistic regression on mPLMs and
retrieval models. Train test splits are sampled from mC4 dataset.

1. Input features are taken from mPLMs.

Models mBERT XLM-R mT5 mE5

Accuracy 98.1 96.1 97.2 98.0

2.Input features are taken from dense retrievers.

Models mDPR (mBERT) mDPR (mT5) mContriever LaBSE

Accuracy 97.9 96.7 98.0 81.6

capable of operating on multilingual non-parallel corpora, such as mC4 (Xue et al.,

2021) and Wiki-40B (Guo et al., 2020), effectively diminishing the necessity for par-

allel data toward language-invariant modeling. The dense retrieval models developed

using our framework exhibit reduced language bias and show consistent improvements

on monolingual, cross-lingual, and multilingual retrieval tasks.

The work described in this chapter, namely Language Concept Erasure for Language-

invariant Dense Retrieval, is under submission. I was the lead author who designed

the model architecture and conducted the experiments.

6.1 Language Agnostic via Concept Erasure

Our objective is to diminish the linguistic features within the embedding space of a

dense retrieval model, enabling it to produce language-agnostic representations across

various linguistic contexts. To achieve this, we structure our goal into a training task

of hiding language labels from any linear classifier. In this section, we first measure

the language-specific signals by a language identification task using logistic regression

classifiers. Then, we borrow the definition of linear guardedness from Ravfogel et al.

(2023) and convert its equivalent assumption proved by Belrose et al. (2024) to a

loss function for language concept erasure. Finally, we present the multi-task learning

framework, LANCER, and the details of training a dense retrieval model.

93



6.1.1 Language Identification

In most search scenarios, the relevance between a query and a document should

transcend the language in which they are expressed (Rahimi et al., 2020; Zhang

and Zhao, 2020). For instance, if a document is labeled relevant to a query in En-

glish, translating both the query and the document into Arabic should not alter the

judgment of their relevance. This principle highlights the importance of language-

independent factors in determining the relevance of search results.

However, we find that mPLMs and the retrieval models built upon them still

retain strong language-specific signals in their output representations. As shown in

Table 6.1, we use the dense vectors from 16 languages as input features to train a

logistic regression classifier for predicting language labels. The high accuracy achieved

on a held-out test set indicates that the language factor has a strong influence on

the dense vector used for relevance scoring. This suggests that despite the intent

to transcend linguistic boundaries, current models still embed significant language-

specific information, which could impact their effectiveness in information retrieval

tasks across diverse linguistic settings.

6.1.2 Language Concept Erasure

Based on this observation, we propose language concept erasure to reduce the

influence of language in relevance scoring. Specifically, our goal is to prevent any linear

classifier from detecting the language label given the dense vectors, thereby largely

erasing the identity of the source language. We adopt the idea of guardedness from

Ravfogel et al. (2023) to formally define the task of language concept erasure.

Given vector X ∈ Rk, and a concept Z (the one-hot labels) taking values in

Z = {z ∈ {0, 1}n | ∥z∥1 = 1}. Let V = {η(·;θ) : Rk → Rn | θ ∈ Θ} be the class of all

linear predictors, taking the form η(X) = WX+b for some weight matrix W ∈ Rn×k
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and bias b ∈ Rn, We say X linearly guards Z if no classifier in V can outperform a

constant function at predicting Z.

Next, we prove that linear guardedness is achieved when the class-conditional

mean equals the unconditional mean.

Theorem 6.1 Suppose L is convex loss functions defined on (η(X),Z). If each class-

conditional mean E[X|Z = j] is equal to E[X], then the constant predictor cannot be

improved upon.

Proof. By Jensen’s inequality, the loss with η evaluated on X is lower bounded by

the loss with η evaluated on the unconditional mean of the data.

E
[
L(η,Z)

]
= EZ

[
E
[
L(η,Z)

]]
≥ EZ

[
L(E[η|Z],Z)

]
(By Jensen’s inequality)

= EZ

[
L(WE[X|Z] + b,Z)

]
(By linearity of η)

= EZ

[
L(WE[X] + b,Z)

]
(By assumption)

This represents the loss from a constant predictor η′ = WE[X] + b. Since every

predictor’s loss is lower bounded by a constant predictor, X linearly guards Z.

Intuitively, this shows that the expected loss of the classifier is lower-bounded by

loss calculated from the class centroids. When all centroids are identical, the minimal

achievable loss corresponds to replacing every data point with the global mean E[X].

Therefore, to achieve linear guardedness, we need to drive the class-conditional mean

to the unconditional mean. Next, we prove that Theorem 6.1 is equivalent to zero

covariance between every component of X and every component of Z.

Theorem 6.2 Let X and Z following the settings above, and each class probability

P (Z = j) nonzero. Then the class-conditional means E[X|Z = j] are all equal to the

unconditional mean E[X] if and only if the cross-covariance matrix ΣXZ, whose (i, j)th

entry is Cov(Xi,Zj), is a zero matrix.
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Figure 6.2: LANCER training objectives.

Proof. We can rewrite the (i, j)th entry of the cross-covariance matrix ΣXZ as:

E[XiZj]− E[Xi]E[Zi] = P (Z = j)
(
E[Xi|Z = j]− E[Xi]

)
Since P (Z = j) > 0, then E[Xi|Z = j] = E[Xi] if and only if E[XiZj] = E[Xi]E[Zi],

which is Cov(Xi,Zj) = 0

We finally establish a concrete condition for linear guardedness. Suppose X is the

multilingual dense vector generated by the backbone encoder and Z is the language

labels tied to input instances. We define language concept erasure as being equivalent

to X linearly guards Z. Thus, if (X,Z) satisfies Theorem 6.2, then the dense retrieval

model prevents any linear classifier from detecting languages from its outputs.

6.1.3 Multi-task Learning

In practice, Theorem 6.2 is a very weak condition. It does not identify a unique

solution of X. In fact, any trivial vector satisfies the condition of zero cross-covariance.

However, we can convert Theorem 6.2 into a loss function and pair it with the ranking

loss to form a multi-task learning framework. During training, the model takes two

types of data inputs in each batch:
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(i) Retrieval data, which includes triplets consisting of queries (Q), positive doc-

uments (D+), and negative documents (D−). We calculate the ranking loss, LR,

through contrastive learning Chen et al. (2020):

LR =
∑
q∈Q

∑
d+∈D+

− log
es(q,d

+)

es(q,d+) +
∑

d−∈D−
es(q,d−)

(ii) Multilingual data, which is a group of passages (p) with language label (z),

{(pj, zi)mj=1}ni=1, where n is the number of languages and m is the number of passages

per language. We sample the same number of passages from each language per batch

to ensure languages are equally represented. We compute the cross-covariance matrix

between dense vectors of input passages X, and language labels Z.

ΣXZ = E[(X− X̄)(Z− Z̄)⊤]

The scale of the embedding values significantly influences the magnitude of covariance.

Unnormalized outputs from some encoders result in covariance values that vary widely

across different input instances. Therefore, we standardize the covariance matrix into

the correlation matrix by dividing by the standard deviations: ρXZ = ΣXZ/σXσZ.

The concept erasure loss is defined as the mean absolute value of the correlation

matrix:

LC =
1

nk

k∑
i=1

n∑
j=1

|corr(Xi,Zj)|

By Theorem 6.2, we aim for this value to be as close to zero as possible. These

two types of data and their corresponding losses complement each other effectively.

The concept erasure task effectively removes language-specific information from the

dense vectors, enabling the retrieval task to concentrate on language-agnostic knowl-

edge. Simultaneously, the retrieval task, which focuses on semantic matching, ensures

that the model maintains meaningful representations throughout the training. This
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balance prevents the concept erasure task from degenerating. Finally, as shown in

Figure 6.2, we add the primary ranking loss LR for retrieval and the correlation loss

for concept erasure LC to conduct the training of dense retrievers.

L = LR + LC

Training data requirement. Because the language label is an intrinsic attribute

separate from semantic meaning, the language concept erasure task of LANCER has

minimal data requirements for multilingual input. A clean corpus from each language

is sufficient to support the running of this task. On the other hand, as the retrieval

task is less influenced by language-specific information, it can utilize query-document

pairs in any language. In experiments, we focus on retrieval data in English for

training.

6.2 Experimental Setup

6.2.1 Modeling Details

We apply LANCER to multilingual dense retrieval models with different degrees of

multilingual pre-training: mBERT (mDPR), mContriever (Izacard et al., 2022), and

LaBSE (Feng et al., 2022). The pre-training of mBERT is only an extension of Masked

Language Modeling (MLM) and next sentence prediction (NSP) to 104 languages.

Based on mBERT, mContriever is further pre-trained on unsupervised contrastive

learning over 29 languages. LaBSE, also built on mBERT, is further pre-trained on

the translation ranking task, leveraging millions of parallel text. To compare with

existing baselines, we use the MS MARCO passage ranking dataset (Nguyen et al.,

2016) as the retrieval training data. Note that there is no existing LaBSE-based

dense retriever built on MS MARCO, so we created one by fine-tuning LaBSE on MS

MARCO. For language concept erasure, we use a multilingual corpus containing 16
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languages1. We sample 3M passages per language from the mC4 (Xue et al., 2021)

dataset. We set the batch size to 64 for the retrieval task and 256 (16 examples per

language) for the concept erasure task. Based on the size of the MS MARCO train

split, we train each model for 4 epochs with a learning rate of 2e−5.

To evaluate language-agnostic dense retrievers refined by LANCER, we conduct

experiments on various benchmark retrieval datasets covering multilingual, cross-

lingual, and monolingual (in many languages) tasks. Some of the evaluation datasets

include training splits. To assess language agnosticism, we do not perform any ad-

ditional fine-tuning using those splits to keep zero-shot evaluations of our approach

and all compared methods.

6.2.2 Datasets and Metrics

6.2.2.1 Multilingual

CLEF. We evaluate searching a multilingual collection using English queries. This

dataset is reused from Section 5.4.1 to evaluate one-to-many setting of MLIR.

LAReQA. We evaluate the retrieval performance when the query and collection are

both multilingual. LAReQA (Roy et al., 2020) is a benchmark for language-agnostic

answer retrieval from a multilingual candidate pool. Different from Section 5.4.1, we

evaluate many-to-many setting of MLIR by including queries from 11 languages.

6.2.2.2 Cross-lingual and Monolingual

XOR-Retrieve. We evaluate searching English collection using queries in other

languages. XOR-Retrieve (Asai et al., 2021) is a benchmark for evaluating cross-

lingual retrieval systems. It includes 7 cross-lingual tasks between target language

queries and English documents. The corpus contains 18.2M passages with a maximum

of 100 word tokens from the English Wikipedia.

1List of training languages (ISO code): ar, bn, de, en, es, fa, fi, fr, hi, id, ja, ko, ru, te, th, zh
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XTREME-UP. XTREME-UP (Ruder et al., 2023) focuses on extremely low-resource

languages. Similar to XOR-Retrieve, it includes 20 cross-lingual tasks of queries in

low-resource language and documents in English.

MIRACL. We evaluate monolingual retrieval across multiple languages. MIRACL (Zhang

et al., 2023) has a broad language coverage for evaluating monolingual retrieval. De-

veloped on top of Mr.TyDi (Zhang et al., 2021), MIRACL comprises data in 18

languages, with both queries and documents presented in the same language.

6.2.2.3 Metrics

We report mAP and nDCG@10 for both multilingual evaluation datasets (CLEF

and LAReQA). To be consistent with the measures previously reported on the bench-

mark datasets (Li et al., 2022; Ruder et al., 2023; Zhang et al., 2023), we report

nDCG@10 on MIRACL and MRR@10 on XTREME-UP. For XOR-Retrieve, we eval-

uate recall on the first 5,000 tokens retrieved, denoted as Recall@5kt. We determine

statistical significance using the two-tailed paired t-test with p-value less than 0.05

(i.e., 95% confidence level).

6.2.3 Compared Methods

Across all evaluations, we compared the performance of models incorporating

LANCER to those without, e.g., mDPR+LANCER vs. mDPR. For multilingual

evaluation, we included the following additional baselines for comparison:

LSAR: As an unsupervised method, LSAR (Xie et al., 2022) is based on matrix

decomposition to identify a language-agnostic subspace and then directly projects the

original multilingual embeddings onto that subspace to reduce the effects of language

on downstream tasks.

LEACE: Also worked as an unsupervised method, LEACE (Belrose et al., 2024) de-

rives a projection in closed-form to prevent linear classifiers from detecting a concept.

We apply it upon baseline retrievers to reduce the effects of language concepts.

100



Table 6.2: Results for multilingual retrieval on CLEF and LAReQA. LAReQA (Full)
includes parallel queries and documents in 11 languages. LAReQA (Sampled) refers
to randomly selecting a language for each query and document. Results are averaged
over five folds. Our approaches are highlighted in light blue with significant improve-
ments marked by † (over LEACE), ‡ (over KD-SPD), and ⋄ (over baseline model).

Method
CLEF LAReQA (Full) LAReQA (Sampled)

mAP nDCG@10 mAP nDCG@10 mAP nDCG@10

KD-SPD 22.0 41.6 48.4 50.4 55.5 60.0

mDPR 20.2 34.6 25.5 31.7 41.0 41.6

+ LSAR 19.8 35.8 34.0 39.2 48.9 53.3

+ LEACE 18.9 34.6 33.4 38.7 48.9 53.2

+ LANCER 21.6† 39.1†⋄ 39.3†⋄ 43.3†⋄ 53.1†⋄ 57.7†⋄

mContriever 27.2 46.1 31.1 37.3 48.8 52.5

+ LSAR 26.9 47.4 38.8 43.8 55.8 60.2

+ LEACE 28.3 48.8 39.1 44.2 56.3 60.7

+ LANCER 30.0†‡⋄ 50.7†‡⋄ 42.6†⋄ 47.6†⋄ 58.4†‡⋄ 62.8†‡⋄

LaBSE 24.0 44.2 62.9 64.0 72.4 76.2

+ LSAR 22.8 42.5 61.4 62.1 70.9 74.9

+ LEACE 23.9 44.6 61.2 62.0 71.3 75.2

+ LANCER 25.8†‡ 47.0†‡⋄ 64.5†‡⋄ 65.2†‡ 74.5†‡⋄ 78.1†‡⋄

KD-SPD: Based on knowledge distillation, KD-SPD (Huang et al., 2023b) designed

a language-aware decomposition prompt for the encoder to transfer knowledge from

an English retriever to multiple languages using parallel corpora.

For cross-lingual and monolingual tasks, we include results from SWIM-X (Thakur

et al., 2023), a synthetic query generation method using LLMs. It utilizes in-domain

documents to generate synthetic queries and then performs fine-tuning to build mul-

tilingual dense retrieval models.

6.3 Results

6.3.1 Retrieval Performance

Multilingual. Table 6.2 lists the multilingual evaluation results. We observe that

when LANCER is applied, all three baseline models show substantial improvements

on two datasets in terms of both mAP and nDCG@10. Note that retrieval data used

for training remained consistent across these experiments. Because of the language
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Table 6.3: Results showing Recall@5kt (%) for cross-lingual retrieval on XOR-
Retrieve dev (labels of test split are not released). WR denotes the win ratio of
LANCER over baseline.

Method Avg. ar bn fi ja ko ru te WR

SWIM-X 59.0 54.0 67.4 59.2 52.7 55.1 54.4 70.2 -

mDPR 39.3 34.3 35.5 45.2 40.2 36.5 43.9 39.5 -

+ LANCER 41.4 36.2 37.8 47.1 37.8 45.3 42.2 43.3 5/7

mContriever 44.0 37.5 38.2 50.6 41.1 37.2 49.8 53.8 -

+ LANCER 45.7 43.0 35.9 56.4 39.4 46.0 43.5 55.5 4/7

LaBSE 56.8 56.0 63.5 57.6 50.2 50.2 48.1 71.8 -

+ LANCER 57.2 54.4 62.5 58.3 51.0 52.6 47.3 74.4 4/7

Table 6.4: Results showing MRR@10 (%) for cross-lingual retrieval on XTREME-UP
test. WR denotes the win ratio of LANCER over baseline.

Method Avg. as bho brx gbm gom gu hi hne kn mai ml mni mr mwr or pa ps sa ta ur WR

SWIM-X 25.2 24.4 27.7 4.3 28.3 25.4 29.4 32.4 28.8 30.1 31.8 34.4 5.1 30.7 25.7 15.8 29.6 20.6 26.1 27.9 26.1 -

mDPR 5.9 2.6 6.5 0.6 7.0 2.2 5.4 13.9 5.7 6.3 6.9 8.7 0.3 8.7 6.1 0.7 9.5 2.6 4.1 7.7 13.3 -

+LANCER 9.8 5.0 9.5 0.8 11.2 6.3 11.9 19.2 10.0 10.5 11.5 14.1 0.8 15.9 9.9 0.3 15.5 3.7 9.5 13.8 16.4 19/20

mContriever 4.6 3.6 5.4 0.9 6.3 1.8 2.2 10.9 5.3 5.5 7.0 4.3 0.9 6.1 6.6 0.8 5.3 2.0 4.4 7.9 5.7 -

+LANCER 6.5 5.1 6.4 1.0 9.7 3.3 4.2 13.4 7.4 8.8 9.0 6.3 0.7 9.3 8.8 0.7 6.9 3.0 8.4 8.0 8.5 18/20

LaBSE 28.3 25.0 28.3 2.8 29.4 21.0 36.2 38.5 27.6 36.3 31.9 36.9 4.5 37.9 28.6 27.0 35.5 22.2 27.4 35.6 34.1 -

+LANCER 29.2 26.1 29.2 2.4 27.4 22.5 37.7 40.7 26.2 38.9 31.7 38.5 4.1 39.0 28.4 29.6 36.5 22.9 28.1 37.3 36.3 14/20

concept erasure, models built with LANCER have less language bias, leading to better

performance on multilingual tasks.

Moreover, LANCER outperforms post-hoc methods (LSAR and LEACE). Com-

pared with the knowledge transfer method, LaBSE+LANCER uniformly improves

KD-SPD, while mContriever+LANCER also performs better except on LAReQA

(Full). Lastly, from a task perspective, LAReQA presents a greater challenge than

CLEF due to the inclusion of more languages in its queries and documents. Be-

cause LaBSE is pre-trained on a wide range of languages using parallel sentences,

mContriever is able to surpass LaBSE on CLEF but falls behind on LAReQA.

Cross-lingual. Table 6.3 and Table 6.4 list cross-lingual results on XOR-Retrieve

and XTREME-UP respectively. On XOR-Retrieve, LANCER demonstrates compet-

itive performance compared to corresponding baseline models, improving 2.1 points

on mDPR and 1.7 points on mContriever. When applied to LaBSE, LANCER aligns

102



Table 6.5: Results showing nDCG@10 (%) for monolingual retrieval on MIRACL dev
(labels of test split are not released). WR denotes the win ratio of LANCER over
baseline.

Method Avg. ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo WR

SWIM-X 46.4 60.2 57.1 34.7 33.4 36.3 40.6 64.3 33.0 39.5 40.8 43.3 49.7 40.0 55.9 56.3 63.3 60.2 57.1 -

mDPR 41.8 49.9 44.3 39.4 47.8 48.0 47.2 43.5 38.3 27.2 43.9 41.9 40.7 29.9 35.6 35.8 51.2 49.0 39.6 -

+ LANCER 47.5 55.6 50.5 43.4 46.3 49.1 56.6 46.1 36.7 34.3 49.0 47.4 46.7 39.4 52.7 46.1 50.0 46.8 58.5 14/18

mContriever 37.8 49.1 48.4 32.7 33.3 37.1 48.4 27.0 35.9 32.7 34.1 40.2 35.1 44.5 46.2 45.0 27.5 29.7 33.7 -

+ LANCER 50.1 61.4 56.9 40.7 46.1 38.0 65.4 41.2 35.7 43.6 48.1 54.5 46.2 58.0 67.9 58.2 45.1 43.2 51.7 17/18

LaBSE 45.6 50.2 53.7 35.6 37.7 42.4 57.2 40.6 41.4 37.8 34.6 46.2 40.5 57.4 53.9 50.1 34.9 39.7 67.7 -

+ LANCER 48.1 52.9 57.2 37.5 38.0 45.9 60.6 41.7 43.8 39.5 39.4 48.8 42.2 57.9 58.9 55.2 37.3 38.1 70.2 17/18

closely with the baseline. SWIM-X performs the best on XOR-Retrieve. However,

SWIM-X utilizes in-domain data to generate cross-lingual training pairs, while our

experiments are completely zero-shot evaluations. For collections with strong domain

features like Wikipedia, synthetic data not only supports language-specific training

but also acts as a form of domain adaptation, contributing to this strong performance.

On XTREME-UP, LANCER consistently enhances performance over the baseline

models. Both LaBSE and LaBSE+LANCER surpass SWIM-X. The performance

of SWIM-X suggests that using LLMs for data augmentation does not always yield

high-quality data, particularly in low-resource languages.

Monolingual. Table 6.5 lists monolingual results on MIRACL, covering 18 lan-

guages. Compared to cross-lingual, LANCER improves the corresponding baseline

models on monolingual tasks by a large margin. Specifically, in terms of nDCG@10,

LANCER achieves an improvement of 5.7 points (13.6%) over mDPR, 12.3 points

(32.5%) over mContriever, and 2.5 points (5.5%) over LaBSE. Surprisingly, when

LANCER is applied, all three models outperform SWIM-X. This suggests that LANCER

has robust zero-shot capability in monolingual tasks, highlighting its effectiveness

without retrieval training for specific languages. From the data perspective, this also

suggests that when language bias is reduced in embedding space, retrieval knowledge
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Figure 6.3: Compared to corresponding baselines, LANCER shows more robust
nDCG@10 against the increase of languages. Results based on LAReQA.

provided by MS MARCO data (English) is more comprehensive than language-specific

synthetic data generated by current LLMs.

6.3.2 Effect of Multilingualism

At the beginning of this chapter, as shown in Figure 6.1, we demonstrate the

language bias in multilingual retrieval by increasing the number of languages used

in queries and documents. Here, we replicate the experiment with models trained

using LANCER, observing how their performance shifts as more languages are in-

corporated into the queries and documents. In Figure 6.3, the models demonstrate

improved resilience to language bias as the number of languages increases, maintaining

higher levels of nDCG@10 compared to those without LANCER. This suggests that

LANCER effectively mitigates the challenges posed by linguistic diversity, enhancing

the model’s ability to handle multilingual information retrieval more robustly.

6.3.3 Analysis of Training

To study the impact of language concept erasure on the dense vectors, we leverage

held-out multilingual train and test splits to monitor language label recovery. At
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Figure 6.4: Training loss of logistic regression (Left) and prediction accuracy (Right)
for language label recovery.

Figure 6.5: t-SNE visualization of multilingual representations from mDPR (Left)
versus mDPR+LANCER (Right). Best viewed in color.

each logging step, we map the held-out splits into dense vectors and build a logistic

regression classifier to predict language labels. Figure 6.4 records the loss on train

split (Left) and prediction accuracy on test split (Right) on three models. As training

continues, it is harder for the classifier to identify the language label according to rising

loss and declining accuracy. This trend indicates that the language concept erasure

task effectively reduces the language information in the dense vectors, making the

model more language-agnostic.
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6.3.4 Analysis of Representation

To further demonstrate the impact of LANCER, we analyze the representations

produced by dense retrieval models, both with and without the language concept

erasure task. We sample 300 passages per language from 16 training languages and

use t-SNE to visualize their representations. In Figure 6.5, the visualizations from

mDPR show that the representations are predominantly clustered by language. How-

ever, after integrating LANCER, the representations from different languages are

intermingled. This further supports that LANCER effectively diminishes language-

specific clustering, resulting in a more language-agnostic embedding space.

6.4 Summary

In this chapter, we introduce LANCER, a multi-task training framework designed

to improve language-agnostic dense retrieval. The core of LANCER is the language

concept erasure task, which reduces the language-specific signals present in the mul-

tilingual dense vectors by preventing linear classifiers from detecting the language

labels. Paired with the retrieval task, LANCER enables the model to prioritize learn-

ing language-agnostic knowledge for query-document matching.

We conduct experiments across all possible linguistic settings of an IR task (e.g.,

monolingual, cross-lingual, and multilingual). The extensive results from these ex-

periments demonstrate the effectiveness of LANCER in building language-agnostic

dense retrieval models. In multilingual contexts, LANCER outperforms knowledge

transfer using parallel data. Furthermore, in monolingual tasks across 18 languages,

LANCER, as a zero-shot approach, surpasses an in-domain data augmentation method

based on LLMs.

Despite the effectiveness of language concept erasure, our experimental results

(e.g., Figure 6.3 and 6.4) indicate the potential for further reducing language bias

and enhancing multilingual retrieval performance. Moreover, our method is limited
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to linear classifiers. The language labels can still be recovered accurately by non-linear

classifiers like multi-layer perceptron (MLP). Our community still has a considerable

path to tread in order to overcome language bias in retrieval systems.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Overcoming language barriers, Cross-lingual Information Retrieval (CLIR) and

Multilingual Information Retrieval (MLIR) enhance the comprehensive satisfaction

of users’ informational needs. Generally, these tasks require matching queries and

documents in different languages. In addition to the ranking component, the re-

trieval models for CLIR or MLIR need to possess some form of translation knowledge

to map the vocabulary of the query language to that of the documents’ language.

The effectiveness of retrieval depends on the model’s ability to match queries with

documents and bridge the linguistic gap between them.

Based on the Transformer architecture, multilingual pre-trained language models

(mPLMs) promote the joint learning of contextualized representations for multiple

languages with the same model. Because tokens in different languages are projected

into the same representation space, these models can also be adopted as the source

of translation knowledge to bridge the linguistic gap. Fine-tuning these models with

retrieval-specific data enables them to learn the knowledge of query-document match-

ing and perform retrieval tasks across diverse linguistic settings (e.g., monolingual,

cross-lingual, and multilingual).

In this dissertation, we focus on the challenges of building neural ranking mod-

els using mPLMs, covering cross-encoder reranker and bi-encoder dense retriever.

Specifically, we study the translation gap (Chapter 3), data scarcity (Chapter 4), and

language bias (Chapter 5 & Chapter 6) issues in CLIR and MLIR tasks.

108



First, from monolingual to cross-lingual, the words co-occurring in query and

document become translations, creating difficulties for the model to catch the exact

match signals. Re-introducing external translation knowledge into the CLIR models

effectively reduces such translation gap. For the cross-encoder reranker, we inject

word-level dictionary knowledge as a translation attention matrix into the Trans-

former layer, parallelizing with the multi-head attention mechanism. By improving

the token similarity of mutually translated words in query and document, our design

improves cross-lingual document reranking on both high- and low-resource languages.

Then, unlike the English retrieval task, which benefits from abundant resources

for model training, the scarcity of retrieval data in other languages, especially in

low-resource languages, makes it challenging to build CLIR models. While previous

approaches mainly focused on synthesizing multilingual datasets, we explore trans-

ferring retrieval knowledge learned from English retrieval data to other languages to

address the data scarcity problem. We propose a knowledge distillation framework

using parallel data and cast cross-lingual token alignment as the optimal transport

problem loss computation. By reducing the data requirement from cross-lingual rel-

evance labels to parallel sentences, our method significantly improves CLIR perfor-

mance involving low-resource languages.

Moreover, expanding from CLIR to MLIR, where queries and documents involve

more languages, presents challenges beyond the increased need for multilingual train-

ing data. When a search collection encompasses documents in multiple languages,

it requires that the model maintain consistent and fair performance across different

languages. Following the idea of knowledge transfer, we develop a language-aware de-

composition prompt for the encoder to transfer knowledge from an English retriever

to multiple languages using parallel corpora. Our proposed method uses English

as a pivot language and maps document representations from other languages into
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the same English embedding space. This strategy effectively reduces language bias,

thereby enhancing the performance of MLIR tasks.

Finally, based on the findings of knowledge transfer through distillation, we argue

that retrieval knowledge can be separated from linguistic knowledge. Therefore, we

introduce a multi-task learning framework to build language-agnostic dense retrieval

models. The core design principle of this framework is to minimize the linguistic

signals within the representation space. We consider language as a predictable label

from model outputs and employ the condition of linear guardedness to design a loss

function for language concept erasure. Dense retrieval models that incorporate lan-

guage concept erasure are less sensitive to the input language and exhibit substantial

improvements across a variety of retrieval tasks, including monolingual (in many lan-

guages), cross-lingual, and multilingual settings. Our approach enhances the model’s

ability to function effectively across diverse linguistic environments, improving its

universal applicability and performance.

7.2 Future Work

In our increasingly interconnected world, as the content on the internet and digital

platforms becomes more global, facilitating information access beyond the language

barrier is a meaningful and important research topic. While we delved into certain

aspects of CLIR and MLIR, there are still areas of interest and challenges that we

have not yet addressed. Next, we will briefly outline potential directions for future

research.

7.2.1 Language Coverage Expansion

We have developed tasks and methodologies to overcome data scarcity issues and

expand the neural ranking models to more languages, especially underrepresented

languages. We reduced the data requirement for building retrieval models from rel-
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evance labels to bitext data and then to monolingual corpora in target languages.

However, existing datasets are far from sufficient to fully develop information access

capabilities for the 7000+ languages spoken on our planet. Existing mPLMs cover

a maximum of a couple of hundred languages. The rest are extremely low-resource

languages that do not even have a monolingual corpus to support the training of

language models. The performance of retrieval models is greatly limited in those

languages. Achieving a broad coverage of languages is still a significant challenge for

both the NLP and IR communities.

As shown in Chapter 6, one promising way to overcome the limitation of languages

is to build retrieval models by focusing on language-independent knowledge for query

document matching. We hope our findings and methodologies can shed light on

following up research for language-agnostic retrieval.

7.2.2 Query-based Language Preference

In this dissertation, our efforts to improve retrieval performance are mainly under a

particular task assumption, such as cross-lingual or multilingual. The ability to assess

language preferences based on individual queries has been overlooked. In many real-

world applications, particularly in web search scenarios, the linguistic context often

encompasses a mix of monolingual, cross-lingual, and multilingual elements.

The linguistic setting of retrieval should be evaluated on a query-to-query basis.

For some queries, monolingual retrieval is enough to fulfill the user’s information

needs, while other queries require CLIR or even MLIR. Future research could focus

on developing adaptive retrieval systems that intelligently predict the language pref-

erences for retrieval based on the query intent and retrieve documents accordingly

with appropriate models.
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7.2.3 Multilingual Retrieval-augmented Generation

An extension of the MLIR task is multilingual content aggregation. We have devel-

oped methods to reduce language bias and retrieve documents fairly across languages

based on their relevance to a given query. The final step to fulfill the information

needs is to summarize the multilingual ranked list into the language of the query

for users to understand. A straightforward approach is to apply techniques related

to query-based multi-document summarization. However, the information contained

in documents from different languages could be duplicated, complementary, or even

contradictory. Relevance in IR does not imply correctness, completeness, or account-

ability. A document can be very relevant and misleading to a query simultaneously.

It is important for the retrieval model to evaluate the rank of a document from more

comprehensive aspects rather than only relevance.

Moreover, with the general-purpose text generation ability from Large Language

Models (LLMs), we envision in the coming future, in most cases, the search results

will no longer be rendered to the user directly but be used as external knowledge input

along with the query for LLMs to generate a response. To support this new search

paradigm, retrieval systems need to not only identify relevant documents across differ-

ent languages but also generate comprehensive ranked lists, considering the source’s

reliability, the content’s factual accuracy, and the potential biases present in the in-

formation.
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Lewis, P., Oğuz, B., Rinott, R., Riedel, S., and Schwenk, H. (2019). Mlqa: Evaluating
cross-lingual extractive question answering. arXiv preprint arXiv:1910.07475.

Li, B. and Cheng, P. (2018). Learning neural representation for CLIR with adver-
sarial framework. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1861–1870, Brussels, Belgium. Association for
Computational Linguistics.

Li, Y., Franz, M., Sultan, M. A., Iyer, B., Lee, Y.-S., and Sil, A. (2022). Learning
cross-lingual IR from an English retriever. In Carpuat, M., de Marneffe, M.-C., and
Meza Ruiz, I. V., editors, Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 4428–4436, Seattle, United States. Association for Computational
Linguistics.
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