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ABSTRACT

EXTRACTING TOKEN-LEVEL SEMANTIC MATCHING IN
TEXT-PAIR CLASSIFICATION TASKS

APRIL 2024

YOUNGWOO KIM

B.Sc., POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

This dissertation presents approaches to obtain interpretability and extract token-level

semantics from transformer-based text-pair classification models. We focus on both token-

level task-solving and model explanation for natural language inference (NLI) and informa-

tion retrieval tasks. We hypothesize that if these models can successfully address text-pair

classification problems, they must inherently possess the capacity to solve corresponding

token-level problems to a certain degree. However, the objective is not only to transform the

text-pair classification solutions into token-level inferences that are prerequisite for these

tasks but also to explain the decision-making processes and behavior of these models.

The first half of the dissertation comprises two parts focused on deriving interpretability

from neural NLI models. The initial part proposes a sequence labeling task called classi-

fication role labeling (CRL) to represent token-level semantic understanding in NLI. The

ix



goal is to label each token in the text-pair based on their semantic alignment and whether

they contribute to contradictions. We show that such sequence labeling models can be

trained by weak-supervision from a NLI classification model. The subsequent part studies

the use of CRL for explaining contradictory claims from biomedical articles, demonstrating

the effectiveness of our novel model, PAT, on the Cond-NLI dataset.

The second half of the dissertation spans two parts targeting the ad-hoc retrieval task,

specifically on explaining the mechanism behind query-document relevance scoring func-

tions. One part investigates local alignment rationales for explaining query-document rele-

vance classification from a black-box model, proposing perturbation-based metrics to eval-

uate alignment rationale quality. In the other part, we provide global explanations for

neural ranking models, by representing their semantic matching behavior as “relevance

thesaurus” containing semantically related query-term and document-term pairs. This the-

saurus can reveal corpus-specific features and biases, supporting the utility of our expla-

nation method. Overall, this four-part dissertation introduces novel approaches to com-

plement interpretability in neural text-pair classification models, extracting token-level se-

mantics and alignment rationales without the need for additional human annotations, while

also providing insights into the models’ decision-making processes.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Text-pair classification

There are natural language processing (NLP) tasks that are categorized as text-pair

classification tasks. For example, document retrieval tasks can be considered as a query-

document relevance classification, where one input text is a query string and another input

text is a document and the probability of the relevant class is used to rank documents (Nal-

lapati, 2004).

Natural language inference (NLI) is another example (Williams et al., 2018). In NLI,

one input text is called a premise and the other is called a hypothesis. The goal is to classify

the pair into one of three classes based on whether the premise entails the hypothesis, it

contradicts the hypothesis or neither case is implied. The definitions and some examples

are in Table 1.1.

While each text-pair classification task has different definitions, they are similar in a

way that the decision should be made by checking how the meaning indicated by one text

appears in the other text. In this dissertation, we mainly focus on NLI and query-document

relevance classification, hoping that the conclusions can later be generalized into other text-

pair classification tasks, such as fact checking (Thorne et al., 2018) and semantic textual

similarity (Agirre et al., 2013).

Solutions for text-pair classification tasks have procedures that compare tokens in one

text to the tokens in the other text. Earlier solutions for text-pair classification contain pro-

cedures that check if each of the tokens in one text can be matched to some tokens in the
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Premise Label Hypothesis
The great thing is to keep calm.” Julius groaned. entailment Julius made a groaning sound.

yeah i mean just when uh the they military paid contradiction The military didn’t pay for her education.
for her education

uh-huh well I’ve enjoyed talking to you. neutral I liked talking to you about sports.

Table 1.1: Three example sentence pairs from MultiNLI dataset with the corresponding
classification labels. Entailment class indicates that the hypothesis is entailed (can be
inferred) from the premise. Contradiction class indicates that the premise and hypothesis
are contradictory and cannot be true at the same time. Neutral class indicates that the
hypothesis neither can be inferred nor contradicts the premise.

other text and build decisions based on such matches. In query-document relevance clas-

sification, the query text specifies what is required to be relevant. Approaches like BM25

or query-likelihood score each document based on the query term frequency in the docu-

ment and among other statistics. In NLI, one strategy is to build a sequence of edits that

transforms the premise text into the hypothesis text and compute scores based on the edit

sequence (MacCartney and Manning, 2007). Other strategies for both tasks also include

computing overlap between two texts, often combined with n-gram features, synonym or

ontology dictionary and vector similarity of the tokens (Malakasiotis and Androutsopou-

los, 2007). For example, in the neutral labeled example shown in Table 1.1, the phrase “I

liked talking to you” in the hypothesis can be aligned to “ I’ve enjoyed talking to you”, in

the premise, as each token in them can be paired with one another. However, the phrase

“about sports” in the hypothesis cannot be aligned to any tokens in the premise that entail

its meaning. Thus, the text pair can be classified as neutral. Overall, there exist tractable

connections between the tokens of one text to the tokens in the other that either positively

or negatively contribute to the classification decision.

In the recent deep neural network based approaches for text-pair classifications, the

matching between two texts has become implicit and intractable to pin down. Transformer

architecture (Vaswani et al., 2017) is the dominant and often the most effective method

to solve text-pair classification tasks. Attention mechanism is the key of the Transformer
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architecture, which allows vector representation for each token to be computed with other

vectors with dynamically learned direction and weights. Transformer is composed of multi-

ple Transformer blocks, and at each Transformer block, there is one vector that corresponds

to each token.

These vectors are processed to incorporate contextual information from the entire se-

quence. The mechanism responsible for this contextual integration is the self-attention

mechanism. It computes attention scores that determine the relevance of all other tokens

in the sequence for a given token, allowing each token’s representation to be dynamically

updated with information from the whole sequence. Each token’s vector representation is

combined with vectors derived from other tokens in the sequence. This combined represen-

tation is then passed through feed-forward layers and residual connections, which output

the vector representations for the corresponding tokens in the next transformer block.

A cross-encoder is one popular way of solving text-pair classification with Transformer,

in which the tokens from two texts are concatenated and fed into Transformer and token

embeddings for these tokens are summed with segment embeddings so that tokens from

different texts can be differentiated.

In cross-encoder, the vectors from each token are “mixed” with many other tokens’

vectors in multiple layers. Thus, the attribution, or the matching cannot be simply repre-

sented. In another strategy called bi-encoder, each of the two texts is encoded into a single

vector separately from the other. Then the classification decision is built based on two

vectors from the two texts (Yu et al., 2021). Again, each token’s vectors are combined by

Transformer and token-level matching is not explicitly captured.

1.1.2 Motivations

In these neural approaches, term matching and comparisons of token semantics are in-

stantiated as computations on vectors, which generally yield accurate results. However,

the underlying mechanisms of these models cannot provide explanations for how or why a
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Question: Does treatment with antihypertensives protect against cardiovascular incidents?
Claim1: A antihypertensives drug doxazosin prevents cardiovascular morbidity .
[Answer: Yes]
Claim2: A antihypertensives drug losartan increases the risk of congestive heart failure.
[Answer: No]

Table 1.2: A simplified example of contradictory claims from BioClaim dataset. The ques-
tion represents the potential information need. Two claims are showing opposite outcomes
( red ) toward the questions, while having different conditions ( yellow ).

match is determined. Although Transformer-based strategies do not require explicit model-

ing of token-level matching to solve text-pair classification tasks, the matching information

and match-attributed remain valuable for applications that build upon these tasks.

For example, search engines assist users in judging relevance on search engine result

pages by displaying matched terms in the document snippets and indicating missing query

terms if any, even if they do not explicitly model the token-level matching (Sarwar et al.,

2021). This highlighting of matched terms and identification of missing query terms pro-

vide users with valuable insights into the relevance of the search results, facilitating their

decision-making process when selecting the most appropriate document to fulfill their in-

formation needs.

Consider a case where we apply NLI to identify contradictory findings among medicine

related claims. In Table 1.2, the question represents the potential information needed and

two (simplified) claims are showing opposite results toward the question. While strictly

speaking, these two claims are not contradictory, as they discuss different medicines and

symptoms, classifying this pair as neutral and considering them completely unrelated may

not be ideal, given the context of the information needed. A practical application should

identify the contrasting aspects and differing conditions to provide a comprehensive range

of answers, acknowledging the nuanced relationship between the two claims.

Such fine-grained matching information would also be useful to apply adhoc fixes to the

neural models. For example, a dictionary of synonyms may be available, but augmenting
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them into existing neural models could be challenging or costly. Consider a scenario where

the query is “Where is CIKM 2022” and the candidate documents contain the location for

“CIKM 2022”, but only mention “The Conference on Information and Knowledge Man-

agement”, without including the abbreviation “CIKM”. In this case, post-processing can be

applied to overwrite the neural model’s decision when it fails to recognize the synonyms.

In this dissertation, our goal is to address token-level NLP tasks, such as extracting

matching information, which are closely or causally related to text-pair classification tasks.

It’s critical to highlight that we exclude the use of additional token-level annotations. In-

stead, we rely on the models or training data from text-pair classification tasks to tackle the

token-level tasks.

There are three reasons behind the choice to explain the targeted text-pair classifica-

tion model using token-level matching extracted from the model itself: faithfulness to the

model, cost-effectiveness of annotations, and ambiguity in annotation criteria.

First, if our goal is to explain the targeted text-pair classification model, it is unlikely

that manual annotations that are built independent of the target model are the best signal

to explain the targeted model. Moreover, the process of developing a system that extracts

token-level matching from text-pair tasks can provide valuable insights about the behaviors

or weaknesses of the models.

Second, text-pair level annotations are easier to collect than the token-level annotations.

In many applications, text-pair level annotations could be extracted from users’ behaviors.

For example, in search engines, relevance between query and documents can be inferred

from users’ click records (Jung et al., 2007). However, few applications give token-level

matching information. Moreover, text-pair annotations are already available in many ap-

plications and domains while token-level ones are not.

Additionally, it is common for texts to have ambiguous criteria regarding which tokens

should be included in the match. There are cases where even when a query term and a

document term contain overlapping concepts, additional context is necessary to assign a
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relevance score to the pair. There is no clear criterion whether and when to include context

tokens. Moreover, the degree of relation between terms can vary widely, demanding a

distinction between terms that are nearly synonymous and those that are only topically

related.

1.2 Contributions

We hypothesize that if neural text-pair classification models can successfully address

text-pair classification problems, they must inherently possess the capacity to solve corre-

sponding token-level problems to a certain degree. The objective of this dissertation is to

discover methodology to transform the transformer-based text-pair classification solutions

into token-level inferences that are prerequisite for the text-pair tasks.

In the first half of the dissertation (chapter 3 and chapter 4), we aim at deriving inter-

pretability from neural natural language inference (NLI) models. Specifically, beyond the

overall NLI classifications, we target identifying how each token’s role differs in contribut-

ing to NLI decisions. In these chapters, we evaluate our methods based on human-labeled

data, seeking plausible explanations.

In the second half of the dissertation (chapter 5 and chapter 6), we target the adhoc

retrieval task, specifically on explaining the mechanism behind query-document relevance

scoring functions. The goal in these chapters is to explain the given text-pair classifica-

Table 1.3: Three example sentence pairs from MNLI dataset with the corresponding classi-
fication labels (entailment, contradiction and neutral) and token-level tags : conflict (red),
match (blue) and mismatch (yellow). In each row, the text on the left corresponds to the
premise and the text on the right corresponds to the hypothesis.

Premise Label Hypothesis
The great thing is to keep calm.” Julius groaned. entailment Julius made a groaning sound.

yeah i mean just when uh the they military paid contradiction The military didn’t pay for her education.
for her education

uh-huh well I’ve enjoyed talking to you. neutral I liked talking to you about sports.
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tion model by discovering and utilizing token-level or term-level matching. The proposed

methods are evaluated based on their faithfulness to the targeted models.

1.2.1 Classification role labeling and model explanations for NLI

We consider token-level inference as an intermediate step for NLI. Most existing expla-

nations for text-classification tasks focus on identifying tokens that are considered “impor-

tant” for the given prediction, without providing a detailed understanding of their specific

roles in the classification process. In the contradiction example in Table 1.1, “paid”, “pay”,

and “didn’t” are all important tokens but they are important for different reasons. “paid”

and “pay” are important because they refer to the same concept. “didn’t” is important be-

cause it indicates the opposite outcome. These examples demonstrate the need for a more

nuanced approach to token-level explanations that can capture the different roles played by

each token in the classification process.

In chapter 3, the explanations for token-level matching, we define three labels to express

three different types of importance (examples in Table 1.3). One way to model entailment

is to consider each token in the hypothesis as a unit of information and check if that infor-

mation is entailed by the premise. Following this procedure, we can define a token-level

task that determines whether each token in the hypothesis is entailed by the premise. To

model contradiction, we can define a task that determines whether each token represents a

contradictory aspect to the other text . We name these token-level tasks classification role

labeling (CRL), as they can be used to explain and differentiate how each token contributes

to the classification.

Although CRL requires a more fine-grained explanation of token importance, exist-

ing neural network explanation methods can still be applied to CRL. These methods can

identify important tokens for each of the classification decisions (entailment, neutral, and

contradiction), which are correlated with the three CRL tags defined earlier.
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These explanation methods typically calculate importance scores of input features us-

ing one or a combination of three types of signals: (1) change in outputs with respect to

input perturbation (Ribeiro et al., 2016b), (2) gradients of the outputs with respect to in-

puts (Zeiler and Fergus, 2014; Zintgraf et al., 2017; Sundararajan et al., 2017), and (3)

activated weights in the neural network (Arras et al., 2017b). While these methods do not

incur additional annotation effort, we found that many of them are too computationally in-

efficient to be used in production deployment settings. Moreover, most methods are only

investigated in very generic settings that are not specific to a particular task or architec-

ture, and thus there should be much room to improve the accuracy by specializing on the

particular problem and models.

In the model explanation area, another option is an explanation generator, which is an-

other model that generates token-level (Lei et al., 2016) or text-format explanations (Cam-

buru et al., 2018). Explanation generators are computationally efficient as they do not

require multiple perturbations. In this study, we aim at solving CRL by building an expla-

nation generator which explains the text-pair classification model’s behaviors.

The training objective of the explanation generator is to predict the model’s output

changes in response to perturbations. Specifically, given a sentence pair, a number of to-

kens are randomly removed and the changes in the classification outcomes are measured.

Tokens that cause larger changes in the classification when removed are taken as a weak

supervision signal, and the sequence labeling model is trained to generate scores that can

predict the model’s behavior in response to perturbations.

The contributions of this work are as follows:

C1 We propose a novel weakly supervised method to train a CRL model without using

any additional human-labeled data. (section 3.3)

C2 we propose utilizing the NLI model’s hidden variables for token-level explanations

by building a multi-task learning model that simultaneously predicts both the original
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Question: Does treatment with antihypertensives protect against cardiovascular incidents?
Claim1: A antihypertensives drug doxazosin prevents cardiovascular morbidity .
[Answer: Yes]
Claim2: A antihypertensives drug losartan increases the risk of congestive heart failure.
[Answer: No]

Table 1.4: A simplified example of contradictory claims from BioClaim dataset. The ques-
tion represents the potential information need. Two claims are showing opposite outcomes
( red ) toward the questions, while having different conditions ( yellow ).

NLI classification and the token-level CRL tags, which improves the model perfor-

mance. (section 3.4)

C3 We show that our method, when tested on token-level annotations in the MultiNLI

(Williams et al., 2018) and SNLI datasets (Camburu et al., 2018), is not only more

computationally efficient than perturbation methods but also demonstrates greater

precision compared to a number of strong baselines. (section 3.4)

1.2.2 Conditional Natural Language Inference using Classification Role Labeling

In chapter 4, we further investigate the sequence tagging task, classification role label-

ing (CRL) which was introduced in chapter 3. We focus on the scenario where we want to

explain apparently contradictory claims, such as the example shown in Table 1.4, where one

claim suggests a benefit of a particular treatment for a symptom, while the other indicates

the opposite outcome. We formalize this as the task of identifying tokens that indicates

opposite outcomes and different conditions, which we name conditional natural language

inference (Cond-NLI). Cond-NLI is similar to CRL on natural language inference (NLI),

as both require identifying tokens that could cause the sentence pairs to be classified as

entailment, neutral, or contradiction.

We developed the BioClaim dataset specifically for the Cond-NLI task. In our inves-

tigation, we discovered that the perturbation based explanation methods are less effective

with the BioClaim dataset. The reason for this is twofold. Firstly, in a text pair where only a
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few tokens are responsible for a neutral classification (as in the case of MNLITag), deleting

these tokens mostly results in a decision reversal. However, in scenarios where numerous

tokens are not entailed by the premise (as in the case of BioClaim), perturbing individual

neutral tokens in the hypothesis has minimal impact on the overall output. Secondly, when

text pairs contain contradictory information, the presence of non-entailed tokens, which

might otherwise lead to a neutral classification, becomes less influential, as the existence

of both contradiction and not entailed information is considered contradiction.

This leads us to propose a new model, PAT (Partial ATtention), which can effectively

address the Cond-NLI task. The key intuition behind PAT’s effectiveness lies in its ability

to generate intermediate labels for partial observations of the text pair. Unlike typical NLI

models, PAT’s intermediate labels can reveal partially entailed tokens and the existence

of neutral tokens even when contradiction is present. By attributing decisions made at

the text-pair level to individual tokens through these intermediate labels, PAT provides a

more fine-grained understanding of the entailment relationships within the text pairs. This

enables PAT to better handle scenarios with numerous non-entailed tokens and cases where

contradictory information coexists with non-entailed tokens.

The contributions of this work are as follows:

C4 We built the BioClaim dataset, featuring challenging real-world contradictory text

pairs with the token-level entailment and contradiction classifications task (Cond-

NLI). (section 4.1)

C5 We demonstrate the limitations of existing model explanation methods in addressing

the Cond-NLI task. (section 4.3)

C6 We introduce the novel PAT model, designed to be trained using text-pair level labels

while capable of building token-level predictions. (section 4.2)
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1.2.3 Alignment rationale in query-document relevance classification

In chapter 5, we investigate the task of building alignment rationales that best explain

the given query-document relevance classifier, especially on how we can evaluate the given

alignment rationale.

There have been efforts to explain black-box models’ behavior in terms of the input

features (e.g., tokens in document ranking), either by assigning importance scores to the

features or selecting a subset of features that are important to preserve the models deci-

sions (Singh and Anand, 2018; Hase et al., 2021; Fernando et al., 2019; Kim et al., 2020).

Query: Where is SIGIR 2022
Document: SIGIR 2022 will be held in Madrid

Table 1.5: Example alignments for the query spans ‘Where is’ and ‘SIGIR 2022’.

However, we found few works that answer the alignment question: “If certain docu-

ment tokens are important for relevance to the query, which part of the query do they cor-

respond to?” Table 1.5 illustrates the goal of alignment. When exact match or soft match

based ranking models were used, the alignment between query tokens and document tokens

could be acquired with little additional effort. Such alignment information also has been

used to provide more information to users, such as summarizing and visualizing each of

query terms’ appearances in long document (Hearst, 1995; Hoeber and Yang, 2006), also

demonstrating the important of this alignment issue.

Acquiring alignment has two approaches: (1) aiming at building (ideally) ‘correct’ or

useful alignments regardless of query-document scoring model, or (2) seeking an alignment

that best explains (is faithful to) the model. We target the second approach here.

We investigate the possible uses of end-to-end input perturbation approaches, which

make no assumption about the model’s internal architecture. If the model outputs different

decisions for a perturbed instance (a small change to the inputs), we can expect that the

changed features are somehow responsible for the model decisions (Carton et al., 2020).
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To expand feature importance to alignment explanation, one can test if the importance

of some document tokens depends on the existence of certain query terms. This can be

achieved by comparing perturbation outcomes with and without a particular query term.

Unfortunately such complex perturbation is more likely to bring undesired consequences

such as making the perturbed input text ungrammatical (Hase et al., 2021) or changing its

meaning drastically such that the model’s decision changes more than we would expect

given small perturbations.

The contributions of this work are as follows:

C7 We propose perturbation-based metrics for evaluating alignment rationale in query-

document relevance (section 5.2).

C8 We investigate the behavior of the proposed metrics and demonstrate that they are

mostly not strong enough to make binary decisions on alignment quality (good or

bad), but they can be used to rank two alignment models (section 5.3).

C9 We propose that building perturbed instances that are more comparable to the in-

stance being explain, is the key to improvement of evaluation metrics (section 5.2).

We showed that a simple approach to get more comparable instances increases the

metric coverage from 13% to 68% 1 (section 5.3).

1.2.4 Global Explanation of Retrieval Models by Relevance Thesaurus

Chapter 6 shifts the focus from local to global explanation. In the previous chapters,

the matching is built on the spans of the given texts, thus dependent on the tokens in the

remaining context. In contrast, chapter 6’s matching is at the vocabulary level, where the

goal is to find the relevant query term and document term pairs that are strong indicator of

relevance independent of the contexts.

1Based on binary-necessity category.
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Fine-tuning BERT on MS MARCO (Nguyen et al., 2016a) is a very popular approach

to train retrieval models (Dai and Callan, 2019; MacAvaney et al., 2019). Given the high

accuracy of these models, we can expect that they capture semantic matches, such as a

query term “car” being matched to a document term “vehicle”. However, there is currently

no systematic method for representing and analyzing the semantic matching patterns of

these models, which can allow people to expect which terms are associated with a particular

token. Consequently, researchers face challenges in predicting when a model might fail,

such as in cases where the model incorrectly matches a query term to irrelevant document

terms.

Another potential risk associated with ranking models is unintended bias in model’s

behavior toward certain entities or groups. For example, while it is appropriate for a model

to associate the query term “car” with various car brand names (e.g., Ford, Toyota, or

Honda), it may not be desirable for the model to exhibit a strong preference for a particular

brand. Such bias could lead to the model favoring one brand over another when all other

factors are equal, potentially resulting in unfair or skewed search results.

Query Term Document Term Score
injury injure 0.26
injury wound 0.24
car vehiclesâ 0.68
car ford 0.38
car honda 0.28
cud cuda 0.50
course courseâ 0.78
course coursework 0.53
when 24th 0.33
when 2002 0.22
when 2014 0.02

Table 1.6: Example entries from our relevance thesaurus.

This chapter aims at constructing global explanations for ranking models that summa-

rize the model’s semantic matching patterns to understand the models and help identify
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Target model to be explained Explanation / Interpretable Model

Figure 1.1: Process of how relevance thesaurus is built from the proposed method. The
gray rectangles represents black-box models, while the white rectangle (BM25T) is an
interpretable model.

potential risks. Our global explanation is composed of relevant pairs of query terms and

document terms. We refer to this format of explanation as a relevance thesaurus, as illus-

trated in Table 1.6. That table indicates that if a query contains the term “injury” then it

is likely to correspond to document terms “injure,” or “wound,” with the first more likely,

allowing a retrieval’s results to be explained directly using the term pairs.

We propose a novel method to construct a relevance thesaurus (Figure 1.1), which ex-

plains the targeted ranking model’s behavior. Our method involves training a Partial Rele-

vance Model (PaRM) as an intermediate step to build a relevance thesaurus. The relevance

thesaurus is constructed by scoring candidate term pairs using the trained PaRM model. It

is evaluated extrinsically by how well it correlates with the targeted neural model’s predic-

tions when used to complement vocabulary mismatch in traditional IR systems.

Through manual inspection of the relevance thesaurus, we identify two key findings

about the behavior of neural ranking models that are trained on MS MARCO: (1) the

postfix-a finding, which reveals that the models treat the character ”a” appended to a term

as equivalent to a quotation mark due to encoding errors in the training data; (2) the car-

brand bias, which suggests that the models exhibit biases towards certain car brands when

ranking documents; (3) the temporal bias, which indicates that the models consider years

in the distant future or past to be more strongly associated with the query term “when”
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compared to the current year and its immediate vicinity. Our experiments using multiple

state-of-the-art neural information retrieval models demonstrate that such behaviors are not

only found in the cross encoder that we mainly targeted but also replicated in multiple IR

models, highlighting the potential value of our explanation method.

The contributions of this work are as follows:

C10 We propose that a relevance thesaurus can be used as a global explanation for neural

relevance models.

C11 We introduce a novel method for building a relevance thesaurus, which leverages our

novel architecture Partial Relevance Model (PaRM) as an intermediate representa-

tion.

C12 We provide qualitative insights about the unexpected behaviors of the models, high-

lighting underlying data issues and apparent data induced biases in the model.
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CHAPTER 2

RELATED WORK

The related works are grouped into three parts.

In section 2.1, we describe the background for chapter 3 and chapter 4. It covers history

of the natural language inference (NLI) task, followed by applications and explanations

for NLI. As we propose explainable NLI models in these chapters, we introduce previous

efforts on explainable (NLI) models and how our works differ and/or improve over them.

In section 2.2, we describe background for chapter 5. Here, we summarize the works

on machine learning model explanations, with focus on evaluations for explanations, which

serve as foundation for our proposed evaluation metrics.

Finally, in section 2.3, we provide background for chapter 6. We discuss global model

explanations in other machine learning tasks, and explain why they are not applicable for

explaining information retrieval tasks. Then, we contrast our task of global explanations

from existing explanations for IR models or more interpretable IR models.

2.1 Explain NLI with classification role labeling

The natural language inference (NLI) task aims to classify the logical relationship

(entailment, contradiction, or neutral) between a given premise and hypothesis pair. In

our work, we target NLI models that can be trained from the Multi-Genre NLI Corpus

(MNLI) (Williams et al., 2018). MNLI is the most frequently used NLI dataset due to its

large size (400,000 sentence pairs) and covering multiple genres.
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2.1.1 NLI Models

Adoption of an attention mechanism in neural networks has contributed to the improve-

ment of the NLI systems. One notable example is the Decomposable Attention Model,

which utilizes Long Short-Term Memory (LSTM) networks to encode input tokens and

subsequently combines the encoded representations using an attention mechanism (Parikh

et al., 2016). Compared to later models, this model features a single attention layer, which

simplifies the process of inferring alignments between the input tokens.

Since the introduction of the Transformer architecture (Vaswani et al., 2017) in 2017, it

has become the dominant architecture for Natural Language Inference (NLI) tasks. As ex-

plained earlier, the Transformer architecture consists of multiple transformer blocks, each

containing multi-head self-attention and feed-forward layers.

The use of contextualized embeddings from pre-trained language models has become

essential for NLI models (Devlin et al., 2019a; Yang et al., 2019). In recent years, advances

in NLI performance on benchmarks such as the Multi-Genre Natural Language Inference

(MNLI) dataset have been primarily driven by improvements in pre-trained language mod-

els (Raffel et al., 2019; Radford et al., 2019).

2.1.2 Explain NLI

Camburu et al. (2018) built the e-SNLI dataset on top of a well-known dataset SNLI (Bow-

man et al., 2015) by adding textual explanations for each instance (Table 2.1). It also con-

tains token-level annotations that represent the important tokens for the decision. They

reported that it was challenging to create quality explanations and evaluate generated sen-

tences, because it is not easy to come up with clear criteria to define a good explanation.

They proposed to train a neural network that generates explanation sentences. Using e-

SNLI, Thorne et al. (2019) have investigated whether the attention component of the neural

network can be used to generate token-level explanations. The results were not positive:

they showed that the explanation score derived from the attention score is less effective
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Premise: An adult dressed in black holds a stick.
Hypothesis: An adult is walking away, empty-handed.
Label: contradiction
Explanation: Holds a stick implies using hands so it is not empty-handed.
Premise: A child in a yellow plastic safety swing is laughing as a dark-haired woman
in pink and coral pants stands behind her.
Hypothesis: A young mother is playing with her daughter in a swing.
Label: neutral
Explanation: Child does not imply daughter and woman does not imply mother.
Premise: A man in an orange vest leans over a pickup truck.
Hypothesis: A man is touching a truck.
Label: entailment
Explanation: Man leans over a pickup truck implies that he is touching it.

Table 2.1: Examples from e-SNLI. Annotators were given the premise, hypothesis, and
label. They highlighted the words that they considered essential for the label and provided
the explanations (Camburu et al., 2018).

than the generic machine learning explanation method LIME (Ribeiro et al., 2016b). In

chapter 3, we show our approach is more precise than LIME and the attention component

based approach.

There is work on building alignment rationale for NLI (Jiang et al., 2021). They sug-

gested compactness, contiguity and fidelity as three important factors for good alignment

explanation. These objectives are more focused on readability and model-grounded evalu-

ations, which is different from our direction. Moreover, it is limited in differentiating the

roles of the tokens. The alignments alone do not indicate whether the paired tokens are

entailed, contradicting or neutral tokens. However, our task definition in chapter 3 requires

these to be differentiated into different tags (match, conflict and mismatch).

2.1.3 Interpretable models

Due to the limited interpretability of Transformer-based models, there were efforts to

build an NLI model which is inherently interpretable. Wu et al. (2021) proposed the Ex-

plainable Phrasal Reasoning (EPR) model. EPR builds phrase-level inferences through the

pipeline composed of three components: chunking, alignment, and classification. Chunk-
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ing is driven by manual rules based on syntactic features. The chunks are mostly com-

posed of noun-phrases and verbal-phrases, frequently excluding functional words. To

align premise chunks to hypothesis chunks, chunks are encoded by Sentence-BERT en-

coder (Reimers and Gurevych, 2019), and the most similar chunks are paired. The classi-

fication prediction involves initially constructing local decisions, which are then combined

to form the global decision (final text-pair classification). Local decisions are built on each

of the aligned chunk pairs. The local decision is combined by static formulas motivated

from fuzzy logic.

Our work in chapter 4 is influenced by the EPR model, and adopts its formulas to build

global decisions from local decisions. Our model is largely different in the chunking parts.

Our model is trained to work on variable segmentation choices, while EPR only works

in fixed segmentation based on syntactically grouped phrases. By combining different

segmentation choices, our model can build precise attributions to tokens while maintaining

higher task accuracy.

Levy et al. (2013) proposed an idea of partial textual entailment and adapted existing

textual entailment models for the tasks. This work looks on the surface similar to our work

in chapter 4 but they solve different technical challenges. First, the models they used were

not neural models and explicitly built features by comparing tokens from two texts in a

bag of word style. Second, they used a facet, which is a tuple of words, as the granularity

that the partial entailment decisions are made. Thus, our work in chapter 4 solves a new

challenge that cannot be answered by this work.

Krishna et al. (2022) proposed a ProoFVer model, which generates a sequence of infer-

ences steps which determines the classification decisions. The model takes a claim sentence

(corresponds to hypothesis) and an evidence sentence (corresponds to premise) and gen-

erates triplets where each triplet is composed of a span from the claim, a span from the

evidence and a natural logic operator. The generated evidence span is supposed to be an

aligned span for the claim span, and the natural logic operator indicates the relation be-
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tween the two spans. The training data is heuristically generated based on the sentence

level annotations. The sentences are segmented (chunking) and aligned by a neural chun-

ker (Akbik et al., 2019) and aligner (Sabet et al., 2020) which are not directly supervised

or designed for the task. Then, the appropriate natural logic operators for the given span

pairs are searched with manual rules, lexical resources such as WordNet (Miller, 1995) and

manual annotations for popular patterns and exceptional cases.

2.1.4 Neural network explanation methods

Various methods have been proposed to explain the predictions of neural networks,

each with its own advantages and limitations. Certain neural explanation methods, called

explanation generators, incorporate additional machine learning components beyond the

original models and have their own parameters to be trained (Gilpin et al., 2018). As

mentioned earlier, a number of these approaches have used human-written explanations as

supervised labels (Hendricks et al., 2016; Camburu et al., 2018; Huk Park et al., 2018).

While supervised approaches can be effective and easy to implement when the target data

is accompanied by explanations, such as textual descriptions of images (Hendricks et al.,

2016), it is less common for text data to have additional explanatory text. Furthermore,

as discussed in the introduction, the criteria for token-level rationale annotations can be

more ambiguous and costly than the text pair-level annotations. Thus, the methods to infer

token-level rationales from text-pair level signals are desirable.

Certain neural explanation methods, called explanation generators, incorporate addi-

tional machine learning components beyond the original models and have their own param-

eters to be trained (Gilpin et al., 2018). As mentioned earlier, a number of these approaches

have used human-written explanations as supervised labels (Hendricks et al., 2016; Cam-

buru et al., 2018; Huk Park et al., 2018). While supervised approaches can be effective and

easy to implement when the target data is accompanied by explanations, such as textual
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descriptions of images (Hendricks et al., 2016), it is less common for text data to have

additional explanations annotated.

In contrast to explanation generators, other neural network explanation approaches aim

to be more generic and unsupervised. These approaches can be broadly categorized into

gradient-driven methods and perturbation-based methods.

Gradient-driven methods assign an importance or salience score to the input by ex-

amining the current gradients or the currently active weights, which are mostly decided by

activation of non-linearity units. Initially, the gradient from the input to output was used

as the importance score (Simonyan et al., 2014). Later approaches used complex combina-

tions of the gradient at multiple points (Sundararajan et al., 2017). The layerwise relevance

propagation (LRP) method explains the contribution of the input tokens by recursively dis-

tributing the contribution of an upper layer’s neurons to the lower layer’s neurons based

on the weights at the particular input instance (Bach et al., 2015). This method has been

employed to explain a number of text classification problems – for example, sentiment

analysis using recurrent neural network (Arras et al., 2017b) and document classification

using convolutional neural networks (Arras et al., 2017a). It shows which input words are

important for a particular word-generation or classification decision.

One potential pitfall of gradient-driven methods is that they may not be reliable outside

the small faithful locality. Many methods only examine the gradients (or weights) at single

inputs, which makes it challenging to capture a larger view. For example, we found that

the impact of negation such as “not” is often underestimated, and yet its deletion may

change the classification decision from entailment to contradiction. Our approach and other

explanation generation approaches are more robust in handling this problem compared to

gradient-driven methods, as they are trained to generate larger locality during training.

Perturbation-based approaches change part of the input and examine the changes to

the output and the network (Zeiler and Fergus, 2014; Sundararajan et al., 2017). One easy

way to arrive at a larger view of neural network behavior is to use these methods (Du et al.,
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2018). However, a major drawback of perturbation-based approaches is computational cost.

Moreover, the effect of removing multiple tokens simultaneously might be very different

from the effect if they are removed independently. In addition to the cost of executing

exponential permutation candidates, translating the permutation behavior into a localization

decision is not trivial.

2.1.5 Novelty of our work

Our work in chapter 3 and chapter 4 aims at identifying token-level entailment or con-

tradiction information with explicit criteria for three different token-level labels.

In contrast, most of generic model explanation works focus on differentiating relative

importance between the tokens. Thus, they do not clearly differentiate roles of each token.

For example, in contradicting pair, it does not differentiate if a token is important because

it is showing contradictory aspects (e.g.,“empty” in Table 2.1), or because it is indicating

common aspects (e.g.,“hand” in Table 2.1)

Our work differs from supervised approaches in sequence tagging tasks, where a model

is trained with the token-level annotations and tested in the same distribution, because

we aim at extracting token-level information from the text-pair classification tasks. We

expect that the semantic understanding in text-pair classification tasks such as entailment

or relevance is more diverse and potentially applicable to broader applications than token-

level annotations which are only defined and collected for narrow domains and formats.

2.2 Model explanations and Alignment Rationales

Many machine learning model explanation approaches aim at assigning feature impor-

tance parts of the inputs (Simonyan et al., 2014; Ribeiro et al., 2016b; Li et al., 2016;

Sundararajan et al., 2017). In natural language processing tasks whose inputs are texts,

the term explanations or rationales are often represented as real valued scores of the input

tokens or a selected subset of the tokens (Lei et al., 2016; Li et al., 2016).
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2.2.1 Evaluating model explanations

In the model explanation literature, sufficiency and necessity metrics are often used

to measure faithfulness of explanations (DeYoung et al., 2020; Carton et al., 2020). Suf-

ficiency measures if the given explanation is sufficient to result in the original decision.

Necessity (also called comprehensiveness) measures if the explanation covers all the im-

portant evidence and is measured by removing the explanation part of the inputs and check-

ing if the model decision changes. These two metrics do not penalize rationales for being

too verbose and thus favor longer rationales. When explanation models provide real-valued

scores for input tokens, the rationales can be forced to be concise by selecting the top k% of

the tokens as the final rationales (Jiang et al., 2021), but this strategy is not applicable when

the explanation models only provide binary decisions so there is no ordering. In our work,

we propose a modification of the necessity metric to control verbosity, which is applicable

even when tokens are given only binary scores.

2.2.2 Attention-driven model explanations

Extracting an alignment rationale for natural language inference was studied by Jiang

et al. (2021). The alignment is built and evaluated based on the attention mask. Specifically,

the attention vector across two segments is removed if they are not in the alignment. There

are two notable limitations of this work. First, the method and evaluation is dependent

on the specific architecture of the model. Second, in the case of BERT-based models, the

attention flow inside the same segment and the flow to special tokens ([CLS] or [SEP]) are

always kept. Thus, the alignment could be built through these tokens even when the direct

attention vectors are dropped.

There are studies to understand the behavior of BERT- or transformer-based models

by inspecting their attention weights (Qiao et al., 2019; Zhan et al., 2020). While the

supposedly aligned tokens tend to have higher weights than the others, many of the weights

might actually not change the model decision when removed (Qiao et al., 2019). Moreover,
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there are hundreds of different attention weights between any single token pairs, and how

to combine them is yet an unsolved challenge.

2.2.3 Model explanations in information retrieval

Approaches for explaining information retrieval models can be categorized into two

groups. The first category relies on interpretable features such as exact match features (Singh

and Anand, 2018; Sen et al., 2020; Singh et al., 2021). The second category only selects

(or assigns importance to) tokens of the documents as explanation and does not build ex-

plicit alignments between each of query terms and the selected document tokens (Singh

and Anand, 2019; Verma and Ganguly, 2019; Fernando et al., 2019; Zhuang et al., 2021;

Rahimi et al., 2021). Neither category of the existing explanation models are directly appli-

cable for building relevance alignments because no notion of relations between the tokens

is considered.

2.3 Relevance thesaurus as global explanations

2.3.1 Global model explanations

Large portions of works on global explanations are for classification tasks on tabular

features (Craven and Shavlik, 1995; Boz, 2002; Guidotti et al., 2018), which are suitable

for representing numeric or categorical variables such as age or gender. These explana-

tion methods cannot be applied to explain the Transformer architecture which models the

relevance between query and document texts.

In NLP tasks, there are works on global explanations for single text classification, which

attribute output labels to some words or phrases (Rajagopal et al., 2021; Han et al., 2020).

If these methods are naively applied, they could generate explanations that indicate some

frequent terms (e.g., “about”) are globally important for relevance. Such explanations are

not meaningful for IR tasks, where document terms’ importance is highly dependent on

queries. It would make a more meaningful explanation if it indicates certain terms or
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phrases from the query are associated with specific terms or phrases that appear in the

document as our work does.

2.3.2 Neural information retrieval and explanations

Existing neural IR models (Dai and Callan, 2019; MacAvaney et al., 2019; Khattab and

Zaharia, 2020; Gao et al., 2021; Formal et al., 2021b; Nogueira et al., 2019) are not suitable

for modeling context-independent relevance, as they encode a whole sequence with a single

Transformer network, allowing attention vectors to flow between them. Thus, the effects

of the contexts cannot be isolated and it is not evident whether the contexts are necessary

for the identified semantic matching.

While some neural query expansion (Naseri et al., 2021) or document expansion models

like doc2query (Nogueira et al., 2019) could seem relevant to our work as they both relate

to term matching, the expanded terms are for the whole query or documents and cannot be

used to infer the model’s behavior in unseen texts.

2.3.3 Traditional information retrieval

Traditional information retrieval methods struggle with semantic matches, where doc-

ument terms that are not in the query are responsible for signalling relevance (Croft et al.,

2010). As the neural models are effectively handling such semantic matches, understand-

ing their semantic match mechanisms would work as a core component in explaining the

neural models.

There are works to incorporate semantic matches within the bag-of-word framework.

The translation language model for IR (Berger and Lafferty, 1999) is a promising can-

didate. This model views a query term as a translation of document terms, computing

scores for a query term based on the sum of translation probabilities from the document

terms. However, their effectiveness was somewhat limited, possibly due to reliance on term

co-occurrences statistics (Jing and Croft, 1994; Xu and Croft, 2000), or pseudo-relevance

feedback (PRF) for identifying semantically matching terms. To enhance traditional mod-
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els with recent advances, Boytsov and Kolter (2021) proposed fine-tuning BERT (Devlin

et al., 2019b) for the translation language model (Berger and Lafferty, 1999). This ap-

proach, however, is limited to the semantic matches between terms in BERT’s subword

vocabulary, and does not extend to terms formed from multiple subwords. Moreover, the

work lacks analysis or evaluation regarding the explanation perspectives, and does not pro-

vide qualitative insights from the outcomes.

2.3.4 Challenge in identifying biases in NLP models

Most works on identifying biases (Zhao et al., 2018) or ensuring model fairness across

protected attributes (Coston et al., 2019) presuppose that these attributes, like gender or

nationality, are predetermined. They are frequently analyzed through a limited set of man-

ually curated keywords (May et al., 2019). Due to these limitations, if biases exist in terms

or concepts beyond what researchers can expect, they become difficult to detect. Our work

can address these limitations by representing existing associations through a relevance the-

saurus, enabling researchers to identify if any association is inappropriate. In our work, we

did not intentionally look for biases related to known protected classes; rather, we came

across them by chance when examining a constructed relevance thesaurus (chapter 6).
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CHAPTER 3

SEQUENCE LABELING AS EXPLANATION FOR NATURAL
LANGUAGE INFERENCE

In this chapter, we introduce our work that aims at solving classification role labeling

for natural language inference (NLI). In this work, classification role labeling (CRL) is

considered as an “explanation” for natural language inference. This project was published

in the ACM Transactions on Information Systems (TOIS) with the title “Explaining Textual

Matching on Natural Language Inference” (Kim et al., 2020).

3.1 Task definition

Many efforts in explaining machine learning models in the NLP domain are focused on

selecting tokens (parts of the input) that are important for the model’s decision. Similar to

the previous efforts, we formalize a model explanation for NLI in terms of token-selection

(or token tagging). Our work is different in that we propose specific definitions for token-

level sequence labeling, which is based on ideal semantic understanding rather than the

“importance to the decision”, which is not appropriate for crowd-sourced annotations.

The original natural language inference task is a sentence pair classification problem.

Two sentences, a premise and a hypothesis, are given. The goal of the task is to classify

their relationship into either entailment, neutral, or contradiction (Bowman et al., 2015).

We define our goal as a sequence-tagging problem. To provide a clear definition for the

token-level annotation, we defined three tags, each of which indicates the role of the tokens

in the sentences with regard to the inference decision. Given a pair of input sentences, our

goal is to compute a score for each token in the sentences based on how relevant it is to

each tag: match, mismatch, or conflict.
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Match. The match tag in the hypothesis denotes a token whose meaning can be in-

ferred from the premise. A token in the premise is tagged as match if it is required to infer

the meaning that appears in the hypothesis. A sentence pair that is labeled as an entail-

ment implies that all the meanings that the tokens in the hypothesis imply can be inferred

from tokens in the premise. Thus, we expect all tokens in the hypothesis to be tagged as

match and some of the tokens in the premise—those that correspond to the tokens in the

hypothesis—to be tagged as match. As a result, many tokens are tagged as match including

ones that are trivially the same across the sentences. In the first example in Table 3.1, the

hypothesis “Julius made a groaning sound” is entailed by “Julius groaned.” Thus, these

two parts are annotated as match. The part “The great thing is to keep calm” of the premise

does not contain information that corresponds to information of the hypothesis and is not

annotated with match.

Mismatch. A token is tagged mismatch if it is in the hypothesis but cannot be inferred

from the premise in the extreme being completely unrelated. For example, in Table 3.1,

“about sports” in the third row cannot be inferred from the premise, and hence is annotated

as mismatch. A neutral relationship can be clearly explained by indicating which tokens

are considered mismatched. Mismatch is the opposite of match. In the third example

of Table 3.1, the part “I liked talking to you” of the hypothesis can be inferred from the

premise while “about sports” cannot. Thus, “about sports” is marked as mismatch.

Table 3.1: Three example sentence pairs from MNLI dataset with the corresponding classi-
fication labels (entailment, contradiction and neutral) and token-level tags : conflict (red),
match (blue) and mismatch (yellow). In each row, the text on the left corresponds to the
premise and the text on the right corresponds to the hypothesis.

Premise Label Hypothesis
The great thing is to keep calm.” Julius groaned. entailment Julius made a groaning sound.

yeah i mean just when uh the they military paid contradiction The military didn’t pay for her education.
for her education

uh-huh well I’ve enjoyed talking to you. neutral I liked talking to you about sports.
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Conflict. A token is tagged conflict if it is a critical token that renders the correspond-

ing concept untrue. We chose to apply the conflict tag only to critical tokens that produce a

contradiction, rather than tagging all the tokens of a contradictory concept. In the annota-

tion process, the annotators were instructed not to include tokens that are trivially identical

across sentences. The negations and antonym pairs that are relevant to a contradiction are

always included. In the second example of Table 3.1 “paid” of the premise and “didn’t

pay” of the hypothesis is marked as conflict.

3.2 Data collection for evaluation

We built a small dataset to evaluate the proposed token-level tagging tasks. From the

dev-match split of MNLI, we annotated 700 instances for each tag, resulting in a total of

2,100 instances. For each tag, 100 instances were used as a development set, and 600

instances were used as a test set. We call this dataset MNLITag.

3.3 Proposed model

Let f : x → zc be the original classification function implemented by the neural net-

work, where x is a sequence of token IDs that are fed to the network. Another function

g : x → yt is added to generate an explanation vector yt for a tag t, where the number of

dimensions for yt is equal to number of tokens in x. Our goal is to train g, so that the score

of yt,i (i-th element of yt) indicates how likely it is that the corresponding input token xi

should be tagged with the particular tag.

Figure 3.1 shows how the original NLI task (text-pair classification) and token-level

explanation are modeled using Transformer architecture. The motivation for this modeling

is that the vectors for each token are carrying information matching, thus could benefit by

multi-task learning.

For each sentence pair in the training data, we select a weak supervision label for each

tag and train the explanation generation with it. First, random perturbations (deleting) are
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Linear Projection

Transformer

𝑣

Cold winter winds

𝑣ଵ 𝑣ଶ

… Warm<SEP> winds<CLS>

𝑣ଷ

…
𝑣ଵସ𝑣ଵଷ𝑣ଵଶ𝑣ଵଵ𝑣ଵ𝑣ଽ

Linear

classification explanation

extend season <SEP>

Figure 3.1: The structure of our multi-task model. Thin arrows represent final outputs
for classifications and explanations. The red “Linear” in the left represents the linear-
projection layer for sentence pair-level classification, and three linear-projection layers on
the right are used to generate the explanation scores for each tags. Linear layers with the
same color share the same parameter.

applied to the sentence pair to generate several perturbed inputs. The generated inputs and

the original input are then fed into the classification network to obtain the classification

probability for the perturbed input. For each of the tags, we select the perturbation that

resulted in the most informative output changes compared to the output from the original

input. We use tokens that were modified in the select perturbation as a weak label to train

the network. Figure 3.2 shows a high-level overview of the explanation training. In this

section, we describe the details of each step of this training.

Perturbations are applied to each of input sentence pairs by the following procedures:

(1) a token index j is randomly selected to start the deletion; (2) from a geometric distri-

bution with p = 0.5, the length of the sequence to be deleted, l ∼ G(p = 0.5), is sampled;

and, (3) l tokens from location j to j + l are deleted. The tokens after the deleted tokens

are shifted forward and the end of the sequence is filled with padding tokens. Multiple

perturbed instances are generated from a single training instance in this way. Here, the
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Figure 3.2: Proposed weak-supervision strategy. A number of perturbed instances are
generated and they are fed into the classification model. The one that results in the largest
output changes is selected as the most informative instance. The model is supervised so
that the tokens that are deleted in the most informative instance would have higher scores
than the others.

tokens come from a concatenation of the premise and hypothesis, so that both the premise

and hypothesis have a chance to be perturbed.

From each input instance x (indices of the sentence pair), a set of perturbed instances

{x(1), x(2), ..., x(m)} is generated. These perturbed instances are fed into the network to

produce a corresponding classification probability (softmax) output.

Among the perturbed instances, we want to select the one that changes the output the

most in a way that we are interested in. We will call such instance as the most informative

instance. We define and measure the degree of informativeness by what we refer to as a

signal function. We expect that modeling each of the tags separately would help to represent

the different aspects of the textual understanding (match, mismatch and conflict). For each

target tag, we define a corresponding signal function SL as follows:

Smatch(x) = fe(x)

Sconflict(x) = fc(x)

Smismatch(x) = fn(x), (3.1)
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where fe, fc, and fn are softmax probability outputs for entailment, contradiction and neu-

tral, respectively.

Because long sequences of deleted tokens are likely to result in larger output changes

that are less meaningful, we penalize any perturbation with a large number of token changes

by introducing a size penalty:

D(x, x(k)) = max{0.1 · (d− 3), 0}, (3.2)

where d is the number of modified tokens between x and x(k). Thus, if two different

perturbations cause similar changes in the signal function, the shorter one would be pre-

ferred. The numbers in the penalty term were heuristically designed to match the scale of

St(x)− St(x
(k)) which is in the range [-1, 1].

Equation 3.3 shows the final informative score for each perturbed instance x(k), where

St is one of the signal functions in Equation 3.1:

It(x, x
(k)) = St(x)− St(x

(k))−D(x, x(k)). (3.3)

For each tag t, the most informative instance x̂ is selected from the perturbed instances:

x̂(t) = argmax
k∈[1,m]

It(x, x
(k)), (3.4)

where m is the number of perturbed instances. As a result, we obtain three instances,

one for each of the tags. For some input instances, it is possible that even the largest

change of the signal function (the model’s output) is very small. For example, consider the

case where a sentence pair is classified as entailment and there is very low probability for

contradiction. It is possible that any deletion does not change the contradiction probability

much. In this case, the most informative instance for conflict would not be meaningful
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enough as the magnitude of change is very small. We handle this problem by setting a

minimum threshold on the informative score, so that the instance for the particular tag

is rejected and the training is skipped when the most informative perturbation is not of

adequate quality. We selected a threshold of 0.3, because this is approximately the average

value for the probability of each label (three probabilities that total 1).

Finally, the weak-supervision signal is decided by the most informative instance x̂(t).

We take the tokens that were modified from x to x̂(t) as the weak label for the tag t. We

denote the weak label for tag t as ŷt.

Let yt be a vector representing the model output where each dimension yt,j is the score

for j-th token to be important for the tag t. The size of yt equals the number of tokens in

the input sequence. Given a weak supervision label ŷt, the cross-entropy loss for each tag

t is given as

Lt = −
∑
j

ŷ(t),j log yt,j, (3.5)

where the label ŷt,j is 1 if j-th token was modified in the perturbation and 0 otherwise. Our

final loss is sum of the loss for each tag

L =
∑
t

Lt. (3.6)

As an alternative to classical cross-entropy function, we suggest using Pearson’s corre-

lation coefficient as a loss function. The loss function that we refer to as correlation loss is

given as

Lt = −
∑

j(ŷ(t),j − ¯̂y(t))(y(t),j − ȳt)

σŷtσyt

, (3.7)
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where the label ŷt,jis 1 if j-th token was modified and -1 otherwise 1. σyt and ȳt are the

standard deviation and the mean of the values in vector yt

ȳt =

∑
j yt,j

|yt|
(3.8)

σyt =

√∑
j(yt,j − ȳt)2

|yt| − 1
. (3.9)

|yt| is the size of the explanation vector, which is equal to the maximum sequence length.

σŷt and ¯̂yt are defined similarly for the vector ŷt. We adopted this loss function as we expect

this could be more robust than cross-entropy loss with noisy signal. This correlation loss

function satisfies the conditions for an effective list-wise loss function (Xia et al., 2008).

The effect of the loss function is discussed in section 3.4.4.

3.4 Experiments

We evaluated our method and the baseline approaches by comparing them against hu-

man annotated sequence tagging. Our experiments were mainly conducted on the model

trained on the MNLI dataset (Williams et al., 2018), which we annotated based on the

definition in section 3.1. For comparison with previous work, we also conducted the ex-

periment on the e-SNLI dataset (Camburu et al., 2018). The annotation definition of the

e-SNLI is slightly different from ours, because they did not explicitly define the role of the

tokens as match, mismatch or conflict. We observed that most methods were applicable to

both the e-SNLI data and our dataset.

3.4.1 Implementation

Recent state-of-the-art models for the NLI tasks are built by fine-tuning a pre-trained

language model (Raffel et al., 2019; Liu et al., 2019). We used the pre-trained uncased

BERT model with 12 layers and fine-tuned the entire network.

1Using 1 and 0 would be effectively the same
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We first trained 2.5 epochs only for the NLI classification task. We then began training

both the classification and explanation modules. We alternately processed classification

training steps and explanation training steps. Both the classification and explanation was

trained only on the training split. The explanation training lasted for 0.5 epochs, which

is roughly 12,000 steps with a batch size of 16. For each training instance, 20 perturbed

inputs were generated, from which the most informative pair were selected. Our training

was done with single M40 GPU. The training with explanation took roughly 33 hours to be

trained. The training without explanation took 21 hours to be trained.

A parameter update was performed using the Adam optimizer with weight decay. Lin-

ear decay of the learning rate and warm-up steps were applied as they are in the original

implementation of the BERT model. For the initial learning rate we used 2 · 10−5. The

maximum sequence length was set to 300 tokens.

During the explanation training we also trained the classification module by alternating

the two tasks every step. For the explanation training, we used a smaller learning rate

than we did for the classification training (0.3 times the learning rate for the classification

training).

3.4.2 Evaluation

3.4.2.1 Metrics

The metrics we used in the evaluation were accuracy, mean average precision (MAP),

and precision at 1 (P@1). To evaluate accuracy, we tuned the cut-off threshold on the

development set to maximize accuracy. Accuracy was measured over all tokens in the test

set. MAP and P@1 do not require any cut-off threshold.

3.4.2.2 Data annotation

Conflict was labeled only for sentence pairs whose gold label was contradiction. Sim-

ilarly, match was labeled for the sentence pairs with entailment label and mismatch for

neutral label.
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Because the “entailment” label implies that the content of the hypothesis can be inferred

from premise, if the label is “entailment”, all tokens in the hypothesis should be labeled

match. Thus, we evaluated the match label only on the premise sentences. For mismatch,

we evaluated tokens only in the hypothesis.

Forty percent of the data were annotated by three annotators. When the annotators pro-

duced different annotations, the annotation that is more similar to the others was selected.

Thus if two annotators made similar decisions and the other made a different decision, one

of the two similar decisions was selected.

From the validation split of MNLI, we annotated 700 instances for each tag, resulting

in a total of 2,100 instances. For each tag, 100 instances were used as a development set,

and 600 instances were used as a test set. Kohen’s κ for token-level agreement was 0.74.

3.4.2.3 Baselines

To show the characteristics of the dataset with trivial baselines, we included random

and inverse document frequency (Idf) approaches. The random method assigns a random

score to each token. The Idf method assigns each token a score of (1/df) where df is the

number of sentences in the collection that contain the corresponding word. P@1 of the

random method is approximately the proportion of true label.

LIME (Ribeiro et al., 2016b) is a generic classifier explanation method that has been

shown to be the best-performing method in previous work on the e-SNLI dataset (Thorne

et al., 2019). Given an input, the LIME method generates numerous perturbed variations of

the input. It evaluates the model’s outputs for these variations and builds a linear classifier

that can predict the model’s output near the given point. This method requires a large

number of perturbed instances for each input. For the number of perturbed inputs, we

selected the proposed value from the implementation.2

2https://github.com/marcotcr/lime.
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We considered three gradient-driven approaches: Saliency (Simonyan et al., 2014),

Grad*Input (Shrikumar et al., 2017), and Integrated Gradient (IntGrad) (Sundararajan et al.,

2017). The Saliency method evaluates the score of each input as the absolute value of the in-

put’s gradient toward the output. The Grad*Input method obtains the score by multiplying

each input dimension by the gradient. The IntGrad method evaluates the score by numeric

integration of the gradient over the input changes from starting value to current input value.

These three methods were implemented based on the DeepExplain library (Ancona et al.,

2018).3 Modifications were applied to each method to support word embedding.

Saliency, Grad*Input, IntGrad and LIME were designed to generate scores for each

dimension of the input. As our explanation is token level, we sum the score for each

dimension of the token’s embedding. Taking a maximum was also considered, but the

results from the development data showed that the maximum is similar to or worse than the

sum.

We used two perturbation-based methods. The Sensitivity method assigns each token

a score according to the change in the output when the token is deleted (Zeiler and Fer-

gus, 2014). Sensitivity (M) deletes multiple tokens simultaneously. As it is infeasible to

try all possible deletions, this method samples the location and length of the sequence to

delete. Each token’s score is assigned by the maximum change of outputs among the at-

tempted deletions. For comparison, we allowed an equal number of runs for Sensitivity

and Sensitivity (M).

As our model uses sub-word tokens, the scores of sub-word tokens were translated into

a token-level score by taking the maximum of each token’s sub-word tokens’ scores.

3.4.3 Results

We refer to our method as SE-NLI (Self-Explaining NLI). In Tables 3.2 and 3.3, SE-

NLI (CO) and SE-NLI (CE) denote our methods with different loss functions: Pearson’s

3https://github.com/marcoancona/DeepExplain.
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correlation coefficient (Equation 3.7) and cross-entropy loss (Equation 3.5), respectively.

In the remaining parts of this chapter, SE-NLI without any notation refers to SE-NLI (CO).

3.4.3.1 Performance on original NLI task

In this subsection, we demonstrate the performance of our model on the original NLI

classification task to show that our multi-task learning for explanation approach does not

have negative effect on the performance in the original task. As discussed in the related

work (section 2.1), recent improvement in the NLI task has been mostly driven by improved

language model pre-training. Thus, newer models are not particularly different from the

perspective of the NLI task itself. Following existing work (Xin et al., 2020; Gupta and

Durrett, 2019), we include a comparison of models trained from the same BERTBASE

checkpoint. Table 3.2 shows the accuracy of the classification-only model and our multi-

task trained models on the MNLI dataset, all having the same BERTBASE as a starting

point. The models show little difference in the classification.

3.4.3.2 Comparison with alternative explanation methods

Table 3.2: Original NLI task (entailment, contradiction and neutral) accuracy of the models
trained with our explanation generator and the model that was only trained for the classi-
fication task. All three models used the same BERTbase model for parameter initialization.
The numbers are accuracy on MNLI-matched split. The accuracy difference between runs
1, 2, and 3 are not significant, showing P-values of 0.60 (1 vs 2), 0.41 (1 vs 3) and 0.19 (2
vs 3).

Model Accuracy
1 Classification only 84.4
2 SE-NLI (CO) 84.5
3 SE-NLI (CE) 84.2

Table 3.3 shows the results of the token-level explanation tagging conducted on MNLI.

In most cases, SE-NLI (CO) is the best-performing method. The cross entropy version,

SE-NLI (CE) is often comparable to the other methods, but it does not perform as well as

SE-NLI (CO). It is surprising to find that SE-NLI performs much better than Sensitivity and
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Table 3.3: Experiment on token-level tagging done on MNLI. For each column the highest
value is marked with bold text. If the highest value is significantly better than all the other
methods it is marked with ▲(p = 0.01). Average # of Runs represents the number of neural
network required to explain a single instance.

Conflict Match Mismatch Avg
Method P@1 MAP Acc P@1 MAP Acc P@1 MAP Acc #Runs
Random 0.289 0.431 0.762 0.593 0.673 0.509 0.537 0.623 0.519 -

Idf 0.364 0.504 0.762 0.703 0.710 0.508 0.478 0.609 0.517 -
Saliency 0.705 0.733 0.762 0.813 0.793 0.524 0.798 0.761 0.530 1

Grad*Input 0.426 0.486 0.761 0.737 0.703 0.507 0.598 0.639 0.523 1
IntGrad 0.559 0.582 0.786 0.868 0.744 0.506 0.652 0.689 0.539 300
LIME 0.637 0.618 0.799 0.905 0.777 0.597 0.735 0.731 0.601 5,000

Sensitivity 0.601 0.598 0.780 0.950 0.795 0.590 0.653 0.674 0.542 39.8
Sensitivity (M) 0.398 0.520 0.762 0.658 0.728 0.508 0.723 0.764 0.523 39.8
SE-NLI (CO) 0.750▲ 0.723 0.800 0.965 0.903▲ 0.760▲ 0.817 0.830▲ 0.714▲ 1
SE-NLI (CE) 0.551 0.599 0.783 0.932 0.874 0.739 0.803 0.803 0.657 1

Table 3.4: Comparison of our method with the reported best methods on e-SNLI dataset.
For Thresholded Attention and LIME, the numbers are as presented in the previous
work (Thorne et al., 2019). Our own experiments on LIME on BERT based model showed
similar numbers to the previous work on LIME. For the comparison we used the same met-
ric as the previous work.

Premise Hypothesis
P R F1 P R F1

Thresholded Attention 0.192 0.262 0.222 0.534 0.630 0.578
LIME (LSTM+GloVe based) 0.656 0.483 0.537 0.570 0.669 0.616
LIME (BERT based) 0.376 1.000 0.547 0.460 0.834 0.593
SE-NLI 0.525 0.726 0.609 0.492 1.000 0.660

Sensitivity (seq), because SE-NLI was trained on signals that are similar to those methods.

Note that none of the methods were supervised with the explanation annotation. Each tag

shows different levels of difficulty mainly due to the different number of positive labels in a

single sentence pair. Match has the most positive tokens, which resulted in P@1 and MAP

being higher than for the other two tags. Conflict is the most difficult of all tags.

Among the other methods, Saliency, Sensitivity, and LIME tend to perform better than

the other baselines, but none of them performs exceptionally. It is noteworthy that the
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Saliency method is among the highest performing methods; it has the simplest implemen-

tation and the lowest computational cost.

Comparison with the previous work (Thorne et al., 2019) on the e-SNLI dataset is

shown in Table 3.4. The Thresholded Attention method uses attention weights to gener-

ate an explanation. We thresholded all the models to maximize the F1 score. Thus, the

differences of precision and recall are the results of threshold selection. The scores for

Thresholded Attention are from the model built using LSTM and GloVe embeddings. As

this model did not benefit from pre-trained contextualized embeddings, such as BERT, it is

not directly comparable to SE-NLI. Instead, LIME could be a baseline for the comparison,

as our implementation of LIME on BERT showed similar results to the LIME on an LSTM

and GloVe based model. On the e-SNLI dataset, SE-NLI out-performed the LIME method

by F1. We would not expect Thresholded Attention to be better than SE-NLI, considering

that many studies claimed that attention weight alone is insufficient as an explanation (Jain

and Wallace, 2019).

3.4.3.3 Computational requirements

Table 3.3 shows on the right the average number of neural network runs required for

each method. Saliency and Grad*Input need to compute one forward run and one back-

ward run (gradients to input) to compute the token-level scores. The IntGrad method uses

numeric integration over the multiple points of gradients and outputs, and so it requires a

large number of computations: the default parameter from the implementation is 300. The

LIME method requires many outputs of perturbed inputs to build a linear classifier: 5,000

is also from the default parameter of the implementation. The Sensitivity method deletes

each token in the input one by one, and 39.8 is the average number of tokens in the evalu-

ation data. We did not count forward runs and backward runs as separate runs if they used

the same input. Saliency, Grad*Input, and IntGrad require both forward runs and backward

runs; the other methods use only forward runs. Along with two other methods, SE-NLI has
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the lowest computational requirements, requiring only a single run to generate an explana-

tion. If we assume that computing both forward runs and backward runs is more expensive

than only computing forward runs, SE-NLI has the lowest computational requirement of

all the methods during the prediction time.

Compared to the other methods, SE-NLI requires additional computation during train-

ing. However, the additional computational cost are of reasonable amount. In our imple-

mentation, we trained the explanation generator for only 0.5 epochs, whereas the whole

training procedure for NLI lasted over 3 epochs.

SE-NLI requires additional computation to get outputs from a number of perturbations.

However, these additional computations are still affordable, because forward runs for per-

turbations are much faster than back-propagation and parameter updates.

3.4.3.4 Effect of loss functions

It is notable that the model trained with cross-entropy loss (SE-NLI (CE)) dramatically

fails on conflict tags. In the early stage of our experiment, we observed that using the cross-

entropy converges slower than the correlation loss. The difference in the final accuracy

(precision) between cross-entropy loss and correlation loss was not as significant when we

used a much larger learning rate without decaying. However, that configuration had an

observable negative effect on the original classification task.

The motivations of using the correlation loss was that cross-entropy loss would penalize

the predictions (location in the sequence) that are not in the weak label (most informative

instances) more harshly than correlation loss does. However, cross-entropy loss exhibits

better accuracy, suggesting that correlation loss is better for ranking metrics.

3.4.4 Analysis

3.4.4.1 Fidelity

We evaluated the fidelity of our explanation with a deletion experiment, which is com-

monly used in attribution analysis papers (Arras et al., 2017a). We selected 2,000 sentence
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pairs whose gold labels were contradiction. We deleted tokens in decreasing order of con-

flict tag scores and measured how much the average accuracy changed. Figure 3.3 shows

that SE-NLI is good at predicting the tokens that will make the system’s accuracy plummet

much faster when deleted.
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Figure 3.3: Sentence classification accuracy changes as tokens are deleted in the order of
decreasing scores of explanation prediction. Rapid accuracy drops are considered evidence
of a good explanation (Arras et al., 2017a).

3.4.4.2 Multi-task learning

It is unclear whether NLI knowledge is actually needed for the token-tagging task. To

investigate this question, we trained the explanation generator in a separate network. For

training data, we recorded weak-supervision input from the training of SE-NLI and applied

it to the target network. We tested two cases: in one, the model was initialized with pre-

trained BERT (BERT start), whereas in the other, the parameters were randomly initialized

(Cold start). Table 3.5 shows the results of alternative models. The BERT start model

shows comparable performance for the match tag, but it does not reach the performance of

the original model for the other two tags. Thus, we conclude that there is meaningful gain

in using multi-task learning for explanation generator.

Table 3.6 shows a case that highlights two models with different levels of language un-

derstanding. Although the word “camping” does not carry conflicting meaning, the model
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Table 3.5: Effect of multi-task learning. MTL with NLI is the same as the model SE-NLI
(CO) in Table 3.3. BERT start and cold start were trained using the same supervision as the
training of SE-NLI but they were trained on vanilla BERT or a random initialization rather
than on an NLI-trained model.

Conflict Match Mismatch
Model P@1 MAP Acc P@1 MAP Acc P@1 MAP Acc

MTL with NLI 0.750 0.723 0.800 0.965 0.903 0.760 0.817 0.830 0.714
BERT start 0.625 0.640 0.798 0.965 0.890 0.754 0.783 0.791 0.688
Cold start 0.484 0.544 0.775 0.700 0.711 0.584 0.537 0.628 0.523

Model Sentences

MTL with NLI P: I don’ t know um do you do a lot of camping
H: I know exactly.

BERT start P: I don’ t know um do you do a lot of camping
H: I know exactly.

Table 3.6: Comparison of conflict prediction of MTL model (MTL with NLI) and baseline
model (BERT start). P stands for premise and H stands for hypothesis.

without NLI knowledge (BERT start) assigns it a high score. Moreover, this model assigns

a lower score to the token “know” in the hypothesis than it does to the “know” token in the

premise.

3.4.4.3 Hyper-parameters

In this subsection, we demonstrate the change in the model’s performance as the hyper-

parameter values changes.

When the tokens in the inputs are deleted for perturbations, the number of deleted to-

kens for each perturbation is sampled from a geometric distribution. We found that deleting

a flexible number of tokens is superior to deleting only one token. Figure 3.4 shows that

the MAP changes as this parameter changes. The score decreases if too many tokens (0.9)

or too few tokens are deleted. The value of p being 0 implies that always single token is

deleted, and, in this setting, MAP score for the match tag drops. We expect that the score
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drop is much larger on the match tag because it requires that a greater number of tokens

be tagged. Specifically, for the match tag, 63% of the tokens in a sentence pair are tagged,

whereas for conflict, only 30% are tagged. We expect that only deleting a single token

causes the model to generate only a few “most important” tokens, which are insufficient to

select 60% of tokens for the match tag.

0 0.2 0.4 0.6 0.8

0.5

0.7

0.9

1

p : parameter for geometric distribution

M
A

P

conflict
mismatch

match

Figure 3.4: Changes in MAP as the parameter p of geometric distribution changes, which
decides the length of deleted sequence. Larger p values would result in a longer sequence
being deleted.

Another hyper-parameter is the number of perturbations generated when selecting the

most informative instance. For the numbers reported above, our method was trained by

generating 20 perturbed inputs for each instance. If only a small number of perturbations

are considered, even the most informative instance could result in a small difference in

outputs. We used the strategy of rejecting the instance and skipping the training when

the most informative score is below the threshold (Equation 3.3). This strategy helps the

training succeed even when we use small numbers of perturbations, as fewer perturbations

lead to more instances having low informative scores. Figure 3.5 shows the MAP scores

for the conflict tag as the number of perturbations changes. As expected, if the number of

perturbations is fewer than five, the accuracy is reduced, and the difference increases when

no threshold is applied.
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Figure 3.5: Changes in MAP for the conflict tag in number of perturbations per step
changes.

3.4.4.4 Qualitative analysis

We examined the proposed method’s actual output to understand the model’s behavior.

We considered 18 instances. The NLI task has three labels, so the confusion matrix for

the prediction has 3× 3 = 9 entries. Two examples are presented for each of nine entries.

We list the first appearing instances in the dataset that matches the entries of the confusion

matrix. All the instances were from the validation (matched) split. Tables 3.7, 3.8 and 3.9

each present six examples. Table 3.7 contains examples whose gold label is “contradic-

tion”, Table 3.8 contains examples for “entailment” and Table 3.9 contains examples for

“neutral”.

Although each of three tags could show complementary information, it is difficult to

list all three scores for all token in a simple format. Thus, for each example, we presented

the single tag that is most relevant to the model’s prediction. Match (blue) tag scores are

displayed for entailment, conflict (red) for contradiction and mismatch (green) for neutral.

Scores are linearly normalized for presentation by color. As there are negative scores, the

tokens with white backgrounds could have negative scores.
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In the first example of Table 3.7, the model predicted the label to be entailment, and the

gold label is entailment. The token “all” in the hypothesis is not considered to be “match”.

We can at least expect that the model did not consider “all” to match any of the tokens in

the premise, but simply treated it as unimportant token. In the third example of Table 3.7,

the model assigns a high score to the token “long”. We can expect that the model failed to

infer that this expression is contradictory to “has never really let”.

Similarly, in the third example of Table 3.8, the model assigns a high mismatch score to

the token “cold,” implying that it concluded that this token contains information that cannot

be inferred from the premise.

3.5 Conclusion

In this chapter, we investigated an approach to generate explanations for NLI.

1. We defined token tags that show the role of the token in three classification decisions

(entailment, neutral and mismatch).

2. We described a new weak-supervision training method for an explanation generator.

3. We proposed a neural model that contains both an explanation-generating function

and a sentence classification function in a shared network.

4. We showed that our proposed model outperforms strong baselines, while our model

has the least computational cost of those considered.

The proposed method exhibits certain limitations that suggest potential areas for future

work.

Since the weak supervision is driven from perturbation, it inevitably inherits the limi-

tations of perturbation-based explanations. For example, some perturbations could largely

change the interpretation of the texts by removing contexts and would result in unreason-

able explanations. MNLI is more robust to perturbations as it contains many informal and
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Prediction
(Label)

Sentences

entailment
(contradiction)

P: The most important directions are simply up and up
leads eventually to the cathedral and
fortress commanding the hilltop, and down inevitably
leads to one of three gates through the wall to the new town.
H: Go downwards to one of the gates, all
of which will lead you into the cathedral.

entailment
(contradiction)

P: But uh these guys were actually on the road
uh two thousand miles from from home when they had to file their
uh their final exams and send them in
H: These men filed their midterm exams from home.

neutral
(contradiction)

P: What’ s truly striking, though, is that Jobs has never really let
this idea go.
H: Jobs never held onto an idea for long.

neutral
(contradiction)

P:
Even if you’ re the kind of traveler who likes to improvise and be
adventurous, don’ t turn your nose up at the tourist offices.
H: There’ s nothing worth seeing in the tourist offices.

contradiction

P: This site includes a list of
all award winners and a searchable database
of Government Executive articles.
H: The Government Executive articles housed on
the website are not able to be searched.

contradiction

P: Yeah i i think my favorite restaurant is always been the
one closest you know the closest as long as it’ s it
meets the minimum criteria you know of good food
H: My favorite restaurants are always at least a hundred miles
away from my house.

Table 3.7: Our model’s explanation score output for examples whose gold labels are con-
tradiction. Different tags are shown depending on the model’s actual prediction. If the
model’s prediction is entailment, the scores for the match tag are highlighted blue. For neu-
tral predictions, the mismatch scores are highlighted green. For contradiction predictions,
the conflict scores are highlighted red. P stands for premise, and H stands for hypothesis.
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Prediction
(Label)

Sentences

entailment

P: Uh i
don’ t know i i have mixed emotions about him uh sometimes
i like him but at the same times i love to see somebody beat him

H: I like him for the
most part, but would still enjoy seeing someone beat him.

entailment P: You and your friends are not welcome here, said severn.
H: Severn said the people were not welcome there.

neutral
(entailment)

P: I’ m not sure what the overnight low was
H: I don’ t know how cold it got last night.

neutral
(entailment)

P:
Mortifyingly enough, it is all the difficulty, the laziness, the pathetic
formlessness in youth, the round peg
in the square hole, the whatever do you want?

H: Many youth are lazy.
contradiction
(entailment)

P: And uh as a matter of fact he’ s a draft dodger
H: They dodged the draft, i’ ll have you know.

contradiction
(entailment)

P: I’ m kind of familiar with the weather out that way in west
Texas but not in not in lewisville

H: I do not know the weather conditions in lewisville.

Table 3.8: Our model’s explanation score output for examples whose gold labels are entail-
ment. Different tags are shown depending on the model’s actual prediction. If the model’s
prediction is entailment, the scores for the match tag are highlighted blue. For neutral
predictions, the mismatch scores are highlighted green. For contradiction predictions, the
conflict scores are highlighted red. P stands for premise, and H stands for hypothesis.
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Prediction
(Label)

Sentences

entailment
(neutral)

P: Tuppence rose.
H: Tuppence floated into the air.

entailment
(neutral)

P: What changed?
H: What was unique?

neutral P: The new rights are nice enough
H: Everyone really likes the newest benefits

neutral

P: Calcutta seems to be the only other production center having any
pretensions to artistic creativity at all, but ironically you’ re actually more
likely to see
the works of satyajit Ray or mrinal Sen shown in Europe or
North America than in India itself.

H: Most of
mrinal Sen’ s work can be found in European collections.

contradiction
(neutral)

P: Um- hum um- hum yeah well uh i can see you know
it’ s it’ s it ’ s it’ s kind of funny because we it seems
like we loan money you know
we money with strings attached and if the Government
changes and the country that we loan the money to um i can
see why the might have a different attitude towards paying it back
it’ s a lot us that you know we don’ t really loan money to
to countries we loan money to governments and it’ s the

H: We don’ t loan a lot of money.

contradiction
(neutral)

P: I’ m not opposed to it but when its when the time is
right it will probably just kind of happen you know

H: I cannot wait for it to happen.

Table 3.9: Our model’s explanation score output for examples whose gold labels are neu-
tral. Different tags are shown depending on the model’s actual prediction. If the model’s
prediction is entailment, the scores for the match tag are highlighted blue. For neutral
predictions, the mismatch scores are highlighted green. For contradiction predictions, the
conflict scores are highlighted red. P stands for premise, and H stands for hypothesis.
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ungrammatical texts. In a task where being ungrammatical affects a model decision, it may

be more problematic. In chapter 4, we will propose a method which better handles this

limitation. chapter 5 will also illustrates such limitations of perturbations.

50



CHAPTER 4

CONDITIONAL NATURAL LANGUAGE INFERENCE USING
CLASSIFICATION ROLE LABELING

In this chapter, we further investigate the sequence tagging task, classification role la-

beling (CRL) which was introduced in chapter 3. We target the scenario where we want to

explain apparently contradictory claims and we formalize it as the task of identifying tokens

that indicates opposite outcomes and different conditions, which we name Conditional-NLI

(Cond-NLI). Cond-NLI is similar to CRL on Natural Language Inference (NLI), as both

requires identifying tokens that could cause the sentence pairs to be classified as entailment,

neutral or contradiction. We observed that existing perturbation-based CRL methods suffer

in this task, which lead us to propose a new model. This part is published in the Findings of

ACL: EMNLP 2023, with the title “Conditional Natural Language Inference” (Kim et al.,

2023).

The Cond-NLI extends traditional Natural Language Inference (NLI) to better capture a

full spectrum of information in textual relationships. Traditional NLI involves determining

whether a given premise entails, contradicts, or remains neutral to a hypothesis, typically

through a three-way classification model.

The need for Cond-NLI becomes evident when we consider real-world applications,

particularly in the biomedical domain. To illustrate, Table 4.1 presents two claims from

biomedical articles (Dahlöf et al., 2002) and (Matsui et al., 2008), included in the Poten-

tially Contradictory Claims (PCC) corpus (Alamri and Stevenson, 2016). At first glance,

these claims appear contradictory, but a closer look will show that they address different

conditions and treatments. Therefore, they should not be classified as contradiction but
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Question: In patients with advanced diabetes, does treatment with antihyperten-
sives improve renal function or protect against cardiovascular incidents?
Claim1: Interpretation Losartan prevents more cardiovascular morbidity and death

than atenolol for a similar reduction in blood pressure and is better tolerated. [Ans: Yes]
Claim2: Although a bedtime dose of doxazosin can significantly lower the blood
pressure, it can also increase left ventricular diameter, thus increasing the risk of

congestive heart failure. [Ans: No]

Table 4.1: An example from the BioClaim dataset. Tokens in red indicate opposite out-
comes (contradiction), and yellow ones indicate different conditions (neutral).

neutral in the traditional NLI framework. However, this classification poses a significant

challenge. Labeling such claims as neutral can obscure the nuanced differences between

truly unrelated claims and those like our biomedical examples, which are related but not

contradictory due to specific contextual factors. Thus, the Cond-NLI task aims to refine

the understanding of these relationships, moving beyond the limitations of traditional NLI.

This refinement is crucial for efficiently mining large sets of neutral-labeled claims, allow-

ing for a more comprehensive and nuanced understanding of a given question or topic.

We develop a modeling framework to capture the relationship between a pair of sen-

tences that provides different answers under diverse conditions. Such sentence pairs are

henceforth referred to as conditionally-compatible, since none of the entailment, contra-

diction, or neutral classes of NLI precisely describes their relationship.

Cond-NLI includes two token-level tasks – one is to identify contradictory tokens that

embody contradictory aspects and the second is to identify neutral tokens that indicate

conditions that are not entailed by the other sentence. The focus of this study is to determine

different conditions in a pair of conditionally-compatible sentences. For the example pair

in Table 4.1, the segments highlighted in yellow represent the condition tokens. Contrary

to NLI, where an ordering is specified between paired sentences via the roles of premise

and hypothesis, paired sentences in Cond-NLI do not require such an order because the

contradiction holds in both directions.
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Automatic identification of different conditions in conditionally-compatible sentence

pairs allows us to summarize and provide a full spectrum of answers in a form where users

are not overloaded with excessive information. This is of particular practical importance

as it has shown that there are usually multiple answers to a user’s question in different

domains, such as biomedical (Alamri and Stevenson, 2016), e-commerce (Santos et al.,

2011), and factoid question-answering (Min et al., 2020), where the difference between

answers/opinions is their provided conditions.

We propose Partial-ATtention model, PAT, a simple yet effective model for natural

language inference that can address the Cond-NLI task. PAT predicts an NLI label for

a sentence pair from the intermediate labels for their partitions. The intermediate labels

for partitions of sentences can be subsequently used to attribute these labels into the token-

level.

The NLI token-level attributions align closely with the objective of Cond-NLI . Differ-

ent conditions in a claim pair would cause an NLI model to predict the pair to be neutral.

Thus, identifying the tokens responsible for triggering neutral labels could serve as a tech-

nique to detect different condition tokens in Cond-NLI. Similarly, contradictory tokens of

Cond-NLI can be attained from attributing contradiction label in NLI. Finally, PAT effec-

tively solves Cond-NLI through training with sentence-level NLI data, without requiring

task-specific token-level annotations.

To evaluate different models for Cond-NLI, we build (and make publicly available) the

BioClaim dataset, an extension of an existing corpus initially built to assist systematic re-

views (Alamri and Stevenson, 2016). The BioClaim dataset provides a challenging bench-

mark for the NLI models. In contrast to the SciEntsBank dataset (Dzikovska et al., 2013),

which lacks contradictory sentence pairs, BioClaim includes conditionally-compatible sen-

tence pairs. Such pairs require the identification of neutral tokens in the presence of con-

tradictory tokens. Compared to other token-level explanation datasets such as e-SNLI and

MNLITag (Camburu et al., 2018; Kim et al., 2020), which are built on NLI corpora (Bow-
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man et al., 2015; Williams et al., 2018), BioClaim has longer hypothesis sentences. This

characteristic introduces additional complexity in the selection of non-entailed tokens.

Perturbation-based methods (Ribeiro et al., 2016b; Kim et al., 2020) have shown to be

effective in identifying tokens that contribute to contradiction or neutral labels when eval-

uated on e-SNLI (Camburu et al., 2018) or MNLITag (Kim et al., 2020). However, we

show that these perturbation-based explanation models face challenges in accurately iden-

tifying condition tokens when hypothesis sentences are long and contain a large number of

non-entailed tokens (conditions in Cond-NLI).

Extensive experiments on the BioClaim and SciEntsBank (Dzikovska et al., 2013)

datasets show that our PAT significantly outperforms strong and state-of-the-art baseline

models. Against IntructGPT (Ouyang et al., 2022) and ChatGPT (OpenAI, 2022), PAT

shows better performance on the SciEntsBank dataset and comparable performance on the

BioClaim dataset, while PAT has a significantly smaller number of parameters. While our

PAT model slightly underperforms the cross-encoder BERT model on the original NLI task,

its enhanced interpretability enables effective fine-grained token-level inference required

for Cond-NLI.

4.1 Cond-NLI task and datasets

4.1.1 Task definition

Our Conditional Natural Language Inference (Cond-NLI) is formally defined as a token-

level classification task, aligning with the definition of the existing task of partial entail-

ment (Levy et al., 2013). Given a pair of claims (p, h) and a span s from h, the goal is to

classify s as either neutral or contradictory to p. Note that, neutral tokens are considered

equivalent to condition tokens.
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4.1.2 BioClaim

To evaluate our model, we built the BioClaim dataset by adding token-level annota-

tions to an existing corpus of potentially contradictory claims (PCC) (Alamri and Steven-

son, 2016). PCC consists of 24 closed-form research questions and a total of 259 claims

relevant to the questions. The claims are aligned with the relevant questions and are also

annotated with their answer (Yes or No) to the relevant questions. Claim pairs relevant to

the same question with different answers to the question are potentially contradictory or

conditionally-compatible.

From 24 question groups, we selected pairs with opposite answers (Yes-No). Since each

group has different numbers of Yes or No labeled claims, the combinations of opposite-

answer pairs range from 3 to several hundred. We limit the maximum number of pairs

from each group to 20, prioritizing those with greater term overlap when sampling.

Annotators were given a sampled claim pair and asked to annotate tokens that indicate

opposite outcomes (corresponding to the contradiction label) and tokens that indicate dif-

ferent conditions in the two claims (corresponding to the neutral label). While NLI has

three classes, we only annotated tokens that are related to contradiction and neutral, as the

entailment tokens are expected to be the remaining tokens that are not contradiction nor

neutral.

We employed nursing college students as annotators. The resulting dataset consists of

14,915 annotated tokens, including 1,862 contradiction tokens and 6,145 neutral tokens,

all of which are derived from 285 claim pairs. Using Cohen’s Kappa (Cohen, 1960), we

observed a moderate agreement score of 0.46. Out of all the claim pairs, 195 received

multiple annotations; we randomly selected two annotations from these pairs to measure

agreement.

In the evaluation of Cond-NLI using BioClaim, each claim pair generates multiple

Cond-NLI problems. This occurs for every token in the claim pair (tokenized by spaces)

and for each token-level class, namely neutral and contradiction.
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4.1.3 SciEntsBank

We also used SciEntsBank (Dzikovska et al., 2012), a dataset with fine-grained entail-

ment annotations, for our evaluation due to its task similarity with neutral token classifica-

tion in Cond-NLI. SciEntsBank was built to assess student answers, and formatted as an

entailment task by taking a student answer as a premise and a reference answer as hypoth-

esis. It annotated if a facet of the hypothesis is entailed by the premise, where a facet is

a tuples consisting of two words. Following a data filtering process similar to one used

in SemEval-2013 (Dzikovska et al., 2013), the test split contained 9,974 ‘Expressed’ and

10,516 ‘Unaddressed’ facet-level annotations.

4.2 Partial-Attention NLI Model

The typical effective approach for text-pair classification, such as the NLI task, using

Transformer-based language models such as BERT (Devlin et al., 2019a), is by concate-

nating the text pair as input, which we refer to as full cross-encoder BERT. Specifically,

cross-encoder BERT takes the concatenation of premise p and hypothesis h, denoted by

p ◦ h, taking the [CLS] token vector as sentence representation, and outputs classification

probability y as:

y = f(p ◦ h). (4.1)

Output y in the NLI task is a 3-dimensional vector representing the probabilities of the

entailment, neutral, and contradiction classes.

We propose the Partial-ATtention model, PAT, that predicts the NLI label for p and h

based on two intermediate NLI labels for two subsequences of h. Specifically, the hypoth-

esis h is partitioned into two subsequences h1 and h2. Premise p is separately concatenated

with h1 and h2 and fed into the encoder f ′, which outputs intermediate predictions ρ1 and

ρ2, respectively. Each intermediate output is a probability distribution over three classes.
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ρ1

BERT

p h1

ρ2

BERT

p h2

Gross national saving has increased over the past 5 years.

Gross national saving [MASK] this year.

was highest

Agg

y

Figure 4.1: The architecture of proposed PAT model. p represents the tokens of the premise.
h1 and h2 are subsets of hypothesis tokens. Agg combines two intermediate output ρ1 and
ρ2 as in Eq. 4.5.

The intermediate NLI labels are then aggregated to obtain the final NLI label for the pair p

and h:

g(p, h) = Agg(ρ1, ρ2) (4.2)

ρ1 = f ′(p ◦ h1), ρ2 = f ′(p ◦ h2), (4.3)

where f ′ has the same architecture as the function f in Eq. 4.1, but is trained to be robust

to partial text segments. The function Agg(.) combines the intermediate outputs to predict

the final NLI label. Figure 4.1 shows the PAT architecture.

Partitioning hypothesis. For training, h is partitioned by randomly selecting two in-

dices is and ie, where is ≤ ie. h1 is built from tokens is to ie of h. h2 is built by concate-

nating two segments of h with a [MASK] token between them: token 1 to is − 1 and token

ie + 1 to the last token of h.

Combining intermediate decisions. The expected logical behavior of the aggregation

function, when each intermediate decision is discrete, is shown in Table 4.2. For example,

when both intermediate decisions, ρ1 and ρ2, are entailment (the probabilities for entailment

are close to 1), the final decision y should be entailment (entailment probability is close to
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ρ1
Entailment Neutral Contradict

ρ2

Entailment Entailment Neutral Contradict
Neutral Neutral Neutral Contradict

Contradict Contradict Contradict Contradict

Table 4.2: Logical behavior for combining the intermediate NLI decisions. Gray cells show
the final NLI label.

1). If one of the two intermediate decisions, for instance ρ1, is neutral (contradiction) while

the other is entailment, then the combined decision inherits the label of ρ1. If one is neutral

and the other is contradiction, the final decision should be contradiction. This is similar to

the methods proposed by Wu et al. (2021) and Stacey et al. (2022), which are motivated by

fuzzy logic.

To implement this logical behavior, we first model Table 4.2 with an integer matrix

M =


0 1 2

1 1 2

2 2 2

 , (4.4)

where entailment, neutral and contradiction are represented as 0, 1 and 2, respectively.

Based on this matrix, we then build a one-hot representation T . T is a rank 3 tensor where

Tijk = 1 if Mij = k and Tijk = 0 otherwise. The final NLI label y is obtained by the

matrix multiplication:

Agg(ρ1, ρ2) = ρT1 · T · ρ2. (4.5)

Cond-NLI. Once the PAT model is trained, the intermediate decision predictor f ′ can

be used to predict labels for any arbitrary subsequence s within a hypothesis, as it would

treat p ◦ s similarly to either p ◦ h1 or p ◦ h2.

While our goal is to predict a label for an individual token of h, only feeding one token

to the model is not ideal due to lack of contextual information. Instead, we consider longer
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MultiNLI SNLI SciTail
Cross Encoder 0.829 0.887 0.925
PAT 0.793 0.870 0.889
+ fuzzy logic 0.763 0.844 0.860
+ four segments 0.744 0.831 0.818

Table 4.3: Classification accuracy of the cross-encoder baseline, proposed PAT, and alter-
native architectures (ablation study) for sentence-pair NLI.

spans that contain the token in h. The tokens’ final label is determined by combining the

labels of these spans.

Specifically, we used sliding windows of size 1, 3 and 6 tokens with a stride of 1. Let

Si denote the set of subsequences that contain the i-th token of h. The probability vector ci

indicating three NLI classes of i-th token of h with respect to p is predicted as:

ci =
1

|Si|
∑
s∈Si

f ′(p ◦ s), (4.6)

where f ′(p ◦ s) is a probability vector of three classes from the intermediate predictions of

PAT.

4.3 Experiments

Experimental Settings. Both the full cross-encoder NLI (Eq. 4.1) and the PAT models

are trained by fine-tuning the BERT-base model (Devlin et al., 2019a) on the MultiNLI

dataset (Williams et al., 2018) for one epoch, as more epochs are expected to result in over-

fitting and lower performance on the BioClaim dataset. For perturbations and token-level

enumerations, sentences are tokenized by spaces instead of BERT’s subword tokenizer.
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4.3.1 NLI sentence-pair classification

We compare the accuracy of the full cross-encoder BERT and PAT for the original NLI

task over three datasets MultiNLI, SNLI (Bowman et al., 2015), and SciTail (Khot et al.,

2018). Both models are separately trained and tested on each of the datasets.

Table 4.3 summarizes the accuracy of the PAT and the full cross-encoder models. PAT

shows 2% to 4% lower accuracy than the full cross-encoder model, however intermediate

decisions enhance the interpretability of its predicted NLI class.

We also used the accuracy of the NLI task for an ablation study to compare different

design aspects of our PAT model, as a higher NLI accuracy is likely to result in good per-

formance for Cond-NLI under similar data distributions. Table 4.3 includes the accuracy of

ablated versions of the PAT model. The “+ fuzzy logic” model replaces the our aggregation

function in Eq. 4.5 with the one from EPR (Wu et al., 2021), a phrased-based NLI model.

The “+ four segments” model, in addition to the previous change, splits the hypothesis

into four pieces instead of two in PAT. This is based on the observation that EPR model

splits hypothesis into an average of four pieces in the SNLI. We observe that replacing our

strategies with those used in the existing models results in lower accuracy over all datasets.

4.3.2 Evaluation Metrics for Cond-NLI

We report accuracy and F1 score as the main metrics for the evaluation of Cond-NLI.

For SciEntsBank, we report macro-averaged F1 which is average of F1 scores for each of

‘Expressed’ and ‘Unaddressed’ labels (Dzikovska et al., 2013).

Many of the baseline methods such as LIME or SLR, assign (importance) scores to

tokens, and do not provide binary class labels. To perform a meaningful comparison that

demonstrates the potential of each method, we convert token scores into binary class labels

by applying a threshold criterion; tokens are assigned to a specific class depending on

whether their scores exceeds the predefined threshold. The threshold is determined through
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evaluating multiple candidate values. The chosen threshold for each model is the one that

maximizes the model’s performance on the validation set.

4.3.3 Baseline methods

We address three research questions in our evaluation. Baseline methods are selected

and described based on the research question we aim to address.

RQ1 Is PAT more effective than the lexical match or embedding similarity approaches

in classifying neutral/entailed tokens?

Neutral tokens are the ones not entailed by the other sentence in a pair. If a token pair

from two sentences has similar meanings (high semantic similarity), one can expect that the

tokens are less likely to be neutral. Thus, we consider exact match and word2vec (Mikolov

et al., 2013) as baselines to predict neutral/entailed tokens

A token’s entailment score with respect to a sentence is determined by its highest sim-

ilarity to the other sentence’s tokens. For this purpose, we build a similarity matrix S|p|·|h|

where Sij indicates the similarity of the i-th token in p to the j-th token in h. In case of

exact match, Sij is a binary value indicating whether the two tokens are the same or not.

With word2vec, Sij indicates the cosine similarity between embeddings of pi and hj . The

entailment score of the j-th token in h, hj , with respect to p is computed as maxi Sij . The

neutral score is computed as one minus the entailment score.

In SciEntsBank, a facet s is composed of two tokens of h and we compute the span

entailment score as an average of two tokens’ entailment score.

RQ2 Is PAT more effective than adapting the existing models for solving Cond-NLI?

First, we investigate if the feature-attribution explanation models (Ribeiro et al., 2016b;

Zeiler and Fergus, 2014; Kim et al., 2020) can solve Cond-NLI. These methods assign

an importance score to each input feature based on its contribution to the predicted class

probability. Given a premise-hypothesis pair and an NLI model, we use feature attribution

explainers to obtain importance scores of input tokens to the predicted probability for the
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neutral class by the NLI model. Interpreting these importance scores as tokens’ neutral

scores, feature attribution explainers can solve the Cond-NLI task.

We include the following perturbation-based methods that are either widely-used for

explanation of a black-box classifier or specifically designed for explanation of the NLI

task. LIME (Ribeiro et al., 2016b) is a widely-used explanation method which attributes

the model’s prediction to input features (tokens in the NLI task). Occlusion (Zeiler and

Fergus, 2014) removes one token at a time and measures the output changes to score the

importance of the removed token. SE-NLI (Kim et al., 2020) is an explanation model that

generates token-level explanations for the NLI task. It uses BERT token representation

as a feature to predict the importance score for each token. The training objective for

importance prediction is to predict the change in the NLI scores when the token is deleted.

SLR (Span-Level Reasoning) (Stacey et al., 2022) is an NLI model that makes explicit

span-level predictions. However, its span granularity is restricted because it divides hy-

pothesis into spans at noun phrase boundaries. Nevertheless, to demonstrate the limitations

of SLR, we converted their span predictions into a token or facet level by using a method

similar to Equation 4.6.

Beyond feature-attribution explanation methods, we consider adapting the full cross-

encoder NLI model for solving Cond-NLI. The assumption is that if a hypothesis span s is

neutral against a premise p, then the NLI model would predict neutral on (p, s), where span

s alone is treated as a hypothesis. This baseline can demonstrate the advantage of function

f ′ in Eq. 4.3 over function f in Eq. 4.1. We refer to this baseline as Token-entail. Token-

entail is different from our PAT model in two ways; it uses the full cross-encoder model

in Eq. 4.1 with only a single token as a hypothesis while our model uses sub-sequences

of variable length as hypothesis. We did not compare against the full cross-encoder model

when the hypothesis is a sub-sequence of longer length, because cross-encoder is not robust

to such sub-sequences as input and its performance drops significantly.
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We developed the Co-attention baseline inspired by the work of Jiang et al. (2021).

Co-attention uses the attention scores from a Transformer encoder as a token similarity

proxy. The intuition is that in an NLI trained model, a high attention score between a

token pair across two sentences indicates that the tokens are likely semantically similar,

which makes their representations can be compared through attention. Thus, a token that

is neutral is likely to have small attention scores to the tokens of the other sentence. The

normalized attention scores of a token to the tokens of the other sentence are averaged over

all self-attention heads in all layers. The obtained scores are used as similarity matrix S,

similar to the exact match baseline.

RQ3 How does PAT compare against GPT-3 based models?

InstructGPT (Ouyang et al., 2022) and ChatGPT (OpenAI, 2022), which are fine-

tuned versions of the large language model GPT-3 (Brown et al., 2020)), have shown good

zero-shot performance in many downstream tasks. To solve Cond-NLI, we used the task

instruction used for BioClaim annotation and a claim pair to build a prompt to the LLMs.

The LLMs are asked to generate words that correspond to either neutral or contradiction

(Figure 4.2) . For SciEntsBank, we included a student answer, a reference answer, and a

facet word pair in the prompt (Figure 4.3) and then asked the LLMs to determine if the

facet is entailed by the student’s answer.

4.3.4 Results

Tables 4.4 and 4.5 show the performance of all compared methods on the Cond-NLI

over the BioClaim and SciEntsBank (Dzikovska et al., 2013) datasets. On both datasets, the

proposed method, PAT, outperforms other NLI-based methods with the only exception of

LIME on contradiction in terms accuracy. However, this gap is not statistically significant

and Cond-NLI largely outperforms LIME when evaluated with F1.

We suggest the following reasons for the poor performance of explanation models

LIME, Occlusion, and SE-NLI on the Cond-NLI, especially for the neutral class. First,
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In each of the examples, two claims extracted from research paper ab-
stracts will be shown. The given two claims seem to be contradictory
as they are implying opposite results about the same question. Precisely
though, the two claims may have been obtained for different population
or intervention details that make it possible that both claims to be true.
We want to annotate the tokens (words) that express different conditions.

Claim 1: We conclude that in women with preeclampsia, prolonged di-
etary supplementation with l-arginine significantly decreased blood pres-
sure through increased endothelial synthesis and/or bioavailability of
NO.
Claim 2: Oral L-arginine supplementation did not reduce mean diastolic
blood pressure after 2 days of treatment compared with placebo in pre-
eclamptic patients with gestational length varying from 28 to 36 weeks.

Condition tokens in Claim 1: women, preeclampsia, prolonged, dietary
supplementation, l-arginine, increased, endothelial synthesis, bioavailability, NO

Condition tokens in Claim 2: pre-eclamptic patients, gestational length, 28 to 36
weeks

Figure 4.2: An example of the prompt given to the InstructGPT model to solve Cond-NLI
neutral token prediction. The text that is colored with yellow are generated by the model.

Student answer: By letting it sit in a dish for a day.
Reference answer: The water was evaporated, leaving the salt.
Facet: (evaporated, water)

The facet is a relation extracted from the reference answer. In the exam-
ple above, does the student answer entail the given facet? Answer with
Yes/No

Figure 4.3: An example of the prompt given to the ChatGPT model to solve partial entail-
ment task for SciEntsBank dataset.
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Neutral Contradiction
F1 Acc F1 Acc

Similarity-based
Exact match 0.647† 0.538‡ - -

word2vec 0.645† 0.575‡ - -
NLI-based

Co-attention 0.644‡ 0.538‡ - -
LIME 0.639‡ 0.538‡ 0.277‡ 0.872

Occlusion 0.632‡ 0.538‡ 0.246‡ 0.859‡

SENLI 0.632‡ 0.541‡ 0.292‡ 0.866
SLR 0.624‡ 0.538‡ 0.280‡ 0.859‡

Token-entail 0.638‡ 0.538‡ 0.248‡ 0.866‡

PAT 0.657 0.622 0.414 0.871
Large language model

InstructGPT 0.593‡ 0.673‡ 0.435 0.856‡

ChatGPT 0.624‡ 0.657‡ 0.459 0.846‡

Table 4.4: Cond-NLI: neutral token and contradiction token classification results on Bio-
Claim. ‡ and † indicate that the difference between the method and PAT is significant at
p < 0.01 and p < 0.05.

the hypothesis contains many tokens that are not entailed. Perturbing a small number of

tokens is likely to lead to the partial removal of neutral tokens. Such perturbations would

cause negligible changes in model predictions. Simultaneously removing all neutral to-

kens is also unlikely to have a desirable impact on the model decision as large removal

increases the chance of out-of-distribution inputs and thus unreliable model decision for

explanation (Hase et al., 2021).

Second, many of conditionally-compatible pairs are predicted as contradictory by the

NLI models despite the existence of tokens that indicate different conditions. In this case,

identifying different conditions becomes more challenging as the neutral probability pre-

dicted by the NLI model is very small and effect of not-entailed tokens for the neutral

probability cannot be observed.

SLR (Stacey et al., 2022) also underperformed PAT due to its fixed span segmentation,

limiting its ability to infer entailment information for arbitrary tokens. The performance of
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UA UD UQ Mean
Similarity-based

Exact match 0.733 0.792 0.753‡ 0.759
word2vec 0.753 0.780 0.756‡ 0.763

NLI-based
Co-attention 0.746 0.700‡ 0.817 0.754

LIME 0.635‡ 0.673‡ 0.663‡ 0.657
Occlusion 0.494‡ 0.488‡ 0.404‡ 0.462

SENLI 0.542‡ 0.547‡ 0.600‡ 0.563
SLR 0.722‡ 0.713‡ 0.698‡ 0.711

Token-entail 0.714‡ 0.721‡ 0.713‡ 0.716
PAT 0.763 0.778 0.826 0.789

Large language model
ChatGPT 0.655‡ 0.687‡ 0.680‡ 0.674

Table 4.5: Macro-averaged F1 score on the partial entailment dataset SciEntsBank. UA
(Unseen Answers), UD (Unseen Domain), and UQ (Unseen Question) are splits of the test
set. ‡ indicates that the difference between the method and PAT is significant at p < 0.01.

the token-entail method, which is based on the full cross-encoder, is not as good as PAT. We

further inspected its outputs and found that the token-entail method predicts high neutral

scores for functional and generic words, such as ‘patient’, ‘study’, and ‘factors’, that are

implicitly entailed. These failure examples imply that the full cross-encoder model is not

robust to partial hypothesis segments and cannot provide meaningful predictions for them.

Exact match and word2vec outperform other NLI-based methods for predicting neutral

tokens in terms of F1 scores on BioClaim and SciEntsBank. However, they cannot be used

to predict contradicting tokens, thus their performance for contradiction is not listed. They

outperform PAT in Unseen Domain (UD) split of SciEntsBank.

On BioClaim, PAT shows comparable performance to InstructGPT and ChatGPT, since

the superiority between them varies depending on the metrics and token classes. Note

that GPT-3 has 175 billion parameters (Brown et al., 2020), which is more than 1,000

times larger than our proposed model having 110 million parameters (BERT-base). On

SciEntsBank, ChatGPT is not effective, possibly due to the difficulty in connecting a word
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pair (facet) to the student answer and reference answer. This format might not be frequent

in the data that ChatGPT was trained on.

In BioClaim, the improvements of PAT over all other methods are statistically signif-

icant at p-value of 0.01, except for similarity-based methods based on F1, where the sig-

nificance level is at 0.05. Note that none of the NLI-based method outperformed PAT with

statistically significance. The statistically significance was measure by the paired t-test for

accuracy and bootstrapping test for the F1 score.

4.3.5 e-SNLI and MNLIEx

We also evaluate our PAT on e-SNLI (Camburu et al., 2018) and MNLIEx (Kim et al.,

2020), two token-level annotated datasets, to evaluate its robustness. Although these datasets

lack conditionally-compatible sentence pairs, limiting their use for comparing models on

the Cond-NLI task, they measure the robustness of PAT across diverse datasets. For MN-

LIEx, we used the models trained on MultiNLI and for e-SNLI, we used the models trained

on SNLI.

Table 4.6 and 4.7 show the performance of PAT and baseline models on token-level

explanation datasets e-SNLI and MNLIEx. For this evaluation, we use the metrics and

categories that are used in the previous works (Thorne et al., 2019; Kim et al., 2020).

Perturbation-based explanation models, LIME and SE-NLI, achieve high performance on

these two datasets. The results demonstrate that our PAT does not significantly underper-

form the explanation model SE-NLI that is designed for and trained on the NLI datasets.

4.4 Conclusion

We proposed PAT, a partial attention model, capable of attributing the model decision

into the parts of input. Using PAT, we address the Cond-NLI task, a token-level predic-

tion task that explains conditionally-compatible claims. We built the BioClaim dataset for
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Conflict Match Mismatch
Method P@1 MAP Acc P@1 MAP Acc P@1 MAP Acc
LIME 0.637 0.618 0.799 0.905 0.777 0.597 0.735 0.731 0.601

SE-NLI 0.750 0.723 0.800 0.965 0.903 0.760 0.817 0.830 0.714
Token Entail 0.662 0.628 0.757 0.930 0.842 0.692 0.723 0.733 0.597

PAT 0.696 0.700 0.770 0.918 0.868 0.753 0.850 0.851 0.682

Table 4.6: Token prediction evaluated on MNLIEx (Kim et al., 2020) It show precision at
1 (P@1), mean average precision (MAP), accuracy (Acc).

Premise Hypothesis
Method Precision Recall F1 Precision Recall F1
LIME 0.376 1 0.547 0.46 0.834 0.593

SE-NLI 0.525 0.726 0.609 0.492 1 0.66
Token-entail 0.422 1.000 0.560 0.515 1.000 0.649

PAT 0.443 0.939 0.562 0.562 0.959 0.664

Table 4.7: Token prediction evaluated on e-SNLI (Camburu et al., 2018) It show precision,
recall, F1 on each of premise and hypothesis. All three labels are averaged without differ-
entiation.

Cond-NLI . The proposed method shows the accuracy up to 8% higher than the best NLI-

based baseline method in predicting condition tokens.

We will further demonstrates the effectiveness of PATin chapter 6, where PATis used to

identify term-pair level relevance features for information retrieval tasks.
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CHAPTER 5

ALIGNMENT RATIONALE FOR QUERY-DOCUMENT
RELEVANCE

In this chapter, we investigate the task of building alignment rationales that best explain

a query-document relevance classifier. In particular we focus on how we can evaluate

the given alignment rationale, as this evaluation plays a crucial role in later optimizing

alignment building methods. This part is published as a conference paper in SIGIR 2022,

“Alignment Rationale for Query-Document Relevance” (Kim et al., 2022).

BERT-based neural network models have shown state-of-the-art performance in infor-

mation retrieval tasks (Dai and Callan, 2019; Yates et al., 2021; Craswell et al., 2020).

However, due to their complex architectures, they have remained a black box and their un-

derlying decision-making mechanisms are not clear, even to domain experts. There have

been efforts to explain black-box models’ behavior in terms of the input features (e.g.,

tokens in document ranking), either by assigning importance scores to the features or se-

lecting a subset of features that are important to preserve the models decisions (Singh and

Anand, 2018; Hase et al., 2021; Fernando et al., 2019; Kim et al., 2020)

However, we found few works that answer the alignment question: “If certain document

tokens are important for relevance to the query, which part of the query do they respond

to?” Figure 5.1 illustrates the goal of alignment. When exact match or soft match based

ranking models were used, the alignment between query tokens and document tokens could

be acquired with little additional effort. Such alignment information has also used to pro-

vide more information to users, such as summarizing and visualizing each of query terms

appearances in long document (Hearst, 1995; Hoeber and Yang, 2006), also demonstrating

the important of this alignment issue.
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Query: Where is SIGIR 2022
Document: SIGIR 2022 will be held in Madrid

Table 5.1: An example alignment for the query span ‘Where is’

Acquiring alignment has two approaches: (1) aiming at building (ideally) ‘correct’ or

useful alignments regardless of query-document scoring model, or (2) seeking an alignment

that best explains (is faithful to) the model. We target the second approach here.

We investigate the possible uses of input perturbation approaches, which make no as-

sumption about the model’s internal architecture. If the model outputs different decisions

for a perturbed instance (a small change to the inputs), we can expect that the changed fea-

tures are somehow responsible for the model decisions. To expand feature importance to

alignment explanation, one can test if importance of some document tokens depends on the

existence of certain query terms. Unfortunately such complex perturbation is more likely

to bring undesired consequences such as making the input text ungrammatical (Hase et al.,

2021) or changing its meaning drastically such that the model’s decision changes more than

we would expect given small perturbations. For example, consider the case when the query

is “Where is SIGIR 2022” and we want to test which parts of a document are responsible

for each of “Where is” and “SIGIR 2022”. If we remove “SIGIR 2022” from the query,

the query becomes “Where is?”. In the case of the BERT-based model trained on the MS-

MARCO dataset (Nguyen et al., 2016b), the relevant documents for this reduced query are

the ones that contain information about how the expression “Where is?” is used, instead of

those that present a location of events or entities.

How often does that happen? Does that actually make the perturbation useless? Are

there any fixes if it does? This study addresses these research questions.

The contributions of this chapter are as followings:
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1. We propose perturbation-based metrics to evaluate alignment rationale for query-

document relevance.1

2. We investigate the behavior of the proposed metrics and demonstrate that they are

mostly not strong enough to make binary decisions on alignment quality (good or

bad), but they can be used to rank two alignment models.

3. We propose that building perturbed instances that are more comparable to the in-

stance being explained, is the key to improvement of evaluation metrics. We showed

that a simple approach to get more comparable instances increases the metric cover-

age from 13% to 68%. 2

5.1 Alignment Rationales

Let f be a black-box classifier model that given a query q and document d, returns the

probability of d being relevant to q, i.e., f(q, d) → [0, 1]. We assume that the model predicts

a document d as relevant to the query q if its output is higher than a pre-defined threshold

θr, i.e., f(q, d) ≥ θr, and otherwise predicts it as non-relevant. We use R(q, d) = 1 to

denote that document d is considered as relevant by the model f , and R(q, d) = 0 to denote

the non-relevance prediction.

The prediction of model f for a given pair (q, d) can be explained in different formats

depending on the desired goal for explanations. We focus on the explanation of text match-

ing between the query and document as text matching has been shown to be a strong signal

of relevance.

Assume that q and d are split into two sets of text spans Q and D, respectively. The

segmentation unit can be tokens, phrases, or sentences, and can vary for the query and doc-

1Code for reproducing experiments is available at https://github.com/youngwoo-umass/
alignment_rationale

2Based on binary-necessity category.
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ument. We consider that each text span of the query indicates one requirement of relevance.

Intuitively, the model checks if each of the requirements is satisfied by checking spans in

D. Assuming that the model performs such matching process, alignment explanations

provides more sensible description of model behavior compared to token- or word-level

explanations (Ribeiro et al., 2016a).

To evaluate alignment rationales for relevance ranking, we need metrics that capture

the degree to which the rationales extracted by an explanation model are in fact contributed

to the model prediction. Our goal is to define metrics for evaluating the faithfulness of

alignment rationales. Once the evaluation metrics are established, they can be used as

bases for alignment generation methods, by optimizing the proposed quality metrics via

black-box optimization (Hase et al., 2021) or gradient-based methods (Jiang et al., 2021).

Problem Definition. Assume an alignment (qt, dt), where qt ∈ Q and dt ∈ D, is given

by an explanation model when f(q, d) ≥ θr, i.e., the document d is predicted to be relevant

to the query q by the model f . The goal is to measure the faithfulness of this alignment to

the behavior of model f .

5.2 Evaluation Metrics

We use the two criteria sufficiency and necessity (Carton et al., 2020) in our metrics.

Sufficiency measures whether a rationale is sufficient for a model prediction by comparing

the model output for the full input to its output for the input built from the rationale. Neces-

sity measures whether a rationale captures only the necessary information by comparing

the model output when the rationale is removed.

We first introduce how these metrics can be used to check alignment-independent ra-

tionale for document relevance, and show why they are not suitable for evaluating the

faithfulness of alignment rationale explanations. We then propose a new set of metrics.
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5.2.1 Alignment-Independent Metrics

Given that R(q, d) = 1, a document span dt provides sufficient relevant information if

R(q, dt) = 1, where the input dt to the model means the document content except the span

dt is deleted or masked. Formally, this metric can be defined based on real-valued output

(continuous score) or based on binary relevance labels of the model as follows.

AI.Suff(q, d, dt) = −[f(q, d)− f(q, dt)], (5.1)

AI.Suffb(q, d, dt) = 1[θr ≤ f(q, dt)], (5.2)

1[.] is an indicator function, returning a value of one when its condition is satisfied. We

use ·b (such as AI.Suffb) to denote the metrics based on binary outputs. Similar notations

are used for the following metrics too. The negative sign is added to make a higher value

(closer to zero) of AI.Suff indicate a higher quality of rationale.

The sufficiency metric prefers longer spans of documents as explanations. For example,

in the extreme case of selecting the entire document as an explanation, the metric will

have the highest value. To address this issue, we propose a modification of the necessity

metric (Carton et al., 2020) for relevance ranking. Let d \ dt denotes a text acquired by

removing the span dt from document d. Our necessity metric considers the span dt as

having only the necessary relevant information and being compact if R(q, d \ d̂t) = 0 for

all non-empty d̂t ⊆ dt. This metric penalizes long explanations containing non-relevant

information.

AI.Ness(q, d, dt) = f(q, d)− avgd̂t⊆dtf(q, d \ d̂t) (5.3)

AI.Nessb(q, d, dt) = 1[f(q, d \ d̂t) < θr] (5.4)

It is computationally expensive to compute the outputs of a deep neural model for sev-

eral subsets of each candidate span. Therefore, we randomly sampled 10%, 20%, ..., 100%

of dt as d̂t and averaged the model predictions for these subsets.
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While these metrics evaluate whether span dt has contributed to the model’s relevance

prediction, they do not evaluate whether it has been aligned with query span qt or not. These

definitions are all based on deletion perturbations of the instance (q, d) to be explained. We

thus start by extending these metrics for evaluation of the alignment faithfulness using

deletion perturbations.

5.2.2 Deletion-based Metrics

To evaluate alignment rationales, we consider simultaneous perturbations of the query

and document in the instance to be explained. One would intuitively expect that if a doc-

ument is relevant to a query, it is also relevant to any span of the query. Specifically,

when R(q, d) = 1, the expectation is to get R(qt, d) = 1. If this assumption is satis-

fied by the model, we can perturb the document to extract the span dt that affects predic-

tion R(qt, d) = 1 and validate the influence of alignment (qt, dt) in the model prediction

f(q, d). Given the condition R(qt, d) = 1, the evaluation metrics are then formally defined

as follows.

Sufficiency. Span dt provides sufficient relevant information for span qt if R(qt, dt) =

1. This metric is referred to as D.Suff.

D.Suff(q, d, qt, dt) = −[f(qt, d)− f(qt, dt)] (5.5)

D.Suffb(q, d, qt, dt) = 1[θr ≤ f(qt, dt)] (5.6)

Necessity. Span dt contains only the necessary relevant information for span qt if

R(qt, d \ d̂t) = 0 for all non-empty d̂t ⊆ dt.

D.Ness(q, d, qt, dt) = f(qt, d)− f(qt, d \ d̂t) (5.7)

D.Nessb(q, d, qt, dt) = 1[f(qt, d \ d̂t) < θr] (5.8)
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5.2.3 Substitution-based Metrics

Deletion-based metrics rely on the implicit assumption that R(qt, d) = 1 when R(q, d) =

1. However, this assumption frequently fails. For example, the ranker (Dai and Callan,

2019) that is used in our experiments predicted that the document in Figure 5.1 is relevant

to the query “Where is SIGIR 2022”, but it is not relevant to the query “Where is”. To

address this issue, we propose to substitute the query parts other than qt instead of deleting

them.

We introduce a new query qt∪w, which is built by substituting spans of q\qt with spans

w. For the example query “Where is SIGIR 2022”, qt can be “Where is”. Deletion-based

metrics use the model prediction for query “Where is” to compute faithfulness. Instead, we

substitute “SIGIR 2022” with w =“CIKM 2022”, and probe the model with the new query

“Where is CIKM 2022”. As spans w are newly introduced to query, it is likely that the

document does not contain any information about w. Thus, we also add w to span dt of the

document so that the w part of the new query has exact match in the document. Substitution

allows to more accurately measure if the qt part of the query is satisfied by the document

span dt.

Sufficiency. Span dt provides sufficient relevant information for span qt if f(qt∪w, dt∪

w) = 1.

S.Suff(q, d, qt, dt) = −[f(qt ∪ w, d ∪ w)− f(qt ∪ w, dt ∪ w)] (5.9)

S.Suffb(q, d, qt, dt) = 1[θr ≤ f(qt ∪ w, dt ∪ w)]

Necessity. Span dt contains only the necessary relevant information for span qt if

R(qt+ w, dt \ d̂t ∪ w) = 0 for all non-empty d̂t ⊆ dt.

S.Ness(q, d, qt, dt) = f(qt ∪ w, d)− f(qt ∪ w, dt \ d̂t ∪ w)

S.Nessb(q, d, qt, dt) = 1[∃w s.t. f(qt ∪ w, dt \ d̂t ∪ w) < θr] (5.10)
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Table 5.2: Preferences and accuracy of different metrics on two alignment methods: exact
match (EM) and random. ‘D’ in a metric name is for deletion, and ‘S’ is for substitution.
The cases where the difference between the deletion and substitution metrics are statisti-
cally significant (p < 0.01) are denoted with *. The numbers in bold (substitutions) are the
ones that we consider better compared to the corresponding deletion based version.

Metrics
Relative preference Accuracy

EM Random Equal EM Random
Continuous Attention Mask 0.50 0.50 0.00 0.86 0.86

Binary
Necessity

D.Nessb 0.13* 0.00* 0.87* 0.98* 0.87*
S.Nessb 0.66* 0.02* 0.32* 0.92* 0.33*

Sufficiency
D.Suffb 0.78* 0.00 0.22* 0.83* 0.06*
S.Suffb 0.81* 0.01 0.18* 0.97* 0.16*

Continuous
Necessity

D.Ness 0.85 0.15 0.00 0.99* 0.87*
S.Ness 0.86 0.14 0.00 0.94* 0.34*

Sufficiency
D.Suff 0.97 0.03 0.00 0.83* 0.06*
S.Suff 0.97 0.03 0.00 0.97* 0.16*

Substitution candidates. When substitution spans have the same syntactic role and sim-

ilar semantic category as q \ qt, the new query is more comparable to the original query.

However, we found that even without such complex selection of w, qt ∪ w can provide

more reliable estimate of model behavior. To get substitution candidates, we first collect

all term-level n-grams of the target retrieval collection for values of n ranging from 1 to 4.

A span w from the obtained n-grams will be used for the computation of the substitution-

based metrics if f(qt∪w,w) = 0. This condition allows to prune the large candidate space

and to make sure that selected spans are not specific enough that their matching alone is

enough for relevance prediction by the model for (qt∪w, d∪w). If no span w satisfies the

condition, the lower bound score is assigned to S.Suff and S.Ness.

5.3 Experiments

The experiments demonstrate how the metrics proposed in Section 5.2 are different.

We are especially interested in comparing deletion-based versus substitution-based metrics

and binary versus continuous metrics.

76



Table 5.3: Accuracy of exact match alignments for different units of query-side targets (qt).

word low-idf spans high-idf spans
Attention Mask 0.86 0.62 0.95

Necessity
D.Nessb 0.98 0.88 0.64
S.Nessb 0.92 0.90 0.73

Sufficiency
D.Suffb 0.83 0.21 0.74
S.Suffb 0.97 0.75 0.91

Dataset. We use the BERT-based document ranker as our target function f to be ex-

plained (Dai and Callan, 2019). We trained the model with MSMARCO document ranking

dataset (Craswell et al., 2020), and perform alignment evaluation on the dev split. The

ranker is trained with the cross-entropy loss, thus can be considered as a binary clas-

sifier. The trained ranker showed NDCG@10 of 0.625 on TREC Deep Learning Track

2019 (Craswell et al., 2020), which matches the performance reported by the similar mod-

els (Craswell et al., 2020).

Our main evaluation set consists of 3,176 cases where each case consists of a unique

triple (query, text, query-side target qt). These cases are obtained by selecting 50 queries

and the documents that are predicted to be relevant to them. We split documents by sen-

tences, and filtered sentences that are predicted to be relevant to the query when they are

fed individually. In the main evaluation setting, individual words are used as a query-side

target.

Alignments. We analyze the behavior of each metric on two alignment methods: exact

and random matches. The exact match alignment is built by selecting any word in the

document that overlaps with the words of the query-side target qt. The overlap is compared

in sub-word level. Random alignments are built by randomly selecting document tokens.

Random alignments are controlled to have the same number of tokens as the exact-match

alignments.

We assume that the exact match alignments are better than random on average. Thus,

we can expect that an ideal metric prefers exact-match over random alignments. This does
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not imply that the ideal metric should prefer exact-match over random for every case since

it is possible that in some cases random alignments may be better than the exact-match

alignments. When measuring relative preferences of alignments by evaluation metrics, the

cases where no exact match exists are excluded.

We also compare our metrics with another evaluation metric for alignments based on

attention masks (Jiang et al., 2021). This metric drops attention flows between the two

segments (query and document), except the token pairs that are predicted to be aligned.

Section 2.2.2 provides more details about this metric. For the attention-mask metric, the

binary version is not applicable because changing the attention mask results in a change

of the model score by a small magnitude only, which does not flip the classification label

(always relevant). Following Jiang et al. (Jiang et al., 2021), the absolute difference of

logistic scores are used to compute the metric.

Results. Table 5.2 shows the results of the various metrics on the two types of align-

ments. Relative preference shows how often exact-match or random alignment is preferred

over the other by a metric. We removed the cases where exact match (EM) and Random

had the same alignment prediction. Thus, the equal column of the table indicates the rates

that randomly-aligned and exact-match tokens get the same preference by an evaluation

metric, while the tokens are different. Accuracy indicates the rate that the score given by a

metric is over the θr = 0.5 (in case of attention mask, lower than θr).

First, we observe that the attention-mask metric does not behave as expected. It prefers

random alignments in almost half of the cases, which implies that this metric is capturing

something different than the alignment rationales for relevance ranking. We investigated

these cases to find out which tokens appear when the random alignment is preferred. The

tokens for some special characters such as “.” or “?” appear more often in the preferred

cases than their average frequencies. This implies that if an alignment contains “.” or “?”, it

is more likely to be preferred over the exact match by the attention-mask metric compared

to when the alignment contains other random tokens. One potential reason can be that the
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BERT-based ranker is using the tokens for these special characters to combine information,

thus the matching tokens (such as common words in the query and document) are compared

via these tokens. Another possibility can be that removing attentions between these tokens

breaks the score calculation even if they do not play a role in the matching process.

Second, we observe that the substitution-based metrics have a lower rate of equal

decisions compared to their corresponding deletion-based metrics. We conclude that

the high equal rate of necessity-deletion metric indicates a clear failure of the metric.

First, the cases with the same alignment were removed, thus compared alignments are al-

ways different. Second, the dataset is known to have many exact match terms between the

queries and documents, thus a certain portion of exact-match alignments should be con-

sidered better than the random ones. Thus, we conclude that the substitution-based

metrics have advantages over the deletion-based metrics. We approximate the “cover-

age” of a metric as the portion of the data that the metric makes two different decisions

on two different alignments. In case of binary-necessity, the deletion-based metric has

coverage of 13% (13% + 0%) and substitution-based metric has coverage of 68% (66% +

2%).

We believe that the high accuracy of the necessity metrics is probably resulted from

the perturbed queries (qt or qt + w) not being comparable to their corresponding original

queries, thus yielding non-relevant predictions for all perturbations.

Next, we compare the binary metrics against their continuous versions. With the con-

tinuous metrics, the equal rate decreased to near zero. A large portion of the equal cases by

the binary metrics are classified as preference to exact matches by the continuous metrics.

From this trend, we expect that continuous metrics, that are sensitive to small differences in

model scores, could be capable of preferring better alignments. Reduction in equal cases of

the Necessitymetric is mostly observed for cases that f(qt, d) is near zero, f(qt, d \ d̂t)

for exact match dt is also near zero and is lower than f(qt, d \ d̂t) for randomly aligned dt.
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Query-side target Finally, we compare the evaluation metrics when different segmen-

tation units of queries are used for explanation, i.e., different query targets qt. We built

two datasets “high-idf spans” and “low-idf spans”. The original dataset consisting of indi-

vidual words as qt is called “word”. For each query, we identified the query terms whose

idf (inverse document frequency) values exceed a predefined threshold value. We select a

continuous span of the query that covers these high-idf terms. These high-idf spans com-

pose the “high-idf spans” dataset. The remaining low-idf terms, which can be at most two

continuous segments per query, compose “low-idf spans”. For example, “Where is” con-

stitutes the low-idf span and “SIGIR 2022” constitutes the high-idf span for the example

query “Where is SIGIR 2022”. We expect the high-idf spans, such as entity names, to have

more exact matches, because they are considered to be more important in determining rel-

evance. In contrast, low-idf spans contain frequent words such as wh-words or stopwords

(e.g., “where is”). Thus, exact match alignments would be less effective for low-idf spans.

Table 5.3 shows the accuracy of the exact match alignments on three span units: word,

high-idf spans, and low-idf spans. Only scores for binary versions of metrics are reported

as they are nearly identical to their corresponding continuous versions. The accuracy of

low-idf spans and for high-idf spans is considerably lower than that of words. We attribute

this to the fact that ’word’ test set is too favorable to exact match, as it only considers cases

when exact match is found. However, in these datasets with longer spans, some query

terms in query-side target (qt) may not appear in the document, which would lead to a

lower performance of exact-match alignments. We can also observe that the difference be-

tween deletion-based metrics and substitution-based metrics gets larger in cases

of sufficiency groups on low-idf spans.

5.4 Conclusion

This chapter studies how the perturbation-based metrics can be used to evaluate align-

ment rationales for black-box document ranking models. The concepts of necessity and
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sufficiency are defined and applied to simultaneous perturbations of the query and docu-

ment pair. Deletion-based metrics and substitution-based metrics are defined for each of the

two concepts. The experiments show the characteristics of the metrics and demonstrate that

substitution-based metrics are more successful than the deletion-based ones in preferring

higher-quality alignments.

This chapter focused on local explanation, explaining the alignment for given query

and document. In chapter 6, our focus will shift from local to global explanation. We will

explore global term-alignments, specifically the pairs formed by query-term and document-

term, which strongly indicate relevance irrespective of the context.
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CHAPTER 6

GLOBAL EXPLANATION OF RETRIEVAL MODELS BY
RELEVANCE THESAURUS

This chapter builds upon the insights and methodologies from previous chapters, par-

ticularly the alignment rationales described in chapter 5 and the PAT model from chapter 4.

While the PAT model was originally applied to natural language inference (NLI), we adapt

it to the task of document ranking, where token-level semantics plays a crucial role in

constructing inverted indices.

6.1 Introduction

Query Term Document Term Score
injury injure 0.26
injury wound 0.24
car vehiclesâ 0.68
car ford 0.38
car honda 0.28
cud cuda 0.50
course courseâ 0.78
course coursework 0.53
when 24th 0.33
when 1791 0.22

Table 6.1: Example entries from our relevance thesaurus.

The primary goal of this chapter is to develop global explanations for ranking models

that can facilitate a deeper understanding of neural ranking models and help identify po-

tential risks. We aim to identify relevant pairs of query terms and document terms that
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effectively explain the behavior of these models. We introduce the concept of a relevance

thesaurus, as illustrated in Table 6.1, which serves as a format for these explanations.

We focus on identifying the context-independent relevant term pairs (e.g., synonyms)

because they are more widely applicable and feasible to evaluate than the context-sensitive

term pairs which are only relevant in specific contexts. For example, when the model

predicts a query “prime number definition” to be relevant to a document “A prime number

is a number ...”, the most relevant term for “definition” could be “is.” However, the term

“is” is too frequent and the appearance of “is” alone is far from sufficient to ensure the

relevance. Many existing token-level IR models or local explanation methods do not have

mechanisms to isolate the effects of the context, thus they are not directly applicable for

our goal.

To achieve our goal, we propose the Partial Relevance Model (PaRM), which extends

the idea of PAT from chapter 4 by modifying it to handle both queries and documents as

partial segments. PaRM predicts relevance scores for two partial query-document pairs,

and the sum of these scores is used as the overall relevance score for the complete query-

document pair. This architecture allows the model to be trained using only relevance signals

at the query-document level. PaRM is trained via knowledge distillation from a cross-

encoder re-ranking model, which is the target model to be explained. We expect that as

PaRM is trained to predict the outputs of the target model, it will provide faithful explana-

tions of the target model’s behavior.

Once trained, PaRM scores the candidate term pairs from frequent terms of the collec-

tion. The high scoring term pairs and their scores constitute the relevance thesaurus, which

works as an explanation for the targeted neural models. The thesaurus can be manually

inspected to provide insights or can serve as data for additional analysis to understand the

model’s behavior.

The thesaurus is extrinsically evaluated based on its ability to complement the vocabu-

lary mismatch problem in the traditional IR framework with BM25 scoring. The resulting
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Figure 6.1: The figures show how the bag of words representations are processed on BM25
and BM25T for the query “who is Donald Trump” and the document “Trump is the 45th
President of the United States”. Terms in the document that do not match any query term
are omitted.

retrieval method is evaluated based on its ranking effectiveness and fidelity to the targeted

neural ranking models. The results on multiple datasets show the effectiveness of using the

acquired relevance thesaurus in this way.

In a second, qualitative evaluation, we explore insights offered by the thesaurus ex-

planation. Through manual inspection of the relevance thesaurus, we identify three key

findings about the behavior of neural ranking models that are trained on MS MARCO:

1. The postfix-a finding reveals that the models treat the character “a” appended to a

term as equivalent to a quotation mark due to encoding errors in the training data.

This is based on many entries like (car/vehiclesâ) or (cud/cuda) as in Table 1.6.

2. The car-brand bias suggests that the models exhibit biases towards certain car brands

when ranking documents. This is evident from the varying relevance scores assigned

to different car brand names in response to queries containing the term “car”.

3. The When-year bias indicates that the models consider years in the distant future or

past to be more strongly associated with the query term “when” compared to the cur-
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rent year and its immediate vicinity. This finding highlights the models’ preference

for extreme temporal values when responding to time-related queries.

Our experiments using multiple state-of-the-art neural information retrieval models

demonstrate that such behaviors are not only found in the cross encoder that we mainly

targeted but also replicated in multiple IR models, highlighting the potential value of our

explanation method.

6.2 Method

6.2.1 Definition: Model explanation problem

Given a blackbox predictor Sb, the global model explanation problem is defined as

finding an explanation E ∈ E , belonging to a human-interpretable domain E , along with an

interpretable global predictor Se = h(Sb), which can mimic the predictions of the blackbox

predictor Sb. An explanation E ∈ E is interpreted by explanation logic eg to form the global

predictor Se = eg(E).

6.2.2 Global explanation BM25T

As a blackbox predictor to be explained, we target a full cross-encoder (CE) document

ranking model, which predicts a score given a query q and a document d. We choose the

explanation E to be a relevance thesaurus, which is a set of term-pair features and associ-

ated scores (qt, dt, s), where qt is a query term, dt is a document term, and s is the score

associated with the pair. We choose the widely used IR model, BM25, as the backbone

for building our interpretable global predictor Se. We extend BM25 with components that

utilize the relevance thesaurus to handle query-document vocabulary mismatches, result-

ing in a model called BM25T. This model can be considered as BM25 augmented with the

explanation E, allowing it to serve as an effective global explanation.
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S(q, d) =
∑
qt∈q

QF(qt, q) · f(qt, d) · (k1 + 1)

f(qt, d) +K
(6.1)

K = k1 ·
(
1− b+ b · |d|

avgdl

)

Equation 6.1 shows the scoring function for BM25 and BM25T. The relevance score

for a query q and document d is computed as a sum of per-query term (qt) scores.

The per-query term score can be factored into the query side factor QF and a document

side factor. The query side factor QF is determined based on the query term qt’s frequency

in the query q, and its document frequency in the collection, which computes the inverse

document frequency. We skip details for QF which is not modified in our method.1

The document side factor is largely determined by f(qt, d). In BM25, f(qt, d) is the

frequency of the query term qt in the document d. In BM25T, we modify f(qt, d) to handle

query-document vocabulary mismatch. If qt is found in the document d, f(qt, d) remains

the same as in BM25. If qt is not found, we use the document term dt ∈ d with the highest

term-pair relevance score s in the relevance thesaurus against qt. In this case, f(qt, d) is set

to s.

k1 and b are global parameters that control the term frequency saturation and document

length penalty, respectively. avgdl is the average document length in the collection.

6.2.3 Relevance thesaurus construction

Many local and global explanation methods (Ribeiro et al., 2016b; Deng, 2019) build

a candidate set of features (e.g., terms) from the observed data points and then determine

if each of the candidate features is appropriate as an explanation by first assigning scores

to features and gradually adjusting the scores using various optimization methods. This

1Details of BM25 can be found in Croft et al. (2010).
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strategy maintains explicit feature candidates and their scores throughout the optimization

process. However, this strategy is hard to apply when the number of features increases, as

in our explanation format, where the pairs of terms can scale to billions or more.

Instead of directly optimizing per-feature scores, we propose to implicitly optimize

them using an intermediate neural model and generate per-feature scores directly from the

intermediate model.

We train the intermediate model to predict a score for a term-pair, where the score can

be readily used with BM25T to assign a better score for a query-document pair. By comput-

ing scores for possible query term and document term pairs using the trained intermediate

model, we can collect the high-scored term-pairs to build a relevance thesaurus. This ap-

proach avoids explicitly maintaining individual term-pairs during the training and allowing

generalize to diverse vocabulary, by exploiting the power of neural models.

The intermediate neural model, named PaRM (Partial Relevance Model), is built by

fine-tuning BERT. We chose to use BERT as the base model for PaRM because the targeted

cross encoder (CE) model is also a BERT fine-tuned model. By using the same pre-trained

language model, PaRM is better equipped to mimic the behavior of CE.

PaRM is trained end-to-end using query-document relevance predictions from the CE

model on the training set. However, a challenge arises because PaRM is expected to predict

a score for a query term and document term, while the available signal is only at the query-

document level. This discrepancy makes it unclear on which term-pair to supervise PaRM.

To address this issue, we gradually transition from the full text sequence to a single term

during training.

The motivation for using PaRM is that original CE model is not suitable for inferring the

contributions of individual terms. Feeding subsets of tokens in isolation from their original

contexts does not reveal their true contributions. For instance, consider a scenario where a

single term “Plato” is treated as a document, and “Who is Plato” is the query. In this case,

the model will likely predict relevance scores close to non-relevant, as a document with
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a single term is unlikely to provide meaningful information to users. This highlights the

importance of considering the context when assessing the relevance of individual terms.

PaRM, on the other hand, is designed to handle partial input sequences and can effec-

tively capture the relevance of individual term pairs. By gradually transitioning from full

text sequences to single terms during training, PaRM learns to assess the relevance of term

pairs while considering their surrounding context. This approach enables PaRM to provide

more accurate and meaningful relevance scores for individual term pairs, even when they

are presented in isolation.

The training of PaRM is composed of two phases. In the first phase, it is trained to

predict relevance on comparatively long partial segments of queries and documents. In

the second phase, it is trained to predict relevance scores between a single query term and

document term forming a relevance thesaurus, which can be readily added to the BM25

scoring function.

6.2.4 PaRM first phase training

In the first distillation phase, PaRM is used to calculate a relevance score for the given

query-document by generating scores for two inputs, (q1, d1) and (q2, d2), which are built

from the given query q and document d. Each of two inputs is then scored through PaRM

and these two scores are summed as the relevance score for the query-document pair. Using

the relevance label for the query-document, PaRM is trained end-to-end to predict relevance

for partial sequences of the query and document without fine-grained labels.

We build q1 by extracting a continuous span from q and build q2 with the remaining

tokens, leaving a [MASK] token where q1 was extracted. Given q1, q2, and d, we build d1

and d2 by masking some tokens of the document d, while keeping tokens that are likely to

be relevant to the corresponding qi. To estimate which tokens of d are relevant to q1, we use

the attention scores from the full cross-encoder (CE) ranker (Dai and Callan, 2019), which

takes the concatenation of the entire q and d as its input. di is built by selecting document

88



ρ1

PaRM

q1 d1

ρ2

PaRM

q2 d2

who is [MASK]

[MASK] Plato

[MASK] was a Greek philosopher.

Plato was a Greek [MASK] .

Sum

y

Figure 6.2: The architecture of proposed PaRM model for the first stage training. The
query “who is Plato” (red) is partitioned into q1 and q2. The document “Plato was a Greek
philosopher” (blue) is masked to generate d1 and d2.

ρ

PaRM

who philosopher

Figure 6.3: The final PaRM model predicts a relevance score for a query term “who” and
document term “philosopher”, which is used to build a relevance thesaurus.

tokens that have high attention scores to tokens of qi, where attention scores are averaged

over different attention heads and layers. Both d1 and d2 can be composed of many non-

continuous spans. We randomly sample how many tokens are to be selected, which can

range from one to all tokens of d. Note that while the query partitions do not overlap,

the document segments can. The intuition behind this approach is to ensure that the input

sequence contains sufficient evidence to predict relevance while still allowing for a few

extreme cases where either only a single query term or a single document term is present.

By avoiding overlap between the two query segments, we prevent the amplification of the

effect of overlapping query terms, which could lead to biased predictions. We found that

leaving [MASK] tokens in place of the missing query or document tokens is important for

the resulting model’s performance. This masking strategy likely helps the model to infer

the semantic roles of the visible tokens more accurately.
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The scores for each of (q1, d1) and (q2, d2) are built by projecting BERT’s CLS pooling

representations which are encoded from the concatenated sequence of qi and di (Devlin

et al., 2019a).

PaRM(qi, di) = W ·BERTCLS(qi; di) + b (6.2)

The final score for the query and document pair is given as a sum of the scores from

two partial views.

S(q, d) = PaRM(q1, d1) + PaRM(q2, d2) (6.3)

The combined score S is trained from the scores (Rt) of the teacher model (CE) using

margin mean square error (MSE) loss (Hofstätter et al., 2021) on relevant and non-relevant

query-document pairs.

L = MSE(S(q, d+)− S(q, d−), (6.4)

Rt(q, d
+)−Rt(q, d

−))

Once PaRM is trained, we can use it to score an arbitrary query span or document

span, including a single term. However, the scores are only trained for ranking and not

calibrated to a specific range, which makes it hard to determine which term-pair entries

have a sufficiently large score to be included in the relevance thesaurus .

6.2.5 Fine-tuning for Term Matching

In the second phase, we fine-tune PaRM so that it scores the relevance of a query term

qt and a document term dt on a scale from 0 to 1. Specifically, we consider the scenario

of augmenting BM25 by handling vocabulary mismatch based on the scores from PaRM.

If some query terms are missing in the document, we assume that the document term that

has the highest PaRM score against the corresponding query term is relevant to the query

term. We then use the output of PaRM to replace the term frequency. If the assumed pair

is actually relevant, it will be more likely to appear in the relevant documents, and will be

90



trained to score higher, and non-relevant ones will appear in the non-relevant document and

trained lower.

For a pair of query q and document d, if any query term does not have an exact match

in the document, we randomly select one query term qt to be trained. All document terms

are scored against qt using PaRM(qt, dt) and the document term dt with the highest score

is paired with qt (Figure 6.3). Note that terms are not from the BERT tokenizer but are

from the tokenizer developed for BM25. Thus, a single term can contain multiple BERT

subwords.

The training network is defined as follows. To ensure the output to be in 0 to 1, we

apply a sigmoid layer (σ) on top of the projected output.

PaRM(qt, dt) = σ(W · BERTCLS(qt; dt) + b) (6.5)

In the original BM25 formula, the score for the query term qt is determined by qt’s

document frequency, tfqt,d. We modify BM25 so that, for a query term that does not appear

in the document, we replace tfqt,d with the output of PaRM(qt, dt).

f(qt, d) =


tfqt,d if qt ∈ d

PaRM(qt, dt) if qt /∈ d

(6.6)

Note that tfqt,d can be large but PaRM is bounded above by 1, so an implied match

is never stronger than a term that matches exactly at least once. The relevance score is

computed based on the BM25 scoring function as in Equation 6.1.

PaRM is trained end-to-end from the pairwise hinge loss between a relevant pair (q, d+),

and a non-relevant pair (q, d−):

L = max
(
0, 1− S(q, d+) + S(q, d−)

)
, (6.7)
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Note that we do not use knowledge distillation here, because the output scores scale of

BM25 scoring function is not easily adjustable and may not be possible to match the score

margin of the neural ranking model.

During the training phase, the equations from 6.5 to 6.7 are implemented inside a neural

network framework, and the gradient to the loss L is back-propagated to train PaRM’s

parameters. Note that PaRM scores for selecting the highest scored dt is pre-computed

with the model after the first phase.

6.3 Experiments

6.3.1 Implementation

As the target ranker to be explained, we use a publicly available cross-encoder, which is

fine-tuned from distilled-BERT 2. The predictions of this model are used as teacher scores

in Equation 6.4.

We initialized PaRM with pre-trained BERT-based-uncased. The maximum sequence

length of the input in the first and second phases of training PaRM is set to 256 and 16

tokens, respectively.

The models are trained on the widely used MS MARCO passage ranking dataset (Nguyen

et al., 2016a), using the provided query-documents triplets. For the hyper-parameters of

BM25, we used the default values (k1 = 0.9 and b = 0.4) as in Pyserini (Lin et al.,

2021). BM25 and BM25T use the tokenizer from the Lucene library with the Krovetz

stemmer (Krovetz, 1993), preferred over the Porter stemmer (Porter, 1980) for producing

actual words.

Relevance Thesaurus Building PaRM scores the candidate term-pairs to build the final

relevance thesaurus as a global explanation of the full cross-attention ranking model. The

candidates are drawn from the frequent terms in the MS MARCO corpus. We considered

2cross-encoder/ms-marco-MiniLM-L-6-v2 from https://huggingface.co/cross-encoder/ms-marco-
MiniLM-L-12-v2
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the top 10,000 frequent terms as query terms, and the top 100,000 terms as document terms,

resulting in the calculation of 109 scores. Due to the short input length, the computing time

for each input is significantly faster than that for longer sequences in the full cross-attention

ranker. Only candidate term pairs scoring above 0.1 are included in the relevance thesaurus,

resulting in a total of 553,864 term pairs.

6.3.2 Evaluations

We evaluate the BM25T model exploiting our built relevance thesaurus in two ways:

ranking effectiveness and fidelity. Ranking effectiveness is measured by standard ranking

evaluation metrics evaluating the ranked lists based on ground truth judgments. It demon-

strates to what extent BM25T can be used for relevance ranking. Fidelity expresses the ex-

tent to which the BM25T faithfully explains the behavior of the target ranking model, i.e.,

the cross-encoder model. The faithfulness of an explanation model is evaluated comparing

the predictions generated by the explanations to those produced by the target model (Guidotti

et al., 2018; Deng, 2019). As our goal is to explain a ranking model, we measure the faith-

fulness in terms of the correlation between the scores from the explanations and target

model.

In-domain ranking effectiveness First, we evaluate ranking effectiveness on three

datasets derived from the MS MARCO passage ranking corpus. TREC DL 2019 (Craswell

et al., 2020) and TREC DL 2020 (Craswell et al., 2021) are the datasets used for TREC

2019/2020 Deep Learning Tracks. They contain 43 and 53 queries respectively, where

top ranked documents are thoroughly judged by NIST assessors. As they are completely

judged they are more reliable for evaluating the ranking effectiveness.

In addition to these datasets, we used a larger dataset called MS MARCO-dev, which we

built by sampling 1,000 queries from the development split of MS MARCO. This dataset

is sparsely judged, with most queries having only one document labeled as relevant. Con-

sidering the nature of this dataset, we used the mean reciprocal rank (MRR) metric for
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Model TREC DL19 TREC DL20 Dev
NDCG@10 NDCG@10 MRR

BM25 0.516 0.503 0.160
BM25T 0.550 0.546 0.180
CrossEncoder 0.763 0.739 0.375

Table 6.2: Ranking performance of the BM25T with the relevance thesaurus in the MS
MARCO driven dataset. All improvements of BM25T over BM25 are statistically signifi-
cant at p < 0.01.

evaluation on MS MARCO-dev. We will also use this dataset for evaluating fidelity, where

having having more data points is preferable.

Table 6.2 shows the ranking effectiveness of BM25, BM25T, and the cross-encoder

model on the MS MARCO based datasets. Proposed BM25T shows significant gain (p <

0.01) over BM25 in all the datasets. The obtained gains demonstrate that the distilled rele-

vance thesaurus effectively improves the vocabulary mismatch problem of BM25. BM25T

still has a gap from the cross encoder model, showing room for improvement in future

work. Note that we do not include other retrieval models, as our focus is on evaluating the

applicability as global explanations. Most highly effective neural ranking models are not

suitable to be used as global explanations, as there is no mechanism to isolate the effect of

the contexts to build global explanations.

Out-of-domain Ranking Effectiveness The BEIR benchmark (Thakur et al., 2021) is

a collection of IR datasets and is widely used to measure the generalizability of models

without domain-specific training. We evaluate the zero-shot ranking effectiveness of the

BM25T model using the benchmark, using the same relevance thesaurus and the cross-

encoder model that are trained from MS MARCO. Table 6.3 shows evaluation results on

the BEIR datasets. Out of the 12 datasets, the performance difference between BM25

and BM25T is statistically significant (p < 0.05) in 8 datasets. Among these datasets,

BM25T outperforms BM25 on 7 datasets, showing a performance closer to that of the

cross-encoder.
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Thus, we conclude that the relevance thesaurus is not limited to the corpus it is trained

and can effectively explain the cross-encoder ranker in the out of domain datasets.

Dataset BM25 BM25T
Cross

Encoder
HotpotQA 0.633 0.641‡ 0.725
DBPedia 0.325 0.350‡ 0.447
NQ 0.307 0.332‡ 0.462
Touché-2020 0.499‡ 0.337 0.272
SCIDOCS 0.150 0.148 0.163
TREC-COVID 0.583 0.602 0.733
FiQA-2018 0.245 0.248 0.341
Quora 0.775‡ 0.738 0.823
ArguAna 0.407‡ 0.359 0.311
SciFact 0.678 0.678 0.688
NFCorpus 0.319 0.348† 0.369
ViHealthQA 0.217‡ 0.173 0.168

Table 6.3: The ranking effectiveness measure (NDCG@10) of the methods on BEIR
datasets. ‡marks statistically significant difference (p < 0.05) between BM25 and BM25T

Fidelity We evaluated our model’s fidelity in explaining the neural ranking models

Fidelity Ranking
Ranking Model BM25 BM25T MRR
Cross Encoder 0.484 0.580 0.375
Splade v2 0.490 0.583 0.335
TAS-B 0.421 0.513 0.318
Contriever 0.417 0.454 0.174
Contriever + M 0.411 0.495 0.307

Table 6.4: Fidelity of the explanations to the ranking models, measured by Pearson cor-
relations on the MS MARCO Dev dataset. Both BM25 and BM25T are considered as
explanations for the corresponding ranking models. The ranking performance, measured
by Mean Reciprocal Rank (MRR), is provided as a reference.

by measuring correlations of scores on each query-document pair. The correlations are

measured on 1,000 queries sampled from the MS MARCO-dev split.
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For each query, BM25 retrieves the top 1,000 documents. The documents are scored

by neural ranking models and BM25T. For each query, we computed the Pearson corre-

lation coefficient on the pairs of scores for the 1,000 documents. The Pearson correlation

coefficient ranges from -1 to 1, with 1 indicating the strongest positive correlation. Finally,

we calculate the average of correlation values across the 1,000 queries and use this as a

measure of the explanation method’s fidelity. A score of one means that BM25T provides

perfect fidelity, exactly matching the neural ranker.

While our main goal is explaining the cross-encoder model, we expect that our ex-

planation can be applied to other IR models which fine-tune Transformer-based mod-

els on MS MARCO. Thus, we include four popular document retrieval models: TAS-

B (Hofstätter et al., 2021), Splade v2 (Formal et al., 2021a), Contriever, and Contriever+MS

MARCO (Izacard et al., 2021). These models use dual-encoder approaches, where the

query and document are independently encoded into vectors using Transformer encoders.

TAS-B and Splade v2 are trained using knowledge distillation from the cross-encoders. In

contrast, Contriever is trained with unsupervised learning. Contriever+MS MARCO is the

model that further fine-tunes Contriever using MS MARCO training data.

Dataset BM25 BM25T
HotpotQA 0.535 0.647
DBPedia 0.477 0.612

NQ 0.474 0.658
Touché-2020 0.403 0.689

SCIDOCS 0.598 0.663
TREC-COVID 0.276 0.705

FiQA-2018 0.481 0.514
Quora 0.659 0.640

ArguAna 0.656 0.722
SciFact 0.634 0.677

NFCorpus 0.584 0.626
ViHealthQA 0.314 0.410

Table 6.5: Fidelity (Pearson correlation) of the BM25 and BM25T as explanation to the
cross encoder ranking model.
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Table 6.4 shows the fidelity of BM25 and BM25T to these neural ranking models on

the MS MARCO dev dataset. First, we can observe that in all ranking models BM25T

has higher fidelity than BM25. Also, the gain is larger on models that are trained on the

MS MARCO dataset. Contriever is the one that is not trained based on the MS MARCO

dataset, on which BM25T showed the lowest fidelity and smallest fidelity gain.

We conclude that while the relevance thesaurus is most effective in explaining the model

whose scores were used for the training, it can still serve to explain the behaviors of the

models that are trained with similar training signals.

The fidelity evaluations on BEIR datasets also confirm that BM25T is more faithful than

BM25 in explaining the targeted cross encoder model (Table 6.5). The fidelity of BM25T

increased over BM25 in all datasets, except the Quora dataset. The average fidelity across

the datasets has improved from 0.507 to 0.630.

6.3.3 Findings from Relevance Thesaurus

As illustrated in the actual sample outputs in Table 6.1, the relevance thesaurus contains

reasonable term pairs along with ones that look weird. After manually inspecting entries

of the relevance thesaurus, we have come up with three interesting findings.

1. Postfix a: The models treat a character “a” at the end of a word as if it is a right

quotation (’) or dash (–) character, making a query term X match X+’a’ as a highly

relevant term pair.

2. Car-brand bias: The models associate the query term ’car’ with many brand names

such as ’Ford’, while consistently ranking one brand name higher than another, when

all the remaining factors are equal.

3. When-year bias: The models have different levels of association between the query

term “when” and different years, such as 2015, while assigning much lower scores

for the years around 2015 compared to other years.
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Postfix a We found that 7% of term pairs consist of cases where the document term is

the query term with an additional “a” or “â” at the end, such as “cud” and “cuda” pair. This

is due the fact that MS MARCO contains passages with encoding errors when it was con-

structed. During the construction, the characters that were originally a right quotation (’) or

dash (–) were wrongly decoded as characters like “â”. As the BERT tokenizer normalizes

“â” to “a”, the BERT-based ranking models trained on MS MARCO treat “a” as if it is a

quotation mark or dash, which makes a query term X match X+“a” as a highly relevant

term pair.

We perform experiments to check if this behavior also appears in neural relevance mod-

els. We expect that given a relevant query and document pair that has a common term X ,

if we modify term X’s occurrence in the document by adding some alphabet character at

the end of the term, the neural ranking model will predict a lower score than before, as the

query term X does not appear in the document. However, if our postfix a hypothesis is true,

appending “a” should not decrease the relevance score as other alphabet characters do.

We considered all characters from ‘a’ to ‘z’ and we measure the score change when the

character is appended to the document occurrence of the common term X . We repeated

this process over 500 relevant query-document pairs. These pairs are filtered based on

the constraints that the query and document have a common term, the common term only

appears once in the document side, and the term appears as a noun in the document.

The result on the cross encoder is illustrated in Table 6.6. It shows that while all other

alphabet characters result in large score drop when they are appended to the query term

occurrence in the document, appending “a” results in a small increase of the relevance

score instead. The difference between score changes of “a” and other cases are all statisti-

cally significant at p < 0.01. This supports the existence of many entries in the relevance

thesaurus where the document term has an additional character “a” at the end of the terms.

We observed similar behaviors on Splade and Contriever-MS MARCO, while Con-

triever and TAS-B do not exhibit such behavior (Table 6.6). It is reasonable that Contriever
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Cross Encoder Splade v2

Contriever Contriever+MS MARCO

TAS-B

Table 6.6: Postfix-a experiments results. The listed scores are average of
(score after change − score before change), and positive values indicate score increases
and negative values indicate score decreases.
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Brand name Scores Brand name Scores
Volkswagen 0.429 Buick 0.308

Ferrari 0.410 Cadillac 0.303
Porsche 0.405 Renault 0.300

Fiat 0.394 Honda 0.279
Chrysler 0.390 Audi 0.269

Ford 0.389 Peugeot 0.269
Mercedes 0.377 Pontiac 0.259
Packard 0.366 Daimler 0.219

Oldsmobile 0.365 Mitsubishi 0.212
Toyota 0.350 Nissan 0.205
Jaguar 0.348 Chevrolet 0.202
Volvo 0.341 Lexus 0.180

Hyundai 0.332 Jeep 0.159
BMW 0.324 Mazda 0.094

Bentley 0.322

Table 6.7: Scores for each of 29 brand names against the query term “car” based on our
relevance thesaurus.

is not showing this behavior as it is not trained with the errorful MS MARCO data. We

don’t have a clear explanation for TAS-B. A possible guess is that it might be trained with

a version of the corpus that has cleared such encoding errors.

While the existence of encoding errors is known (Lin, 2021), there has been no sys-

tematic analysis of how these errors could affect the ranking models. This analysis shows

that our thesaurus explanation can be effectively used to discover that the model is using

features that may not generalize to other corpora.

Car-brand bias We explore potential biases that models trained on the MS MARCO

corpus can have. In the relevance thesaurus, we inspected entries for the query term “car”

and found numerous instances where the document term is a named entity or brand name,

such as “Ford” (Table 6.7). We observed that certain brand names have much higher rele-

vance scores to the term “car” compared to others. This observation raises concerns about

potential biases in the ranking models.
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Ranking Model Car - brand When - year
Cross Encoder 0.282 0.746
Splade v2 0.413 0.224
TAS-B 0.367 0.484
Contriever 0.419 0.422
Contriever + M 0.200 0.665

Table 6.8: The fidelity of relevance thesaurus focused on two findings. The models predict
scores on query-document pairs when a brand name or year mention is replaced with an-
other.

Query: “What are the benefits of regular car maintenance?”
Document 1: “Regular maintenance is crucial for keeping your Ford in top condition. (...)”
Document 2: “Regular maintenance is crucial for keeping your Toyota in top condition. (...)”

Table 6.9: Example query and document used for the brand bias experiment.

Consider a case where a query contains the term “car”, and there are two nearly identical

candidate documents that differ only by a single token, which appears as brand name A in

one document and brand name B in the other. Table 6.9 shows an example. If the brand

name “Ford” has a higher score to “car” than ”Toyota” in the thesaurus, BM25T will score

Document 1 higher than Document 2, suggesting that the neural ranking model will do the

same. This ranking behavior can be problematic since it penalizes some entities. When the

brand names are removed, both documents contain the same information and are not more

related to any particular brand name.

To verify if such relevance bias is also present in state-of-the-art relevance ranking mod-

els, we designed an experiment. We evaluated how the scoring of a document changes when

a brand name mentioned within a document, relevant to a query containing the generic noun

“car,” is swapped for another brand name.

From the training split of the MS MARCO passage collection, we selected queries that

include the term “car” but exclude any car brand names or content specific to particular
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brands. We then selected documents for each of the queries that satisfy the following

criteria:

1. The document is predicted to be relevant to the query.

2. The document contains only one brand-name mention.

3. When the brand-name is removed, there is no information that is more related to any

particular brand-name.

We used the cross-encoder model for filtering the relevant predicted documents. To

filter the documents to satisfy the second and third criteria, we employed keyword-based

filtering, ChatGPT-based filtering, followed by manual annotations. For the keyword filter-

ing, we built a list of car models and excluded the documents that contain any of the model

names. For ChatGPT-based filtering, we masked the brand name mention of the document

and prompted, “Does this document contain any brand specific information?”, and if the

answer was yes, the document was excluded. This process resulted in 382 query-document

pairs, with 29 car brand names considered.

For each query-document pair, the brand name mentioned in the document was replaced

by each of the 29 brand names in turn. All the resulting combinations were scored by neural

ranking models, yielding a score array of 382 × 29, where each row represents a query-

document pair and each column represents a brand name. In other words, the element at

position (i, j) in the array represents the score assigned by the neural ranking model to the

i-th query-document pair when the brand name is replaced by the j-th brand name. The

element (i, i) represents the original brand that appeared in the document.

To obtain a single score per brand name, we averaged the scores across the 382 query-

document pairs (i.e., along the first axis of the score array). This resulted in a vector of

length 29, where each element represents the average score assigned by the neural ranking

model to a specific brand name across all the query-document pairs.
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Figure 6.4: The left axis shows the scores in our relevance thesaurus for the query term
“when”, and the document term as years from 2000 to 2024. The right axis shows the scores
from the cross encoder model for query-document pairs with “when” and year mentions.

We then measured whether the average score of each brand name based on neural rank-

ing models correlates with the scores from the relevance table. If a neural model exhibits

the bias suggested by the representation, we expect a corresponding bias in the modified

documents. If there were no bias in a model, there should be no correlation. Recall that the

relevance thesaurus scores were derived from the cross-encoder model only.

Table 6.8 shows the correlation values (fidelity) obtained for each of the ranking mod-

els. The results demonstrate that the scores from the thesaurus correlate with scores from

the neural ranking models, indicating that our relevance thesaurus can be used to identify

possible biases of ranking models.

When-year bias We found temporal bias that different years have different scores for

the query term ‘when’. In Figure 6.4, most years have high relevance scores to query the

term ‘when’ in relevance thesaurus, but the score sharply decreased around 2016, the year

when the MS MARCO dataset was constructed.

To validate if this bias is in neural models, We measured the predicted scores from the

neural ranking models with the query being “when did North Carolina join IFTA” and the

document being “year North Carolina join IFTA”.
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Table 6.8 shows the correlation between the scores from the ranking model and the

relevance thesaurus.

The results show that the neural ranking models exhibit a similar temporal bias as the

relevance thesaurus, where documents mentioning years around 2016 are scored lower

in relevance for queries containing the term “when”. This correlation confirms that our

relevance thesaurus faithfully captures the biases underlying the neural models.

We hypothesize that this bias exists because the current year is often less informative as

an answer to “when” questions, as more specific temporal information is typically expected.

While this behavior may be effective for the data in 2016, it could lead to suboptimal

performance if the current year is different, such as 2024. Therefore, understanding the

existence of such biases and appropriately handling them is essential for optimal ranking

performance across different time periods.

104



6.4 Relevance Thesaurus Entries

To provide some insights into the relevance thesaurus, we list a few entries from our rel-

evance thesaurus. We list the terms that we consider influential in the relevance thesaurus.

An influence score for entry (qt, dt, PaRM(qt, dt)) is computed as

Influence = idf(qt) · tf(qt) · tf(dt) · PaRM(qt, dt)

where idf is inverse document frequency, tf is the term frequency in the collection, and

PaRM(qt, dt) is the relevance score for qt and dt. We list the top 100 terms which have the

highest influence scores, along with their PaRM scores.
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Query Term Doc Term Rel.Score

how average 0.52

long years 0.70

how per 0.52

how usually 0.57

how hour 0.59

how days 0.60

long hour 0.70

how depend 0.52

long month 0.69

long days 0.85

long week 0.73

how minutes 0.70

how typically 0.57

old age 0.54

how costs 0.56

long minutes 0.77

cost price 0.72

when april 0.64

when july 0.51

when january 0.60

when march 0.65

how approximate 0.67

when june 0.57

call phone 0.62

Query Term Doc Term Rel.Score

how length 0.58

when august 0.58

when september 0.55

numbers number 0.60

meaning definition 0.50

costs cost 0.71

much costs 0.59

when february 0.65

when november 0.52

year april 0.59

long length 0.69

year january 0.56

cost costs 0.89

year march 0.61

salary pay 0.51

phone cell 0.57

costs price 0.67

length days 0.61

pay costs 0.51

number numbers 0.64

price costs 0.68

pay salary 0.59

how median 0.61

cell phone 0.60
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Query Term Doc Term Rel.Score

cost fee 0.57

treat treatment 0.52

paid pay 0.53

weather temperature 0.87

year february 0.58

length minutes 0.67

food meat 0.59

average median 0.55

phone contact 0.61

contact phone 0.69

long minute 0.62

how seconds 0.56

fee costs 0.53

definition noun 0.69

definition dictionary 0.56

means noun 0.55

points point 0.51

refer noun 0.50

climate temperature 0.77

long seconds 0.66

weather cold 0.60

meaning noun 0.61

minute minutes 0.51

how cent 0.52

Query Term Doc Term Rel.Score

point points 0.52

die death 0.56

food restaurant 0.57

food grain 0.52

word noun 0.57

fast speed 0.62

open opening 0.54

waters water 0.50

animal dog 0.58

call calling 0.67

define noun 0.61

long duration 0.60

minutes minute 0.53

weigh weight 0.56

how min 0.51

woman women 0.55

mean noun 0.55

call telephone 0.62

run running 0.63

bases base 0.52

climate weather 0.71

mobile phone 0.58

words noun 0.57

pay wage 0.66
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Query Term Doc Term Rel.Score

technique method 0.57

weather winter 0.70

periods period 0.57

animal dogs 0.68

food dish 0.60
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6.5 Conclusion

We explored using a relevance thesaurus as a global explanation for neural ranking

models. We proposed an effective approach for constructing the thesaurus by training a

partial relevance model (PaRM). The evaluation on multiple information retrieval datasets

demonstrated that augmenting the acquired relevance thesaurus into BM25 enhances its

ranking effectiveness and fidelity to the targeted neural ranking model, indicating the ef-

fectiveness of the proposed approach. Although the thesaurus does not entirely capture

all the differences between BM25 and the neural models, it serves as a valuable starting

point for understanding their characteristics. Furthermore, the thesaurus revealed interest-

ing corpus-specific features of the state-of-the-art ranking models, such as treating “a” at

the end of a word as a quotation mark or apostrophe due to an encoding error during corpus

construction.

It also exposed biases in preferring certain car brand names over others when respond-

ing to queries with the term “car”, as well as assigning different scores to different years

for the query term “when”, with years around 2016 receiving significantly lower scores.

These findings highlight the value of the thesaurus relevance thesaurus in uncovering id-

iosyncrasies and biases encoded within the models, which can guide efforts to improve

their fairness and robustness across diverse contexts.
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CHAPTER 7

CONCLUSION

7.1 Contributions

This dissertation has explored methods for enhancing the interpretability of neural nat-

ural language processing models, with a focus on natural language inference (NLI) and in-

formation retrieval tasks. By extracting token-level semantic matching and alignment ratio-

nales, this research demonstrates the feasibility of representing complex decision-making

processes in neural models without relying on additional human annotations.

In the first part, we introduced classification role labeling (CRL) to represent token-level

semantic understanding in NLI models (chapter 3 and 4). We show that perturbation-driven

explanations can be made computationally efficient using the weak supervision training and

multi-task learning of an explanation generator and NLI predictor (chapter 3). The pro-

posed model has practical applications, such as enabling manual verification of the model

classification decisions.

In chapter 4, CRL is applied to the Conditional NLI (Cond-NLI) task, which aims to

identify tokens indicating contradictory aspects and different conditions in sentence pairs.

We proposed the Partial ATtention model (PAT) and demonstrate its effectiveness in Cond-

NLI.

In the second part of the dissertation, we focused on the ad-hoc retrieval task and ex-

plored techniques for explaining the mechanisms behind query-document relevance scoring

functions (chapter 5 and 6). Our investigation into alignment rationales in chapter 5 reveals

the limitations of perturbation-based evaluations. We proposed refinements to these evalu-
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ations through relative comparisons or by substituting comparable tokens, showing higher

discrimination than simple deletion only ones.

In chapter 6, we propose building a relevance thesaurus to provide global explanation

for neural retrieval models, representing their semantic matching behavior. We adapt the

PAT model for this task by training it as a Partial Relevance Model (PaRM) and generating

relevance thesaurus entries from its predictions. The resulting relevance thesaurus showed

higher fidelity in explaining the neural retrieval modelmas. Moreover, the thesaurus lead to

discovery of interesting biases underlying the model, demonstrating the practical implica-

tions of the explanations.

In conclusion, the contributions of this dissertation provide a starting point for several

future research directions in the field of interpretable natural language processing. By ex-

ploring these directions, we can continue to advance the development of more transparent,

efficient, and trustworthy AI systems.

7.2 Future work

This dissertation opens up several promising research directions.

7.2.1 Bi-partition for Generative Language Model Training

In chapter 4, we introduced the strategy of partitioning an input sequence into two sub-

sets. While this strategy was originally proposed for 3-way classification (NLI), it can be

applied to generative language model training, which can be considered as a |V |-way clas-

sification, where |V | is the vocabulary size. In this strategy, a token sequence is partitioned

into two parts, and each partition is encoded in isolation from the other. At each token

position, the two partitions independently predict probability distributions over the vocabu-

lary. These two probability distributions are then combined to generate the final probability

distribution for the next token prediction.
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Once this model is trained, it allows attributing the next token predictions to subsets of

tokens. Then, we can use a token-subset enumeration strategy similar to what was used for

Cond-NLI (Equation 4.6) to associate which input tokens are responsible for a particular

next token prediction. This approach will be more reliable than taking the tokens with

high attention scores as causally related because, in the architecture without partitioning,

the corresponding token representation is already contextualized and cannot ensure if the

token representation is highly affected by other tokens.

7.2.2 Thesaurus with Concept Hierarchy

The current relevance thesaurus has two notable limitations. First, it lacks clustering

mechanisms that can group similar terms and represent the relevance relation between the

groups. For a query term like “much”, the relevance thesaurus contains numerous relevant

document terms that represent numbers. Interpreting them as independent entries is inef-

ficient and fails to reveal which terms are treated similarly in the neural networks. The

ability to correctly group terms with similar internal processing, such as sharing the same

activation neurons that are causally related to relevance predictions, would be invaluable

for providing insights into the nature of the Transformer model.

Secondly, the thesaurus is limited to terms that are single tokens according to the

Lucene tokenizer. The PaRM architecture itself is capable of handling longer sequences,

as it is trained with variable-length sequences in the first stage of training. It is likely that

associating “how much” to “$100” will have higher fidelity than only associating “how” to

it.

7.2.3 Knowledge Distillation for Efficient Cond-NLI

The proposed method for token-level prediction using Cond-NLI (chapter 4) is com-

putationally inefficient, as it requires enumerating windows of n-grams and encoding each

of them with a Transformer. We expect that this token-level prediction can be distilled to
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another model to generate token-level predictions in a single Transformer encoding, similar

to what we have proposed in chapter 3.

7.2.4 Improving effectiveness of BM25T

The current BM25T method has a few factors that likely limit its effectiveness in reach-

ing the performance of neural ranking models. For BM25T to be improved as a practical

ranking method or a high-fidelity explanation, many more factors need to be considered.

First, each query term is only compared to one document term. In neural models,

having more topically related terms to the query term is likely to increase the relevance

score when the query term itself already exists in the document. Our relevance thesaurus

also contains many topically related terms with low but meaningful scores. Thus, an ideal

explanation model or term-level ranking model would require considering the effects of

multiple different document terms and accumulating them into a single score.

Second, term locations are not considered. In neural ranking models, merely chang-

ing the order of the sentences or adding new sentences changes the score of the relevant

documents.

Thus, considering term locations is likely to be important for sparse retrieval models.

Optimizing the term-based matching model can lead to the development of more efficient

and interpretable sparse retrieval models.

7.2.5 Efficient BM25T

BM25T has potential as a stand-alone ranking method. However, its implementations

are not yet optimized for performance. Given a query term, enumerating all the posting lists

for the relevant terms for this query term increases the number of considered documents and

results in low efficiency. Thus, more efficient mechanisms for determining which posting

lists to consider are required. For example, only the relevant document terms with high

relevance scores can be considered in the first phase retrieval, and document terms with

low relevance scores can be considered later for the top-ranked documents.
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