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Abstract

Multilingual models aim for language-invariant
representations but still prominently encode
language identity. This, along with the scarcity
of high-quality parallel retrieval data, limits
their performance in retrieval. We introduce
LANCER, a multi-task learning framework that
improves language-invariant dense retrieval by
reducing language-specific signals in the em-
bedding space. Leveraging the notion of linear
concept erasure, we design a loss function that
penalizes cross-correlation between representa-
tions and their language labels. LANCER lever-
ages only English retrieval data and general
multilingual corpora, training models to focus
on language-invariant retrieval by semantic sim-
ilarity without necessitating a vast parallel cor-
pus. Experimental results on various datasets
show our method consistently improves over
baselines, with extensive analyses demonstrat-
ing greater language agnosticism.

1 Introduction

Multilingual text encoders (Devlin et al., 2019;
Conneau et al., 2020; Xue et al., 2021) aim to
provide representations that capture the essential
meaning of texts, irrespective of language iden-
tity. These models show promise in information re-
trieval (IR) tasks, outperforming traditional lexical-
based methods like BM25 (Ni et al., 2022; Gao
and Callan, 2022; Yates et al., 2021). Despite their
potential, these models often underperform with
unseen or underrepresented languages (Joshi et al.,
2020; Nooralahzadeh et al., 2020).

This paper explores strategies to enhance lan-
guage invariance in multilingual retrieval set-
tings. We introduce Language Concept Era-
sure for Language-invariant Dense Retrieval
(LANCER), a multi-task learning framework de-
signed to induce language invariance in the repre-
sentation space of dense retrieval models. We focus
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Figure 1: nDCG@10 decreases while the number of
languages used in queries and documents increases. Re-
sults based on parallel data from LAReQA.

particularly on the challenges posed by English-
only fine-tuning, where a multilingual model is
fine-tuned using only English queries and docu-
ments. While the ideal is for document relevance
to transcend language barriers, training regimes
typically lack comprehensive multilingual cover-
age. This often leads to a performance gap between
languages well-represented in the training data and
those that are not, exacerbated by the scarcity of
reliable relevance judgments in many languages.

Language bias (Wu and Dredze, 2020) and data
scarcity (Litschko et al., 2022) are known as lim-
iting factors of the use of dense retrieval model
performance on monolingual (non-English), cross-
lingual, and multilingual1 retrieval tasks. This
degrading performance is illustrated in Figure 1,
which presents retrieval results on the LAReQA
dataset (Roy et al., 2020), a retrieval dataset with
parallel queries and documents in 11 languages.
When the number of languages on which models
are evaluated is increased, performance degrades
across all models.

Our approach, LANCER, regularizes the fine-

1To avoid confusion, we define “multilingual retrieval” as
the task of retrieving information where multiple languages
are involved in either the query, the document, or both. Con-
versely, we refer to tasks where both the query and the docu-
ment are in the same language as “monolingual retrieval.”



tuning process of the retrieval model by an auxil-
iary language invariance objective. Building upon
the concept of guardedness (Ravfogel et al., 2023;
Belrose et al., 2024), the inability to linearly pre-
dict a given concept (in our case, language identity)
from a representation, our regularization scheme
encourages guarded representations with respect
to language identity. Specifically, we penalize the
correlation between the representations and the
language of the text that is represented. This aux-
iliary objective can be computed using any texts
that are annotated by their language, i.e., it can
make use of any multilingual non-parallel corpus,
and does not require any specialized parallel data
or human-annotation of semantic similarity. As
such, it is particularly useful for languages that are
not well-represented in commonly used retrieval
datasets.

The dense retrieval models developed using
our framework exhibit reduced language bias,
improving all three backbone encoders on two
multilingual retrieval datasets. Benefiting from
language-invariant representations, these models
also show substantial improvements in monolin-
gual and cross-lingual retrieval tasks. Notably,
on MIRACL (Zhang et al., 2023b), LANCER im-
proves mDPR by 13.6% and mContriever by 32.5%
at nDCG@10, also outperforming an LLM-based
data augmentation method2.

2 Related Works

2.1 Language-invariant Dense Retrieval

Multilingual versions of PLMs (mPLMs), such as
mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020) and mT5 (Xue et al., 2021), allow
for the joint learning of representations for many
languages. Fine-tuning these models with retrieval-
specific data enables them to learn the knowledge
of query-document matching and perform retrieval
tasks across diverse linguistic settings (e.g., mono-
lingual, cross-lingual, and multilingual). Follow-
ing the dense retrieval paradigm, mDPR (Zhang
et al., 2021) extends English DPR (Karpukhin et al.,
2020) to the multilingual setting by substituting
the backbone encoder for mBERT. Later, mCon-
triever (Izacard et al., 2022) adopts an unsuper-
vised contrastive pre-training objective using data
from mC4 (Xue et al., 2021). Cross-lingual pre-
training tasks, such as translation ranking tasks, are

2The code for model training available at https://github.
com/zhiqihuang/lancer

applied prior to retrieval fine-tuning to improve
cross-lingual alignment (Feng et al., 2022; Ab-
ulkhanov et al., 2023; Lin et al., 2023). However,
compared to a large number of possible language
configurations, the limited availability of multilin-
gual retrieval training data significantly impacts the
performance of dense retrieval models.

Some studies focused on building multilin-
gual datasets for better training or evaluation.
Datasets based on human annotations, such as Neu-
CLIR (Lawrie et al., 2024) and LAReQA (Roy
et al., 2020), have been proposed for model evalua-
tion. Large-scale synthetic training data generation
involves two main simulation strategies: translating
English retrieval datasets into target languages and
building pseudo-labels using a corpus in target lan-
guages. For example, Sasaki et al. (2018) proposed
a large cross-lingual retrieval collection, WikiCLIR.
It uses the title of articles in target languages linked
from Wikipedia pages as the query to simulate rel-
evance. Bonifacio et al. (2021) built a multilingual
passage ranking dataset, mMARCO, by translating
the queries and passages in MS MARCO into the
target language using NMT models. Thakur et al.
(2023) leverage LLMs to generate queries in target
languages with minimal supervision. Since lan-
guage bias also exists in the tools used for synthetic
data generation – e.g., neural machine translation
(NMT) models for translating (Wang et al., 2021)
or large language models (LLMs) for query genera-
tion (Yu et al., 2023) – it is hard to ensure uniform
data quality across languages (Navigli et al., 2023).
In this work, instead of resorting to creating new
data, we explore a different approach by reducing
the language-specific information when training
dense retrieval models.

2.2 Concept Erasure
The problem of linear concept erasure falls un-
der the scope of information removal, typically
tackled using either adversarial methods (Edwards
and Storkey, 2016; Xie et al., 2017; Zhang et al.,
2018) during training or post-hoc linear meth-
ods (Haghighatkhah et al., 2022). Adversarial
methods incorporate a gradient-reversal layer to
encourage representations that do not encode the
protected attribute. However, Elazar and Goldberg
(2018) demonstrated that these methods do not
completely eliminate all related information, al-
lowing new adversaries to recover it. As a more
tractable alternative, linear methods involve iden-
tifying and neutralizing a linear subspace associ-

https://github.com/zhiqihuang/lancer
https://github.com/zhiqihuang/lancer


ated with the target concept using algebraic tech-
niques such as PCA (Kleindessner et al., 2023),
orthogonal rotation (Dev et al., 2021), or spectral
approaches (Shao et al., 2023b,a). We adopt the
concept of guardedness as defined by Ravfogel
et al. (2023) to develop a loss function specifically
designed for the language concept erasure task in
the training of dense retrieval models.

Towards language-invariant models, prior works
primarily focus on supervised embedding disentan-
glement and unsupervised matrix decomposition.
Embedding disentanglement mainly leverages the
same semantics of parallel sentences to separate the
original representation from multilingual encoders
into language-specific and language-invariant em-
beddings (Tiyajamorn et al., 2021). The unsuper-
vised approach employs singular value decomposi-
tion (SVD) to extract the most significant vectors
from the representation matrix as the language-
specific factor (Yang et al., 2021; Xie et al., 2022).

3 Methodology

Our objective is to diminish the language-
dependent features within the embedding space
of a dense retrieval model, enabling it to produce
language-invariant representations across various
linguistic contexts while preserving effective re-
trieval results. The guardedness objective (Rav-
fogel et al., 2023)—the inability to linearly pre-
dict the concept from the representation—has been
shown to be equivalent to having a zero cross-
correlation matrix between the representations and
the concept labels (Belrose et al., 2024). We
take inspiration from this condition, and propose a
correlation-based loss function that penalizes any
linear correlation between the language labels and
the representations, while at the same time, we aim
to preserve effective retrieval results in the training
language (that is, English).

3.1 Preliminary: Dense Retrieval Models

A dense retrieval model consists of a query encoder
EQ and a document encoder ED to map the query
q and document d into k-dimensional dense vectors
hq and hd, respectively. The model computes the
relevance score of q and d using the dot product as

s(q, d) = hq · h⊤
d

For a given query, documents from a collection
{d}Ni=1 are ranked based on the relevance scores.
Recent works in dense retrieval models mostly

1. Input features are taken from mPLMs.
Models mBERT XLM-R mT5 mE5
Accuracy 98.1 96.1 97.2 98.0

2.Input features are taken from dense retrievers.
Models mDPR (mBERT) mDPR (mT5) mContriever LaBSE
Accuracy 97.9 96.7 98.0 81.6

Table 1: Language identification accuracy of logistic
regression on mPLMs and retrieval models. Train test
splits are sampled from mC4 dataset.

adopt multilingual pre-trained language models
(mPLMs) as backbone encoders for feature extrac-
tion. Typically, these models use Siamese architec-
ture (Xiong et al., 2021) for the query and docu-
ment encoders, sharing weights to ensure consis-
tent processing. Based on output representations,
some models, such as mDPR, utilize the represen-
tations of the leading [CLS] token as the dense
vector; others, such as mContriever, take the pool-
ing of all token representations as the dense vector.

3.2 Language Identification

Texts can be similar due to various factors, such
as language identity, syntactic structure, or seman-
tics. In most search scenarios, we aim to retrieve
documents based on their semantics, where the
relevance between a query and a document is in-
dependent of the language in which they are ex-
pressed (Opitz and Frank, 2022). For example, if a
document is labeled relevant to a query in English,
translating both the query and the document into
Arabic should not alter the judgment of their rel-
evance. This principle highlights the importance
of language-independent factors in determining the
relevance of search results.

However, we find that mPLMs and the retrieval
models built upon them still retain strong language-
specific signals in their output representations. As
shown in Table 1, we use the dense vectors from
16 languages as input features to train a logistic
regression classifier for predicting language labels.
The high accuracy achieved on a held-out test set
indicates that the language factor remains strong
on the dense vectors used for relevance scoring.
This suggests that despite the intent to transcend
language-identity, current models still embed sig-
nificant language-specific information, which we
hypothesize could impact their effectiveness in in-
formation retrieval tasks across diverse linguistic
settings.



3.3 Language Concept Erasure

Based on this observation, we propose language
concept erasure to reduce the influence of language
in relevance scoring. Specifically, our goal is to
prevent any linear classifier from detecting the lan-
guage label given the dense vectors. Suppose X ∈
Rk is the multilingual dense vector generated by
the backbone encoder, and Z (the one-hot labels),
taking values in Z = {z ∈ {0, 1}n | ∥z∥1 = 1},
is the language labels tied to input instances. We
adopt the idea of linear guardedness from Ravfo-
gel et al. (2023) to formally define the language
concept erasure.

Definition 3.1. Let V = {η(·;θ) : Rk → Rn |
θ ∈ Θ} be the class of all linear predictors, taking
form η(X) = WX + b for some weight matrix
W ∈ Rn×k and bias b ∈ Rn. X linearly guards
Z if no classifier in V can outperform a constant
function at predicting Z.

We say language concept is erased from dense
vectors if linear guardedness is achieved between
X and Z. Belrose et al. (2024) proved that the def-
inition of linear guardedness is equivalent to zero
covariance between every component of X and ev-
ery component of Z.

Theorem 3.1. Suppose L is convex loss functions
defined on (η(X), Z). Then, if the cross-covariance
matrix ΣXZ, whose (i, j)th entry is Cov(Xi,Zj),
is a zero matrix, the constant predictor cannot be
improved upon.

Proof: See Belrose et al. (2024), theorem 3.2.
We can also use Theorem 3.1 to establish a

concrete condition for language concept erasure.
Therefore, if (X,Z) satisfies zero cross-covariance
matrix, then the dense retrieval model prevents any
linear classifier from detecting languages from its
outputs.

3.4 Multi-task Learning

In Belrose et al. (2024), it is shown that there is a
closed-form solution for a projection matrix that
ensures the condition of Theorem 3.1 is satisfied
while minimally modifying the pre-trained repre-
sentations (in the L2 distance). In this work, we use
this solution as a baseline. In the method proposed
here, we instead adopt a regularization scheme that
encourages the zero-covariance condition during
training. As we do not work on the pre-trained rep-
resentations directly but rather adapt them simulta-
neously for the retrieval and language-invariance

Figure 2: LANCER training objectives

objectives, we can achieve a more expressive solu-
tion.

During training, the model takes two types of
data inputs in each batch:
(i) retrieval data, which includes triplets consist-
ing of queries (Q), positive documents (D+), and
negative documents (D−). We calculate the rank-
ing loss, LR, through contrastive learning (Chen
et al., 2020):

LR =
∑
q∈Q

∑
d+∈D+

− log
es(q,d

+)

es(q,d+) +
∑

d−∈D−
es(q,d−)

(ii) multilingual data, which is a group of pas-
sages (p) with language label (z), {(pi, zj)mi=1}nj=1,
where n is the number of languages and m is the
number of passages per language. We compute the
cross-covariance matrix between dense vectors of
input passages X, and language labels Z.

ΣXZ = E[(X− X̄)(Z− Z̄)⊤]

The scale of the embedding values significantly
influences the magnitude of covariance. Unnormal-
ized outputs from some encoders result in covari-
ance values that vary widely across different input
instances. Therefore, we standardize the covari-
ance matrix into the correlation matrix by dividing
the standard deviations: ρXZ = ΣXZ/σXσZ. The
concept erasure loss is defined as the mean absolute
value of the correlation matrix:

LC =
1

nk

k∑
i=1

n∑
j=1

|corr(Xi,Zj)|

These two types of data and their corresponding
losses complement each other effectively. The



concept erasure task effectively removes language-
specific information from the dense vectors, en-
abling the retrieval task to concentrate on language-
invariant knowledge. Simultaneously, the retrieval
task, which focuses on semantic matching, ensures
that the model maintains meaningful representa-
tions throughout the training. This balance pre-
vents the concept erasure task from degenerating.
Finally, as shown in Figure 2, we add the primary
ranking loss LR for retrieval and the correlation
loss for concept erasure LC to conduct the training
of dense retrievers.

L = LR + LC

Training data requirement. Because the language
label is an intrinsic attribute separate from seman-
tic meaning, the language concept erasure task of
LANCER has minimal data requirements for multi-
lingual input. A clean corpus from each language is
sufficient to support the running of this task. On the
other hand, as the retrieval task is less influenced by
language-specific information, it can utilize query-
document pairs in any language. In this work, we
only use retrieval data in English for training.

4 Experimental Setup

4.1 Modeling Details
We apply LANCER to multilingual dense re-
trieval models with different degrees of multilin-
gual pre-training: mBERT (mDPR) (Zhang et al.,
2021), mContriever (Izacard et al., 2022), and
LaBSE (Feng et al., 2022). The pre-training of
mBERT is only an extension of masked language
modeling (MLM) and next sentence prediction
(NSP) to 104 languages. Based on mBERT, mCon-
triever is further pre-trained on unsupervised con-
trastive learning over 29 languages using mC4
dataset. LaBSE, also built on mBERT, is further
pre-trained on the translation ranking task, leverag-
ing millions of parallel text.

To compare with existing baselines, we use the
MS MARCO passage ranking dataset (Nguyen
et al., 2016) as the retrieval training data. Note
that there is no existing LaBSE-based dense re-
triever built on MS MARCO, so we created one by
fine-tuning LaBSE on MS MARCO. For language
concept erasure, we use a multilingual corpus con-
taining 16 languages from different language fam-
ilies3. We sample 3M textual data per language

3List of training languages (ISO code): ar, bn, de, en, es,
fa, fi, fr, hi, id, ja, ko, ru, te, th, zh

from the mC4 (Xue et al., 2021) dataset. We set
the batch size to 64 for the retrieval task and 256
(16 examples per language) for the concept era-
sure task. Based on the size of the MS MARCO
train split, we train each model for 4 epochs with
a learning rate of 2e−5. To monitor the language
invariance during training (Section 5.3), we create
a small held-out multilingual dataset for language
label recovery using a logistic regression classifier.
After every 1600 steps, we build a new classifier
based on the current model outputs.

To evaluate language-invariant dense retrievers
refined by LANCER, we conduct experiments on
various benchmark retrieval datasets covering mul-
tilingual, cross-lingual, and monolingual (in many
languages) tasks. Some of the evaluation datasets
include training splits. To assess language agnosti-
cism, we do not perform any additional fine-tuning
using those splits to keep zero-shot evaluations of
our approach and all compared methods.

4.2 Datasets and Metrics

4.2.1 Multilingual

CLEF. We evaluate searching a multilingual col-
lection using English queries. The data is from
the Cross-Language Evaluation Forum (CLEF)
2000-2003 campaign for bilingual ad-hoc retrieval
tracks (Braschler, 2002). We include documents in
French, German, and Italian to build a multilingual
collection with 241K documents. Among 200 topic
queries in English, we only consider a topic with
relevant documents in all three languages as a valid
query, leading to 133 queries in total.

LAReQA. We evaluate the retrieval performance
when the query and collection are both multilin-
gual. LAReQA (Roy et al., 2020) is a benchmark
for language-invariant answer retrieval from a mul-
tilingual candidate pool. Each query appears in 11
languages4 and has 11 parallel relevant documents.

4.2.2 Cross-lingual and Monolingual

XOR-Retrieve. We evaluate searching English
collection using queries in another language. XOR-
Retrieve (Asai et al., 2021) is a benchmark for
evaluating cross-lingual retrieval systems. It in-
cludes 7 cross-lingual tasks between target lan-
guage queries and English documents. The corpus
contains 18.2M passages with a maximum of 100
word tokens from the English Wikipedia.

4Languages in LAReQA (ISO code): ar, de, el, en, es, hi,
ru, th, tr, vi, zh



XTREME-UP. XTREME-UP (Ruder et al., 2023)
focuses on extremely low-resource languages. Sim-
ilar to XOR-Retrieve, it includes 20 cross-lingual
tasks of queries in low-resource language and doc-
uments in English.

MIRACL. We evaluate monolingual retrieval
across multiple languages. MIRACL (Zhang et al.,
2023b) has a broad language coverage for evaluat-
ing monolingual retrieval. Developed on top of Mr.
TYDI (Zhang et al., 2021), MIRACL comprises
data in 18 languages, with both queries and docu-
ments presented in the same language. Our training
covers 16 languages in the MIRACL dataset, ex-
cept German and Yoruba.

4.2.3 Metrics

We report mAP and nDCG@10 for both multi-
lingual evaluation datasets (CLEF and LAReQA).
Following prior work (Zhang et al., 2023a; Li et al.,
2022), we evaluate Recall@5kt and Recall@2kt
on XOR-Retrieve, nDCG@10 and Recall@100 on
MIRACL, and MRR@10 on XTREME-UP.

4.3 Compared Methods

Across all evaluations, we compared the perfor-
mance of models incorporating LANCER to those
without, e.g., mDPR+LANCER vs. mDPR. For
multilingual evaluation, we compare LANCER
with other language debiasing approaches, includ-
ing post-hoc methods and knowledge distillation
framework.

LSAR: As an unsupervised method, LSAR (Xie
et al., 2022) is based on matrix decomposition to
identify a language-invariant subspace and then
directly projects the original multilingual embed-
dings onto that subspace to reduce the effects of
language on downstream tasks.

LEACE: Also worked as an unsupervised method,
LEACE (Belrose et al., 2024) derives a projection
in closed-form to prevent linear classifiers from
detecting a concept. We apply it upon baseline re-
trievers to reduce the effects of language concepts.

KD-SPD: Based on knowledge distillation, KD-
SPD (Huang et al., 2023) designed a language-
aware decomposition prompt for the encoder to
transfer knowledge from an English retriever to
multiple languages. Using parallel corpora to cre-
ate supervision signals, this method is more re-
source intensive than both post-hoc baselines and
LANCER.

Method
CLEF LAReQA (Full) LAReQA (Sampled)

mAP ↑ nDCG@10 ↑ mAP ↑ nDCG@10 ↑ mAP ↑ nDCG@10 ↑

KD-SPD 22.0 41.6 48.4 50.4 55.5 60.0

mDPR 20.2 34.6 25.5 31.7 41.0 41.6
+ LSAR 19.8 35.8 34.0 39.2 48.9 53.3
+ LEACE 18.9 34.6 33.4 38.7 48.9 53.2
+ LANCER 21.6 39.1 39.3 43.3 53.1 57.7

mContriever 27.2 46.1 31.1 37.3 48.8 52.5
+ LSAR 26.9 47.4 38.8 43.8 55.8 60.2
+ LEACE 28.3 48.8 39.1 44.2 56.3 60.7
+ LANCER 30.0 50.7 42.6 47.6 58.4 62.8

LaBSE 24.0 44.2 62.9 64.0 72.4 76.2
+ LSAR 22.8 42.5 61.4 62.1 70.9 74.9
+ LEACE 23.9 44.6 61.2 62.0 71.3 75.2
+ LANCER 25.8 47.0 64.5 65.2 74.5 78.1

Table 2: Results for multilingual retrieval on CLEF and
LAReQA. LAReQA (Full) includes parallel queries and
documents in 11 languages. LAReQA (Sampled) refers
to randomly selecting a language from 11 languages for
each query and document. Results are averaged over
five folds. Our approaches are highlighted in light blue.

For cross-lingual and monolingual tasks, we in-
clude results from SWIM-X (Thakur et al., 2023),
a synthetic query generation method using LLMs.
It utilizes in-domain documents to generate syn-
thetic queries and then performs fine-tuning to
build multilingual dense retrieval models.

5 Experimental Results

5.1 Retrieval Performance

Multilingual. Table 2 lists the multilingual eval-
uation results. We observe that when LANCER
is applied, all three baseline models show sub-
stantial improvements on two datasets in terms
of both mAP and nDCG@10. Note that retrieval
data used for training remained consistent across
these experiments. Because of the language con-
cept erasure, models built with LANCER have
less language bias, leading to better performance
on multilingual tasks. Moreover, LANCER out-
performs post-hoc methods (LSAR and LEACE).
Compared with the knowledge transfer method,
LaBSE+LANCER uniformly improves KD-SPD,
while mContriever+LANCER also performs bet-
ter except on LAReQA (Full). Lastly, from a task
perspective, LAReQA presents a greater challenge
than CLEF due to the inclusion of more languages
in its queries and documents. Because LaBSE is
pre-trained on a wide range of languages using
parallel sentences, mContriever is able to surpass
LaBSE on CLEF but falls behind on LAReQA.

Cross-lingual. Table 3 and Table 4 list cross-
lingual results on XOR-Retrieve and XTREME-UP



Method Avg. (↑) ar bn fi ja ko ru te

SWIM-X (500K) 59.0 54.0 67.4 59.2 52.7 55.1 54.4 70.2

mDPR 39.3 34.3 35.5 45.2 40.2 36.5 43.9 39.5
+ LANCER 41.4 36.2 37.8 47.1 37.8 45.3 42.2 43.3

mContriever 44.0 37.5 38.2 50.6 41.1 37.2 49.8 53.8
+ LANCER 45.7 43.0 35.9 56.4 39.4 46.0 43.5 55.5

LaBSE 56.8 56.0 63.5 57.6 50.2 50.2 48.1 71.8
+ LANCER 57.2 54.4 62.5 58.3 51.0 52.6 47.3 74.4

Table 3: Results showing Recall@5kt (%) for cross-
lingual retrieval on XOR-Retrieve dev.

respectively. On XOR-Retrieve, LANCER demon-
strates competitive performance compared to cor-
responding baseline models, improving 2.1 points
on mDPR and 1.7 points on mContriever. When
applied to LaBSE, LANCER aligns closely with
the baseline. SWIM-X performs the best on XOR-
Retrieve. However, SWIM-X utilizes in-domain
data to generate cross-lingual training pairs, while
our experiments are completely zero-shot evalua-
tions. For collections with strong domain features
like Wikipedia, synthetic data not only supports
language-specific training but also acts as a form
of domain adaptation, contributing to this strong
performance. For results on Recall@2kt, refer to
the Appendix B.

On XTREME-UP, LANCER consistently en-
hances performance over the baseline models. Both
LaBSE and LaBSE+LANCER surpass SWIM-X.
The performance of SWIM-X suggests that using
LLMs for data augmentation does not always yield
high-quality data, particularly for tasks involving
low-resource languages.

Monolingual. Table 5 lists monolingual results
on MIRACL, covering 18 languages. Compared
to cross-lingual, LANCER improves the corre-
sponding baseline models on monolingual tasks
by a large margin. Specifically, in terms of
nDCG@10, LANCER achieves an improvement
of 5.7 points (13.6%) over mDPR, 12.3 points
(32.5%) over mContriever, and 2.5 points (5.5%)
over LaBSE. Surprisingly, when LANCER is ap-
plied, all three models outperform SWIM-X. This
suggests that LANCER has robust zero-shot ca-
pability in monolingual tasks, highlighting its ef-
fectiveness without retrieval training for specific
languages. From the data perspective, this also sug-
gests that when language bias is reduced in embed-
ding space, retrieval knowledge provided by MS
MARCO data (English) is more comprehensive
than language-specific synthetic data generated by

Figure 3: Compared to corresponding baselines,
LANCER shows more robust nDCG@10 against the
increase of languages. Results based on LAReQA.

Figure 4: Training loss of logistic regression (Left) and
prediction accuracy (Right) for language label recovery.

current LLMs. For results on Recall@100, refer to
the Appendix A.

5.2 Effect of Multilingualism
In Figure 1, we show the language bias in multi-
lingual retrieval by increasing the number of lan-
guages used in queries and documents. Here, we
replicate the experiment with models trained using
LANCER, observing how their performance shifts
as more languages are incorporated into the queries
and documents.

As shown in Figure 3, the models demonstrate
improved resilience to language bias as the number
of languages increases, maintaining higher levels of
nDCG@10 compared to those without LANCER.
This suggests that LANCER effectively mitigates
the challenges posed by linguistic diversity, en-
hancing the model’s ability to handle multilingual
information retrieval more robustly.

5.3 Analysis of Training
To study the impact of language concept erasure
on the dense vectors, we leverage held-out mul-
tilingual train and test splits to monitor language



Method Avg. (↑) as bho brx gbm gom gu hi hne kn mai ml mni mr mwr or pa ps sa ta ur

SWIM-X (120K) 25.2 24.4 27.7 4.3 28.3 25.4 29.4 32.4 28.8 30.1 31.8 34.4 5.1 30.7 25.7 15.8 29.6 20.6 26.1 27.9 26.1

mDPR 5.9 2.6 6.5 0.6 7.0 2.2 5.4 13.9 5.7 6.3 6.9 8.7 0.3 8.7 6.1 0.7 9.5 2.6 4.1 7.7 13.3
+LANCER 9.8 5.0 9.5 0.8 11.2 6.3 11.9 19.2 10.0 10.5 11.5 14.1 0.8 15.9 9.9 0.3 15.5 3.7 9.5 13.8 16.4

mContriever 4.6 3.6 5.4 0.9 6.3 1.8 2.2 10.9 5.3 5.5 7.0 4.3 0.9 6.1 6.6 0.8 5.3 2.0 4.4 7.9 5.7
+LANCER 6.5 5.1 6.4 1.0 9.7 3.3 4.2 13.4 7.4 8.8 9.0 6.3 0.7 9.3 8.8 0.7 6.9 3.0 8.4 8.0 8.5

LaBSE 28.3 25.0 28.3 2.8 29.4 21.0 36.2 38.5 27.6 36.3 31.9 36.9 4.5 37.9 28.6 27.0 35.5 22.2 27.4 35.6 34.1
+LANCER 29.2 26.1 29.2 2.4 27.4 22.5 37.7 40.7 26.2 38.9 31.7 38.5 4.1 39.0 28.4 29.6 36.5 22.9 28.1 37.3 36.3

Table 4: Results showing MRR@10 (%) for cross-lingual retrieval on XTREME-UP test.

Method Avg. (↑) ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo

SWIM-X (180K) 46.4 60.2 57.1 34.7 33.4 36.3 40.6 64.3 33.0 39.5 40.8 43.3 49.7 40.0 55.9 56.3 63.3 60.2 57.1

mDPR 41.8 49.9 44.3 39.4 47.8 48.0 47.2 43.5 38.3 27.2 43.9 41.9 40.7 29.9 35.6 35.8 51.2 49.0 39.6
+ LANCER 47.5 55.6 50.5 43.4 46.3 49.1 56.6 46.1 36.7 34.3 49.0 47.4 46.7 39.4 52.7 46.1 50.0 46.8 58.5

mContriever 37.8 49.1 48.4 32.7 33.3 37.1 48.4 27.0 35.9 32.7 34.1 40.2 35.1 44.5 46.2 45.0 27.5 29.7 33.7
+ LANCER 50.1 61.4 56.9 40.7 46.1 38.0 65.4 41.2 35.7 43.6 48.1 54.5 46.2 58.0 67.9 58.2 45.1 43.2 51.7

LaBSE 45.6 50.2 53.7 35.6 37.7 42.4 57.2 40.6 41.4 37.8 34.6 46.2 40.5 57.4 53.9 50.1 34.9 39.7 67.7
+ LANCER 48.1 52.9 57.2 37.5 38.0 45.9 60.6 41.7 43.8 39.5 39.4 48.8 42.2 57.9 58.9 55.2 37.3 38.1 70.2

Table 5: Results showing nDCG@10 (%) for monolingual retrieval on MIRACL dev.

Figure 5: t-SNE visualization of multilingual repre-
sentations from mDPR (Left) versus mDPR+LANCER
(Right). Best viewed in color.

label recovery. At each logging step, we map the
held-out splits into dense vectors and build a logis-
tic regression classifier to predict language labels.
Figure 4 records the loss on train split (Left) and
prediction accuracy on test split (Right) on three
models. As training continues, it is harder for the
classifier to identify the language label according
to rising loss and declining accuracy. This trend
indicates that the language concept erasure task ef-
fectively reduces the language information in the
dense vectors, making the model more language-
invariant.

5.4 Analysis of Representation

To further demonstrate the impact of LANCER, we
analyze the representations produced by dense re-
trieval models, both with and without the language
concept erasure task. We sample 300 passages
per language from 16 training languages and use
t-SNE to visualize their representations. In Fig-
ure 5, the visualizations from mDPR show that the

representations are predominantly clustered by lan-
guage. However, after integrating LANCER, the
representations from different languages are inter-
mingled. This indicates that LANCER effectively
diminishes language-specific clustering, resulting
in a more language-invariant embedding space.

6 Conclusion

In this work, we introduce LANCER, a multi-task
training framework designed to improve language-
invariant dense retrieval. The core of LANCER is
the language concept erasure task, which reduces
the language-specific signals present in the multilin-
gual dense vectors by preventing linear classifiers
from detecting the language labels. Paired with
the retrieval task, LANCER enables the model to
prioritize learning language-invariant knowledge
for query-document matching.

We conduct experiments across all possible lin-
guistic settings of an IR task (e.g., monolingual,
cross-lingual, and multilingual). The extensive
results from these experiments demonstrate the
effectiveness of LANCER in building language-
invariant dense retrieval models. In multilingual
contexts, LANCER outperforms knowledge trans-
fer using parallel data. Furthermore, in monolin-
gual tasks across 18 languages, LANCER, as a
zero-shot approach, surpasses an in-domain data
augmentation method based on LLMs. For future
work, we are interested in extending the language
concept to more general concept(s) to improve do-
main adaptation and convert LANCER to a general



framework for model debiasing for downstream
applications.

7 Limitations

Our approach principally defines the idea of build-
ing language-invariant models by preventing lin-
ear classifiers from detecting the language label
of input text. Nevertheless, language is inherently
complex, intertwined with cultural nuances and se-
mantic subtleties. The strategy of disabling linear
classifiers to promote language-invariant retrieval
within the dense retrieval paradigm may not be ap-
plicable to other tasks or model architectures, such
as encoder-decoder models used for text generation.
In fact, from our model checkpoints, the language
labels can still be recovered by non-linear classi-
fiers like multi-layer perceptron (MLP). Addition-
ally, our experimental results (e.g., Figure 3 and 4)
indicate the potential for further reducing language
bias and enhancing retrieval performance in diverse
linguistic settings. Therefore, our community still
has a considerable path to tread in order to over-
come language bias in AI models. Furthermore,
we only conducted experiments in a zero-shot eval-
uation setting. Further investigation is needed for
in-domain evaluation from both retrieval data and
multilingual data perspectives.

Potential Risks. As most other research focused
on multilingualism, our study covers only a small
group of languages compared to more than 7,000
spoken languages on this planet. There exist risks
that these findings may not be generalizable across
all linguistic landscapes.
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Method Avg. (↑) ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo

SWIM-X (180K) 78.9 89.2 87.8 72.9 70 76.3 91.6 75.8 72.5 74.3 77.6 76.8 77.9 87.8 84.9 92.9 69.9 72.4 69.3

mDPR 79.4 84.1 81.9 76.8 86.4 89.8 78.8 91.5 77.6 57.3 82.5 73.7 79.7 61.6 76.2 67.8 94.4 89.8 79.5
+ LANCER 81.0 86.1 83.3 76.1 81.3 87.0 84.7 88.5 70.0 64.0 83.7 78.3 80.1 67.5 85.0 77.4 90.1 87.1 87.4

mContriever 60.6 73.5 80.8 52.1 49.5 61.7 66.0 51.8 50.3 63.5 65.6 56.3 58.9 73.5 85.9 76.6 58.2 36.3 30.2
+ LANCER 84.3 92.4 93.2 77.5 83.4 78.0 65.4 86.3 75.4 78.5 86.5 87.5 84.1 90.4 95.0 91.8 86.9 85.6 80.5

LaBSE 80.9 84.0 88.1 72.1 72.9 85.4 87.9 81.5 78.3 69.3 70.5 76.4 77.4 88.1 88.8 82.2 78.9 80.1 94.2
+ LANCER 82.4 85.8 90.8 73.5 74.4 86.6 88.6 82.3 81.0 70.6 75.5 76.7 77.8 88.6 92.3 86.1 80.1 78.9 93.7

Table 6: Results showing Recall@100 (%) for monolingual retrieval on MIRACL dev.

Method Avg. (↑) ar bn fi ja ko ru te

SWIM-X (500K) 49.2 46.3 57.2 49.0 42.7 45.6 44.7 58.8

mDPR 30.6 26.2 26.0 37.9 32.8 24.6 34.6 32.4
+ LANCER 31.8 28.8 25.3 40.4 28.6 35.4 31.6 32.4

mContriever 33.8 27.8 24.3 42.4 29.9 31.2 40.5 40.3
+ LANCER 38.4 37.8 27.0 50.3 32.4 36.5 36.7 48.3

LaBSE 47.1 44.6 52.6 49.7 36.1 44.9 39.6 62.2
+ LANCER 47.1 44.6 52.0 51.0 38.6 41.4 37.5 64.7

Table 7: Results showing Recall@2kt (%) for cross-
lingual retrieval on XOR-Retrieve dev.

Appendix

A Additional Results on MIRACL

In Table 6, we report the Recall@100 scores on
MIRACL for all denser retrievers. Models trained
using LANCER outperform the models trained
solely on retrieval tasks using English supervi-
sion data. Specifically, in terms of Recall@100,
LANCER achieves an improvement of 1.6 points
over mDPR, 23.7 points over mContriever, and 1.5
points over LaBSE. All three LANCER models
surpass SWIM-X. This suggests that when lan-
guage bias is reduced in embedding space, re-
trieval knowledge provided by MS MARCO data
(English) is more comprehensive than language-
specific synthetic data generated by LLMs.

B Additional Results on XOR-Retrieve

Table 7 lists the results of Recall@2kt on XOR-
Retrieve. In terms of 2K tokens, LANCER im-
proves by 1.2 points on mDPR and 4.6 points on
mContriever. When applied to LaBSE, LANCER
performs the same as the baseline. SWIM-X con-
tinues to outperform all other retrieval models. It
leverages in-domain data to create cross-lingual
training pairs, which is particularly effective for col-
lections with distinct domain characteristics, such
as Wikipedia. The synthetic data, in this case, not
only caters to language-specific training needs but
also functions as domain adaptation, which leads
to this strong performance.
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