
Optimization Methods for Personalizing Large Language Models
through Retrieval Augmentation

Alireza Salemi

University of Massachusetts Amherst

United States

asalemi@cs.umass.edu

Surya Kallumadi

Lowe’s Companies, Inc.

United States

surya@ksu.edu

Hamed Zamani

University of Massachusetts Amherst

United States

zamani@cs.umass.edu

ABSTRACT
This paper studies retrieval-augmented approaches for personaliz-

ing large languagemodels (LLMs), which potentially have a substan-

tial impact on various applications and domains. We propose the

first attempt to optimize the retrieval models that deliver a limited

number of personal documents to large language models for the

purpose of personalized generation. We develop two optimization

algorithms that solicit feedback from the downstream personalized

generation tasks for retrieval optimization–one based on reinforce-

ment learning whose reward function is defined using any arbitrary

metric for personalized generation and another based on knowledge

distillation from the downstream LLM to the retrieval model. This

paper also introduces a pre- and post-generation retriever selection

model that decides what retriever to choose for each LLM input.

Extensive experiments on diverse tasks from the language model

personalization (LaMP) benchmark reveal statistically significant

improvements in six out of seven datasets.

CCS CONCEPTS
• Computing methodologies→ Natural language generation;
• Information systems → Learning to rank; Personalization.

KEYWORDS
Ranking optimization; retrieval-augmented generation; personal-

ization; text generation

ACM Reference Format:
Alireza Salemi, Surya Kallumadi, and Hamed Zamani. 2024. Optimization

Methods for Personalizing Large Language Models through Retrieval Aug-

mentation. In Proceedings of the 47th Int’l ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR ’24), July 14–18,
2024, Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Personalization has been extensively explored by information re-

trieval (IR), recommender systems, and human-computer interac-

tion communities, particularly in the context of information access

[17, 36, 51]. Even though the recent advancements in large lan-

guage models (LLMs) have revolutionized various applications, the

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGIR ’24, July 14–18, 2024, Washington, DC, USA.
© 2024 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: An overview of retrieval augmentation approaches
for LLM personalization. First, the query function 𝜙𝑞 pro-
duces a query from the input 𝑥 . Relevant personal informa-
tion is then retrieved and fed to the personalized prompt
generation function 𝜙𝑝 for LLM consumption.

existing commercial and open-source LLMs exhibit a significant

limitation by failing to tailor their generated outputs according to

the backgrounds and historical preferences of their users. As LLM-

powered conversational agents become more prevalent, the need

for LLM personalization becomes increasingly apparent [43]. LLM

personalization has diverse applications, from customizing educa-

tional content and curating news feeds to improving e-commerce

suggestions and delivering personalized healthcare information.

Various approaches can be envisioned to personalize LLMs: (1)

fine-tuning LLM parameters, either entirely or partially, for indi-

vidual users, (2) integrating latent user representations with LLMs,

and (3) enriching LLM prompts with user-specific content and/or

context. The first two approaches involve adjusting LLM architec-

ture and parameters, which is costly or even impractical in terms

of storage, computation cost, and/or time. Besides, they cannot

perform well for cold-start users. As an instantiation of retrieval-

enhanced methods [55], the third approach, on the other hand, is

applicable to any off-the-shelf LLM. To efficiently and effectively

utilize the potentially extensive personal data for each active user,

it is essential to implement a retrieval mechanism. As presented

in Figure 1, this mechanism selects personal information that best

enhances the LLM for the purpose of personalized text generation.

This paper focuses on optimization of personal information re-

trieval for the purpose of personalizing LLMs. For this purpose,

standard learning-to-rank optimization methods are not applica-

ble, since they typically require query-document-relevance triplets

for training and it is not clear what documents is “relevant” for

the downstream personalized text generation tasks. We study two

retrieval optimization solutions for personalizing LLMs. First, we

develop a reinforcement learning approach, where the training

process involves sampling documents from the user’s profile with

respect to the probabilities generated based on retrieval scores. The

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGIR ’24, July 14–18, 2024, Washington, DC, USA. Alireza Salemi, Surya Kallumadi, and Hamed Zamani

sampled documents are then fed to the LLM and its downstream

performance for producing personalized output texts (using any

arbitrary metric) is used to compute a reward function for optimiz-

ing the retrieval model. Second, we optimize the retrieval model by

distilling knowledge from the LLM. We minimize the divergence

between the retrieval score distribution and a target distribution

computed using the downstream performance of LLM on producing

personalized output texts using each individual retrieved document.

To gauge the efficacy of these two optimization methods, we apply

them to train dense retrieval models for LLM personalization.

Moreover, we observe that LLM personalization has multiple

dimensions and existing retrieval models do not address all of them.

For instance, retrieving recent user interactions may be needed for

effective personalized text generation for an input, while a keyword-

matching, a semantic matching, or a model that is aware of user’s

writing style may be optimal for another input. According to this

observation, we hypothesize that a retrieval selection model that

selects a model from a diverse pool of retrievers can impact LLM

personalization. Following this hypothesis, we further develop a
pre- and a post-generation model mode for retrieval selection that

decides what retrieval model should be chosen for each given input.

In our study, these models could choose between (1) no retrieval (i.e.,

no personalization), (2) recency-based retrieval, (3) term matching

(i.e., BM25 [41]), (4) zero-shot semantic matching (Contriever [19]),

and (5, 6) the two dense retrieval models developed in this paper

that are specifically trained for LLM personalization. To optimize

the retrieval selection models, we align the probability distribution

obtained from the LLM downstream performance and the scores

generated by the selection model for various retrieval models.

We evaluate our models using the LaMP benchmark [43], con-

sisting of seven diverse personalization tasks, including three per-

sonalized text classification (binary, categorical, and ordinal) and

four personalized text generation tasks. The methods proposed in

this paper advance the state-of-the-art performance on six out of

seven tasks in LaMP with statistically significant improvements.

Our best-performing method exhibits an average of 5.5% state-of-

the-art improvements across all LaMP datasets. Comparing to the

non-personalized LLM, our best approach demonstrate 1.0%-33.8%

improvements across all tasks, with an average improvement of

15.3%. To facilitate the research on this domain, we share our codes

and trained model parameters to support future research, promot-

ing transparency and reproducibility.
1

2 RELATED WORK
Personalized Text Generation. Personalization has been a focal

point of research in various domains, particularly within search

and recommendation systems [5, 10, 14, 45, 56]. This exploration

spans diverse contexts, encompassing areas such as query auto-

completion [21] and collaborative personalized search [51]. Within

the NLP community, personalization has been a subject of explo-

ration in various applications, including but not limited to dialogue

agents [31, 39, 46, 49, 58, 60], review[27] and recipe generation [30],

translation[50], headline generation [1], and classification tasks

[13, 16], such as personalized sentiment analysis [33].

1
https://github.com/LaMP-Benchmark/LaMP

With the emergence of LLMs and their application across vari-

ous NLP tasks, Salemi et al. [43] proposed a retrieval-augmented

approach for personalizing LLMs. They also introduced LaMP, a

benchmark designed to assess the performance of personalized

NLP models across diverse classification and short text generation

tasks. The work by Li et al. [26] addresses a similar issue, focusing

on personalized long text generation. Furthermore, Mysore et al.

[35] assesses the capabilities of LLMs in the role of writing assis-

tants. Various approaches have been explored for personalizing

LLMs, encompassing techniques such as summarizing user profile

[40], aligning language models with personalized human feedback

[22], automatic prompt generation tailored to individual users [25],

and incorporating long and short-term memory-based personaliza-

tion strategies [57]. In this study, we adhere to the methodology

outlined by Salemi et al. [43] and conduct experiments using the

LaMP benchmark, focusing on training a component for retrieving

personal information from user profile.

Retrieval Optimization in Retrieval-Augmented Generation.
The optimization of retrieval models within the RAG (Retrieval-

Augmented Generation) pipelines has emerged as a focal point

in recent research, particularly in the context of question answer-

ing. Yang and Seo [52] focuses on distilling knowledge from the

LM to the retriever by minimizing the KL-divergence between the

LM’s performance for each document in the retrieved set and the

assigned score by the retriever to that document in the set. Ad-

ditionally, Izacard and Grave [20] employs the attention weights

of the LM to determine the importance of each document. This

information is then utilized to distill knowledge from the LM to the

retriever, aligning with the objectives set forth by Yang and Seo

[52]. The approach presented byWang et al. [47] involves the use of

reinforcement learning, where the reward function is derived from

the performance of the LM. In this work, we adopt methods similar

to that of Wang et al. [47] and Yang and Seo [52], given the absence

of relevance data in the LaMP benchmark. Notably, our work stands

out as the pioneering effort in leveraging feedback from LLMs to

train personalized retrievers for personalizing LLMs. Furthermore,

in all the previously mentioned approaches, the language model

is trained after/with the retrieval model. In contrast, our approach

assumes the language model is frozen, and our focus is solely on

optimizing the retrieval model.

Information Access with Multiple Retrieval Models. Combin-

ing rank lists generated by different retrievers has been extensively

explored in the literature [9, 15, 29, 37]. However, the process of

rank fusion presents challenges, especially when dealing with dis-

crepancies in scoring scales among retrieval systems or the absence

of overlapping documents in the ranked lists [29, 59]. Alternatively,

methods for selecting specific retriever from a retriever pool for

different datasets has been explored [23]. Furthermore, Arabzadeh

et al. [3] investigates the optimal use of dense and sparse retrievers

for each query, considering efficiency trade-offs. In our study, we

concentrate on the performance-oriented selection of query-specific

retrievers from a retriever pool.

https://github.com/LaMP-Benchmark/LaMP

Optimization Methods for Personalizing Large Language Models through Retrieval Augmentation SIGIR ’24, July 14–18, 2024, Washington, DC, USA.

3 NOTATIONS AND TASK FORMULATION
Generative language models often take an input 𝑥 and generate the

most probable sequence tokens 𝑦. This paper focuses on the task of

personalized generation with the goal of generating outputs that

are tailored for the preferences and characteristics of the language

model user. Let 𝑇 = {(𝑢1, 𝑥1, 𝑦1), (𝑢2, 𝑥2, 𝑦2), · · · , (𝑢𝑁 , 𝑥𝑁 , 𝑦𝑁)} be
a set of 𝑁 training instances, each consisting of a user 𝑢, an input

text 𝑥 submitted by the user 𝑢, and the ground truth personal-

ized output 𝑦. For each user 𝑢, a user profile 𝑃𝑢 exists that can be

employed for developing personalized generation models. A user

profile 𝑃𝑢 is a set of personal documents associated with the user 𝑢.

As discussed in Section 1, this paper focuses on retrieval aug-

mented solutions for personalization, depicted in Figure 1. In such

solutions, we first retrieve a set of personal documents from the user

profile 𝑃𝑢 . This is achieved through 𝐿 = R(𝜙𝑞 (𝑥); 𝑃𝑢) where 𝜙𝑞 is a

query generation function that produces a search query string given

the LLM input 𝑥 and R is a retrieval model that retrieves personal

documents from 𝑃𝑢 given a query produced by𝜙𝑞 . Hence,R returns

a list of personal documents 𝐿. A prompt generation function 𝜙𝑝 is

then applied to the LLM input and the retrieved result list as follows:

𝜙𝑝 (𝑥, 𝐿). The constructed personalized prompt is then fed into a

LLM𝑀 . The goal is to minimize the error between the generated

output and the ground truth personalized output 𝑦. We assume

that the LLM 𝑀 is given and we do not aim at updating the LLM

parameters for personalized generation. The rational behind this

decision is that (1) fine-tuning𝑀 is often very expensive, and more

importantly (2) the LLM𝑀 can memorize personal information if

it is fine-tuned on data retrieved from the user’s personal data 𝑃𝑢 .

Such memorization can put the user’s privacy at risk. That said,

this paper focuses on minimizing the personalized text generation

error by solely updating the retrieval results 𝐿.

Section 4 studies methods for optimizing the retrieval model R𝜃

parameterized by 𝜃 for updating the result list 𝐿. Section 5 extends

Section 4 by exploring optimization solutions for retrieval model

selection from a set of pre-defined retrieval models for updating

the result list 𝐿.

4 LEARNING TO RETRIEVE FOR
PERSONALIZING LLMS

Learning-to-rank (LTR) methods are often employed to train rank-

ing models for search and recommendation [6]. For personalized

LTR, the user’s profile and long-term history are often utilized. Such

personalized implicit feedback signals are often document-level and

directly provided by the user, such as ratings, clicks, views, dwell

time, and/or purchases [5, 56]. In the context of retrieval-augmented

personalized text generation, user feedback manifests in the form

of text written or edited by the user (i.e., the label 𝑦𝑖 for each input

𝑥𝑖), taking into account the user preferences and interests. There-

fore, accessing user feedback on a per-document basis within the

user profile for training retrieval models is not feasible; neither is

collecting document-level feedback through annotation, e.g., crowd-

sourcing. The main reason is that we do not know what documents

serve the LLM best for generating personalized outputs for each

input text. Therefore, learning to rank documents for LLM person-

alization is fundamentally different from developing personalized

search or recommendation engines.

Considering these, we propose optimization methods that lever-

age feedback from the LLM itself, obtained by evaluating the impact

of retrieved documents on the LLM performance for generating

personalized outputs. Our first method uses the LLM performance

(in terms of any arbitrary metric) to form a reward function and

employs reinforcement learning [48] for optimization. Our second

approach is based on knowledge distillation from the LLM to the

retriever based on the LLM’s performance in terms of personalized

text generation. They are described in the subsequent subsections.

4.1 Retrieval Optimization for Personalized
Generation using Reinforcement Learning

This section introduces ROPG-RL–a reinforcement learning ap-

proach that encourages the retrieval model to produce rankings

that lead to more accurate personalized generation. We utilize the

vanilla policy gradient optimization algorithm, drawing upon re-

wards supplied by the downstream LLM, as depicted in Figure 2 (a).

In this approach, we establish a parameterized policy (here, the re-

trieval model) that assigns a probability to each action (specifically,

selecting personal documents to be fed to the LLM). Subsequently,

we formulate a reward function, well aligned with the goal of per-

sonalized text generation, that the parameterized policy aims to

maximize. This approach enables us to effectively refine and im-

prove the performance of the retrieval model. The specifics of our

methodology will be discussed in the subsequent paragraphs.

Parameterized Policy (𝜋𝜃). In this context, defining the policy

function necessitates a clear delineation of the states and actions

applicable within the scope of this study. In this formulation, the
policy is parameterized through the retrieval model. Essentially, given
a query, the retrieval model undergoes training to assign a higher

probability to the documents from the user profile that are deemed

more valuable for personalizing the LLM. Here, an action is con-

sidered as selecting a document given a query.
2
The state, on the

other hand, corresponds to the given query itself. Meaning that the

goal is to update the policy such that it produces more effective

results for personalization. In this study, we restrict our focus to

trajectories comprising a single state. This implies that the model

initiates from the initial state, executes a singular action, and con-

cludes the trajectory. The probability of each action is computed

using the following formula:

𝜋𝜃 (𝑑 |𝑥) =
exp (R𝜃 (𝜙𝑞 (𝑥), 𝑑))∑

𝑑 ′∈𝑃𝑢 exp (R𝜃 (𝜙𝑞 (𝑥), 𝑑′))
: ∀𝑑 ∈ 𝑃𝑢 (1)

where 𝜙𝑞 is the query generation function as explained in Section 3,

R𝜃 denotes the retrieval model parameterized by 𝜃 , and 𝑃𝑢 is a set

of documents containing user’s personal data (see Section 3). The

probability assigned by the policymodel to any document that is not

in the user profile would be zero. Note that the user profile can grow

over time that leads to inefficient calculation of policy function.

To address this efficiency issues, we can approximate the policy

function, either using hierarchical softmax, similar to [32, 34, 53],

or by marginalization through top 𝑙 approximation. Without loss

2
We also explored scenarios where multiple documents are sampled without replace-

ment from the policy network, however, we observed no or little improvement com-

pared to a much simpler and more efficient approach where only one document is

sampled for updating the policy parameters.

SIGIR ’24, July 14–18, 2024, Washington, DC, USA. Alireza Salemi, Surya Kallumadi, and Hamed Zamani

Figure 2: Overview of training dense retrievers for personalizing LLMs using LLMs feedback with policy gradient optimization
(a) and knowledge distillation (b). 𝜙𝑞 represents the query generation function, 𝜙𝑝 is the prompt generation function, and
"Critic" denotes the evaluation metric employed for the personalized task.

of generality we choose the second approach and compute the

policy function based on 𝑃𝑙𝑢 , a set of 𝑙 documents from 𝑃𝑢 that

achieve highest retrieval scores according to our initial retrieval

weights. In our experiments, we set 𝑙 = 16. Of course, leveraging

the complete user profile during training could potentially yield

superior performance, albeit at the cost of increased training time.

Reward Function (𝑅). Defining trajectories involving the selec-
tion of multiple documents from the user profile, with rewards for

each, is computationally intensive. This is due to the need to com-

pute rewards using the LLM for every sampled set of documents

from the user profile. On the contrary, if we limit trajectories to

selecting only one document from the user profile, we can pre-

compute the rewards for each document in the profile. Therefore,

we only consider trajectories with one action. Moreover, to expe-

dite the learning process and minimize variance, we subtract a

previously calculated evaluation score from the effectiveness of the

current sampled document. The reward function is then defined as:

Reward(𝑑 ;𝑥,𝑦) = (2)

Eval

(
𝑦,𝑀 (𝜙𝑝 (𝑥, [𝑑]))

)
− Eval

(
𝑦,𝑀 (𝜙𝑝 (𝑥, [𝑑𝑏]))

)
where 𝑑 is a sampled document from the user profile 𝑃𝑢 using

the parameterized policy 𝜋𝜃 and 𝑑𝑏 is the document selected by

the policy with initial weighting (i.e., the retrieval model prior to

fine-tuning with RL). 𝑀 is the LLM that generates personalized

text based on the given personalized prompt 𝜙𝑝 . Eval denotes an

arbitrary metric for evaluating personalized text generation.

Training Objective (𝐽). The objective in ROPG-RL is to maximize

the expected reward obtained by the parameterized policy of the

retriever (𝜋𝜃). To achieve this objective, we employ a gradient ascent

algorithm with the update rule of 𝜃𝑘+1 = 𝜃𝑘 + 𝛼∇𝜃 𝐽 (𝜋𝜃). For each
mini-batch 𝐵 ⊂ 𝑇 , the objective function is presented below:

argmax

𝜃

1

|𝐵 |
∑︁

(𝑢,𝑥,𝑦) ∈𝐵
E

𝑑∼𝜋𝜃
[Reward(𝑑 ;𝑥,𝑦) log𝜋𝜃 (𝑑 |𝑥)] (3)

4.2 Retrieval Optimization for Personalized
Generation using Knowledge Distillation

An alternative approach for training a retrieval model with feed-

back from the LLM involves knowledge distillation from the LLM

to the retrieval model. Contrary to ROPG-RL, this approach, called

ROPG-KD, considers the relative usefulness of different items in

the user profile for the LLM on performing the downstream per-

sonalized task. Indeed, this approach endeavors to allocate a higher

probability to items that are more useful than others for the LLM.

Conversely, ROPG-RL only considers the impact of each (or pos-

sibly a subset of documents grouped together in trajectories with

more than one action) on the final score that the LLM achieves.

Hence, it seeks to reward the model for actions that yield positive

outcomes and penalize for actions that result in negative conse-

quences. This implies that where there are no favorable actions, the

model would face punishment; however, this is not the case with

knowledge distillation. On the other hand, RL optimization pro-

cesses tend to be less stable and are more susceptible to overfitting.

Considering all the aforementioned aspects, we propose an al-

ternative approach based on knowledge distillation. In the context

of knowledge distillation, the primary objective is to encourage the

retriever model to assign higher similarity scores to the documents

from the user profile that are more useful for the language model

in fulfilling its task. Figure 2 (b) illustrates the pipeline for this

approach. To accomplish this objective, we employ Equation (1) to

allocate a probability to individual elements within the user profile.

Subsequently, we use the following function to produce the target

probability distribution:

𝑝𝑡 (𝑑 |𝑥) =
exp (Eval

(
𝑦,𝑀 (𝜙𝑝 (𝑥, [𝑑]))

)
)∑

𝑑 ′∈𝑃𝑢 exp (Eval
(
𝑦,𝑀 (𝜙𝑝 (𝑥, [𝑑′]))

)
)

: ∀𝑑 ∈ 𝑃𝑢

where Eval is an arbitrary metric for evaluating personalized text

generation models and 𝑀 denotes the LLM being used. Similar to

ROPG-RL, for efficiency purposes, we approximate the distribution

𝑝𝑡 by only focusing on the top 𝑙 retrieved document w.r.t. the initial

retrieval parameters. Inspired by previous work on knowledge

distillation in IR [52], for each mini-batch 𝐵 ⊂ 𝑇 , we minimize the

following loss function based on KL-divergence:

argmin

𝜃

1

|𝐵 |
∑︁

(𝑢,𝑥,𝑦) ∈𝐵

∑︁
𝑑∈𝑃𝑙

𝑢

𝑝𝑡 (𝑑 |𝑥) log
𝜋𝜃 (𝑑 |𝑥)
𝑝𝑡 (𝑑 |𝑥)

(4)

4.3 Retrieval Model Architecture
The proposed optimization solutions can be applied to any neural

ranking model. Without loss of generality, we use them to train

dense retrieval models. We adopt Contriever [19], a pre-trained bi-

encodermodel for dense retrieval. Contriever encodes the query and

Optimization Methods for Personalizing Large Language Models through Retrieval Augmentation SIGIR ’24, July 14–18, 2024, Washington, DC, USA.

Figure 3: Relative winning rate for each selected retrieval model. When multiple retrieval models get the highest score, we
consider all of them with the highest score as the winner.

document text using an encoder with shared parameters and applies

dot product to compute the relevance score. After training, an exact

or approximate nearest neighbor (kNN) algorithm is used to index

the learned document representations for each user profile. We use

exact kNN in our experiments. During inference, each document

is scored independently and the scored documents are sorted in

descending order with respect to their score.

5 RETRIEVAL MODEL SELECTION FOR
PERSONALIZING LLMS

We hypothesize that there are multiple aspects to LLM personal-

ization and each existing retrieval model does not address all of

them. For instance, retrieving recent user interactions may lead to

the highest personalized text generation performance for an input,

while a keyword-matching model or a semantic matching model

may be optimal for another input. To validate this, we utilize the

LaMP benchmark–a recent benchmark consisting of seven diverse

tasks for training and evaluating personalized LLMs [43]. Statistics

of these datasets are presented in Table 1. More information on the

LaMP benchmark is provided in Section 6.1. We evaluate personal-

ization of an 11B parameter FlanT5-XXL [8] using the following

retrieval augmentation approaches: (1) no personalization (i.e., no

retrieval augmentation), (2) term matching retrieval using BM25

[41], (3) zero-shot semantic matching model using Contriever [19],

(4) ranking documents in the user profile based on recency, and (5

& 6) the proposed retrieval models for LLM personalization–ROPG-

RL and ROPG-KD. Figure 3 illustrates the winning rate achieved

by each of these models when retrieving from the user profile. To

compute the winning rate, we first evaluate the recommended eval-

uation metric for each of the datasets by the LaMP benchmark

(i.e., accuracy for categorical classification, MAE for ordinal classi-

fication, and Rouge-1 for text-generation tasks). For each retrieval

model, we then count the number of inputs for which it achieves

the highest personalized text generation performance among the

mentioned six models. If two or more retrieval models achieve the

same and the highest performance, they all get rewarded. The count

is then normalized to estimate the winning rate.

As evident in Figure 3, there is no consistent winner across

all tasks in the LaMP benchmark. For instance, between the best

text generation performance for 8.5% to 18.4% of the inputs across

datasets can be achieved when no personalization is conducted.

Recency-based ranking can lead to the best performance for 15.2%

to 18.1% of the inputs depending on the dataset. Even the proposed

ROPG-RL and ROPG-KD models provide the highest performance

for 14.9% to 20.2% of the inputs across different datasets in LaMP.

Given these observations, we hypothesize that selecting what

ranking function to use for each input, or even when to apply per-

sonalization, can improve end-to-end personalized text generation

performance. According to this hypothesis and inspired by the

query performance prediction literature [7, 42, 44, 54], we intro-

duce two retriever selection models. In the first approach, referred

to as RSPG-Pre, we retrieve items from the user profile using each

retriever in the retriever pool to construct personalized prompts.

These constructed prompts are then fed into RSPG-Pre for selection

and consumption by the LLM. In the second approach, termed RSPG-

Post, the personalized prompts produced by all retrieval models are

also presented to the LLM, and the resulting outputs, along with

the original prompts, are fed into RSPG-Post for retrieval model

selection. These models are presented below.

Optimizing Retriever Selection Models. The training pipeline
for retrieval selection is illustrated in Figure 4. Let R be a set of

retrieval models in the pipeline and S𝜔 be a retrieval selection

model parameterized by 𝜔 that produces a selection score for each

retrieval model in R. We use a knowledge distillation loss from

the downstream LLM performance to train the retrieval selection

model. For this purpose, the target selection probability distribution

over retrieval models in R for an input (𝑢, 𝑥,𝑦) is computed as:

𝑃𝑇𝑆 (R𝑖 |𝑥 ;𝑢,𝑦) =
exp (Eval

(
𝑦,𝑀 (𝜙𝑝 (𝑥,R𝑖 (𝜙𝑞 (𝑥); 𝑃𝑢)))

)
)∑ |R |

𝑗=1
exp (Eval

(
𝑦,𝑀 (𝜙𝑝 (𝑥,R𝑗 (𝜙𝑞 (𝑥); 𝑃𝑢)))

)
)
(5)

where Eval is an arbitrary evaluation metric for personalized text

generation, and𝑀 is the LLM used for text generation. The retrieval

selection model probability for the retriever R𝑖 ∈ R is calculated as:

𝑃𝑆𝜔 (R𝑖 |𝑥) =
exp(S𝜔 (R𝑖 , 𝑥))∑ |R |
𝑗=1

exp(S𝜔 (R𝑗 , 𝑥))
(6)

For a mini-batch 𝐵 ⊂ 𝑇 , we use KL-divergence loss as follows to

train the retrieval selection models:

1

|𝐵 |
∑︁

(𝑢,𝑥,𝑦) ∈𝐵

|R |∑︁
𝑖=1

𝑃𝑇𝑆 (R𝑖 |𝑥 ;𝑢,𝑦) log
𝑃𝑆𝜔 (R𝑖 |𝑥)

𝑃𝑇𝑆 (R𝑖 |𝑥 ;𝑢,𝑦)
(7)

SIGIR ’24, July 14–18, 2024, Washington, DC, USA. Alireza Salemi, Surya Kallumadi, and Hamed Zamani

Figure 4: Pipeline for training the RSPG models. We minimize the KL-divergence between the scores generated for each prompt
using RSPG and the performance of the prompt used for the evaluation of the LLM in a personalized task.

Table 1: Statistics of the datasets within the LaMP benchmark [43] with time-based data separation.

Task #train #dev #test Input Length Output Length #Profile Size #classes
LaMP-1: Personalized Citation Identification 6542 1500 1500 51.43 ± 5.70 - 84.15 ± 47.54 2

LaMP-2: Personalized Movie Tagging 5073 1410 1557 92.39 ± 21.95 - 86.76 ± 189.52 15

LaMP-3: Personalized Product Rating 20000 2500 2500 128.18 ± 146.25 - 185.40 ± 129.30 5

LaMP-4: Personalized News Headline Generation 12500 1500 1800 29.97 ± 12.09 10.07 ± 3.10 204.59 ± 250.75 -

LaMP-5: Personalized Scholarly Title Generation 14682 1500 1500 162.34 ± 65.63 9.71 ± 3.21 87.88 ± 53.63 -

LaMP-6: Personalized Email Subject Generation 4821 1250 1250 454.87 ± 889.41 7.37 ± 2.78 55.67 ± 36.32 -

LaMP-7: Personalized Tweet Paraphrasing 13437 1498 1500 29.72 ± 7.01 16.96 ± 5.67 15.71 ± 14.86 -

SelectionModel Architecture. To select a retrieval model for the

given input, we initiate the process by employing all retrieval mod-

els (see Figure 3 for the list of retrieval models in our experiments)

to retrieve relevant documents. As mentioned earlier, we envision

two categories of retrieval selection models: pre-generation and

post-generation models. We use an encoder-only model for estimat-

ing a selection score for each retrieval model. For the pre-generation

scenario, the input to the encoder is the LLM prompt constructed by

each retrieval model: 𝜙𝑝 (𝑥,R𝑖 (𝜙𝑞 (𝑥); 𝑃𝑢)). For the post-generation
scenario, this prompt is concatenated with the LLM’s output text

given this prompt. The encoder’s final layer representation is then

fed into a linear projection layer for producing a scalar value as

the selection score. Given the long length of prompts in retrieval

selection, we use Longformer [4] as the encoder in our retrieval

selection model.
3
Once all retrieval models are scored using this

approach, we choose the one with the highest selection score and

feed the corresponding prompt to the LLM.

6 EXPERIMENTS
6.1 Experimental Setup
Datasets. We adopt the LaMP benchmark [43]–a public bench-

mark that encompasses a diverse set of personalized text genera-

tion tasks.
4
Specifically, the benchmark comprises three personal-

ized text classification tasks and four personalized text generation

tasks. They include (1) Personalized Citation Identification (binary

classification), (2) Personalized Movie Tagging (categorical classi-

fication with 15 classes), (3) Personalized Product Rating (ordinal

3
https://huggingface.co/allenai/longformer-base-4096

4
The LaMP benchmark is available at https://lamp-benchmark.github.io/.

classification from 1 to 5-star rating for e-commerce products), (4)

Personalized News Headline Generation, (5) Personalized Scholarly

Title Generation, (6) Personalized Email Subject Generation, and

(7) Personalized Tweet Paraphrasing.

We use the time-based separation setting offered by LaMP for

data splitting. In this setting, the data for each user is split into train,

development, and test sets based on their timestamp, modeling a

real-world scenario in which personalized outputs for test inputs

are generated using the personal documents created earlier by that

user. The reason behind opting for a time-based separation in the

LaMP benchmark is to investigate the impact of recency in our

experiments. Table 1 reports the statistics of the datasets.

Evaluation Metrics. Following Salemi et al. [43], we evaluate

LaMP-1 using Accuracy, LaMP-2 using Accuracy and F1-measure,

and LaMP-3 using mean absolute error (MAE) and root mean

squared error (RMSE).We use ROUGE-1 and ROUGE-L [28] to evalu-

ate text generation performance on text generation datasets (LaMP-

4 to LaMP-7). Statistically significant differences are identified using

two-tailed paired t-test for ROUGE-1/ROUGE-L/MAE/RMSE and

McNemar test for Accuracy/F1.

TrainingConfigurations. An integral part of our training pipeline
is the evaluation function Eval. We use the standard metrics sug-

gested by the LaMP benchmark for each dataset to implemented

the Eval function. In more detail, we measure accuracy for the

binary and categorical classification tasks (LaMP-1 and LaMP-2)

and ROUGE-1 [28] for the text generation tasks (LaMP-4, LaMP-5,

LaMP-6, and LaMP-7). Given that the evaluation metric for LaMP-3

is MAE (Mean Absolute Error), where lower values are preferable,

we need to adapt the evaluation function to use it as a reward

https://huggingface.co/allenai/longformer-base-4096
https://lamp-benchmark.github.io/

Optimization Methods for Personalizing Large Language Models through Retrieval Augmentation SIGIR ’24, July 14–18, 2024, Washington, DC, USA.

Table 2: Templates used to create prompt to augment the input for LLM with the retrieved items from the user profile (i.e.,
𝜙𝑝). Function concat concatenates the strings in its first argument by placing the second argument between them. Function
add_to_paper_title adds the string in its first argument to the paper’s title in the LaMP-1 task. Function PPEP creates the
prompt for each retrieved item from the profile. [INPUT] is the task’s input (𝑥).

Task Per Profile Entry Prompt (PPEP) Aggregated Input Prompt (AIP)
LaMP-1: Citation Ident. "𝑃𝑖 [title]" add_to_paper_title(concat([PPEP(𝑃1), ..., PPEP(𝑃𝑛)], ", and "), [INPUT])

LaMP-2: : Movie Tag. the tag for the movie: "𝑃𝑖 [description]"

is "𝑃𝑖 [tag]"

concat([PPEP(𝑃1), ..., PPEP(𝑃𝑛)], ", and "). [INPUT]

LaMP-3: Product Rat. 𝑃𝑖 [score] is the score for "𝑃𝑖 [text]" concat([PPEP(𝑃1), ..., PPEP(𝑃𝑛)], ", and "). [INPUT]

LaMP-4: News Headline "𝑃𝑖 [title]" is the title for "𝑃𝑖 [text]" concat([PPEP(𝑃1), ..., PPEP(𝑃𝑛)], ", and "). [INPUT]

LaMP-5: Scholarly Title "𝑃𝑖 [title]" is the title for "𝑃𝑖 [abstract]" concat([PPEP(𝑃1), ..., PPEP(𝑃𝑛)], ", and "). Following the given patterns [INPUT]

LaMP-6: Email Subject "𝑃𝑖 [title]" is the title for "𝑃𝑖 [text]" concat([PPEP(𝑃1), ..., PPEP(𝑃𝑛)], ", and "). [INPUT]

LaMP-7: Tweet Para. "𝑃𝑖 [text]" concat([PPEP(𝑃1), ..., PPEP(𝑃𝑛)], ", and ") are written by a person. Following the

given patterns [INPUT]

Table 3: The performance of our methods and the baselines on the LaMP benchmark. For all metrics, the higher values the
better, except for RMSE and MAE which are used in LaMP-3. In this table, the superscript 1, 2, 3, 4, and 5 indicate significant
improvement over No Personalization, BM25, Recency, Contriever, and RRF, respectively (𝑝 < 0.05).

Dataset Metric No Personalization Baselines Our Methods
Personalization BM25 Recency Contriever RRF ROPG-RL ROPG-KD RSPG-Pre RSPG-Post

LaMP-1: Personalized

Citation Identification
Accuracy ↑ 0.502 0.626 0.622 0.636 0.570 0.655

12345
0.668

12345
0.663

12345 0.67212345

LaMP-2: Personalized

Movie Tagging

Accuracy ↑ 0.359 0.387 0.377 0.396 0.375 0.391
135

0.396
135

0.405
1235 0.43012345

F1 ↑ 0.276 0.306 0.295 0.304 0.299 0.300
135

0.306
135

0.314
1235 0.33912345

LaMP-3: Personalized

Product Rating

MAE ↓ 0.308 0.298 0.296 0.299 0.314 0.286
145

0.290
15

0.282
12345 0.26412345

RMSE ↓ 0.611 0.611 0.605 0.616 0.614 0.591
145

0.604
15

0.585
12345 0.56812345

LaMP-4: Personalized

News Headline Generation

ROUGE-1 ↑ 0.176 0.186 0.189 0.183 0.190 0.191
1

0.187
1

0.190
1 0.20312345

ROUGE-L ↑ 0.160 0.171 0.173 0.169 0.176 0.177
1

0.172
1

0.176
1 0.18612345

LaMP-5: Personalized

Scholarly Title Generation

ROUGE-1 ↑ 0.478 0.477 0.475 0.483 0.478 0.475 0.477 0.4831235 0.480

ROUGE-L ↑ 0.428 0.427 0.426 0.433 0.428 0.427 0.428 0.431
1235

0.429

LaMP-6: Personalized

Email Subject Generation

ROUGE-1 ↑ 0.335 0.412 0.403 0.401 0.394 0.394 0.415
1345

0.426
12345 0.43312345

ROUGE-L ↑ 0.319 0.398 0.389 0.386 0.381 0.381 0.400
1345

0.411
12345 0.41812345

LaMP-7: Personalized

Tweet Paraphrasing

ROUGE-1 ↑ 0.449 0.446 0.444 0.440 0.446 0.448
4

0.441 0.450
2345 0.46112345

ROUGE-L ↑ 0.396 0.394 0.393 0.390 0.395 0.397
4

0.391 0.400
2345 0.40912345

function. The modification is as follows:

EvalLaMP-3 (𝑦,𝑦) =
max(|1 − 𝑦 |, |5 − 𝑦 |) −MAE(𝑦,𝑦)

max(|1 − 𝑦 |, |5 − 𝑦 |) (8)

where 𝑦 is the prediction and 𝑦 is the target output. This reward

function normalizes the MAE score by measuring its distance from

the worst score achievable based on the model’s prediction.
5
In this

scenario, a correct prediction by the model results in a score of 1,

while in the worst-case prediction, it receives a score of 0.

In this paper, we use the Adam optimizer [24] with a learning

rate of 10
−5
. We dedicate 5% of the training steps to warmup with

a linear scheduler. We also use gradient clipping with the value of

1. To accommodate the task requirements, we set the maximum

input and output lengths to 512 tokens for LLMs following Salemi

et al. [43]. However, we use the maximum input length of 1024

for retrieval selection in order to incorporate a prompt and the

corresponding output from the LLM. We train the retrieval models

for 10 and the retriever selection models for 20 epochs. In all ex-

periments, following Salemi et al. [43], we utilize FlanT5-XXL[8]–

an instruction-tuned open-source LLM with 11B parameters. We

5
According to the implementation of the LaMP benchmark, the worst score attainable

by a model in the LaMP-3 task is denoted as max(|1 − 𝑦 |, |5 − 𝑦 |) .

use a beam size of 4 in beam search for text generation [18]. The

effective batch size in all experiments is set to 64 (8 accumulation

steps with batch size 8). We performed all the experiments on a

single A100 Nvidia GPU with 80GB memory and 128GB of RAM.

In all experiments, following Salemi et al. [43], we use the non-

template parts of the LLM input 𝑥 as the query for personal docu-

ment retrieval. We followed Salemi et al. [43] for prompt templates

(i.e., 𝜙𝑝) for each dataset in LaMP. They are listed in Table 2. In

all experiments, the process of creating personalized prompts for

evaluating models involves retrieving four items from the user pro-

file. In crafting documents from each user profile, we adhere to the

approach established in [43], appending the date of the document

to it. The date is prefixed with date: [date]. For implementing BM25,

we use the rank_bm25 library.
6
All the neural models in this paper

are implemented using the PyTorch library [38].

Baseline Methods. We compare the proposed approaches against

the following retrieval models for personalized text generation.

• No Personalization: We employ FlanT5-XXL [8] as a non-

personalized baseline. In this baseline, the model is presented

with the original task’s input without any modification.

6
https://github.com/dorianbrown/rank_bm25

https://github.com/dorianbrown/rank_bm25

SIGIR ’24, July 14–18, 2024, Washington, DC, USA. Alireza Salemi, Surya Kallumadi, and Hamed Zamani

• Personalized Baselines: Following Salemi et al. [43], we utilize

BM25 [41], Recency, and Contriever [19] to retrieve items from

the user profile for LLM personalization. There are, of course,

many other neural ranking models that may outperform these

baselines on some retrieval benchmarks. However, it is important

to note that our optimization approaches can be applied to any

neural ranking model, including any missing baseline from this

list. That being said, we do not aim at comparing different model

architectures, instead we aim at demonstrating the impact of our

optimization methods. Note that no other retrieval models have

ever been used on LaMP and, to the best of our knowledge, this

list consists of all methods in the retrieval-augmented LLM per-

sonalization literature. Furthermore, we apply Reciprocal Rank

Fusion (RRF) [9] to integrate the retrieval lists generated by all

the retrievers. This fusion-based approach is employed for com-

parison with our retriever selection method. Subsequently, we

employ these retrieved items to formulate a personalized input

prompt for FlanT5-XXL.

6.2 Empirical Results
This section provides empirical evidence to answer research ques-

tions that shed light into the proposed approaches in this paper.

How does personalization using the proposed approaches
impact text generation performance? To answer this question,

we compare our methods with the non-personalized baseline, i.e.,

FlanT5-XXL without augmentation with personal information. Ta-

ble 3 presents the results on the LaMP benchmark. LLM Personaliza-

tion using both ROPG-RL and ROPG-KD improves the performance

on LaMP-1, LaMP-2, LaMP-3, LaMP-4, and LaMP-6. After applying

the retrieval model selection methods (RSPG-Pre and RSPG-Post),

the non-personalized model is beaten on all datasets and in terms

of all metrics. The performance gains are statistically significant in

almost all cases. This is an important finding in the sense that no

personalized baseline could perform better than a non-personalized

LLM on LaMP-7, while RSPG-Pre and RSPG-Post demonstrate that

personalized LLMs can ultimately demonstrate performance gain

on these datasets. This finding also suggests the impact of retrieval

augmentation for the purpose of LLM personalization.

How do ROPG optimization algorithms impact text genera-
tion performance? To answer this, we must compare ROPG-RL

and ROPG-KD with the Contriever baseline, since they are initial-

ized with the Contriever model and fine-tuned using our proposed

ROPG-RL and ROPG-KD algorithms. The results in Table 3 sug-

gest that applying ROPG-RL to Contriever yields performance gain

on LaMP-1, LaMP-3, LaMP-4, and LaMP-7. ROPG-KD additionally

outperforms Contriever on LaMP-6. Notably ROPG-KD performs

better than ROPG-RL on the tasks with binary feedback from the

language model (LaMP-1 and LaMP-2). Comparing ROPG-RL and

ROPG-KD suggests there is no clear winner among them. This

once again attests that each personalization task have different

requirements, thus motivating the need for retrieval selection in

retrieval-augmented LLM personalization.

How effective are the proposed retrieval selection methods?
To assess the efficacy of retriever selection, we measure its suc-

cess rate in selecting the best performing retriever in the retriever

Table 4: The success rate of models in selecting the best per-
forming retriever for each input. The superscript ∗ indicates
significant improvement over the best baseline (𝑝 < 0.05).
Dataset Success Rate

WIG NQC 𝜎max 𝜎50% RSPG-Pre RSPG-Post

LaMP-1: Personalized

Citation Identification
0.858 0.824 0.848 0.847 0.865

∗ 0.874∗

LaMP-2: Personalized

Movie Tagging
0.908 0.918 0.910 0.910 0.936

∗ 0.962∗

LaMP-3: Personalized

Product Rating
0.896 0.890 0.896 0.894 0.903 0.920∗

LaMP-4: Personalized

News Headline Generation
0.401 0.404 0.394 0.398 0.401 0.447∗

LaMP-5: Personalized

Scholarly Title Generation
0.562 0.572 0.562 0.557 0.600∗ 0.577

LaMP-6: Personalized

Email Subject Generation
0.613 0.606 0.614 0.617 0.633

∗ 0.641∗

LaMP-7: Personalized

Tweet Paraphrasing
0.851 0.840 0.852 0.851 0.860 0.898∗

pool R for each input. Note that for inputs with multiple best-

performing retrieval models, a selection is considered successful if

any of them is selected. In this experiment, we incorporated sev-

eral unsupervised Query Performance Prediction (QPP) methods,

including WIG [61], NQC [12], and 𝜎max and 𝜎x% [11], to perform

a comparative analysis with our proposed method. To accomplish

this, we assign the task to each QPP approach of providing a score

to the retrieved results for each retriever. The retriever with the

highest score is then selected for that particular input. It is impor-

tant to note that since Recency does not provide score for retrieved

results, we consider the reciprocal rank of each document as its

score. In no personalization retriever, we assign a score of zero to

all items in the profile. It is crucial to highlight that the utilization

of supervised QPP methods, such as BERT-QPP [2], was not feasible

due to their reliance on query-document relevance labels, which

are unavailable in our datasets.

The results in Table 4 demonstrate the superior performance

of both the RSPG-Pre and RSPG-Post across nearly all datasets.

Specifically, RSPG-Post achieves a significant improvement over all

baselines for the all datasets, except for the LaMP-5 dataset. In this

dataset, RSPG-Pre shows a significant improvement compared to

the baselines. Likewise, RSPG-Pre outperforms all baselines in all

datasets except LaMP-4, with significant improvements observed

in LaMP-1, LaMP-2, LaMP-5, and LaMP-6. Overall, the outcomes of

this experiment suggest that the proposed approach for retrieval

model selection consistently outperforms the baselines.

The results also indicate that for all classification datasets (i.e.,

LaMP-1, LaMP-2, and LaMP-3) and LaMP-7 for generation, both pre-

and post-generation models achieve a success rate of over 80%. This

suggests that the model has to some extent successfully learned

to choose the most suitable retriever for each input. Conversely,

for the remaining text generation datasets (i.e., LaMP-4, LaMP-5,

and LaMP-6), the accuracy is lower, ranging from 40% to 65%. We

attribute this to the inherent complexity of text generation tasks

compared to text classification. Comparing RSPG-Pre and RSPG-

Post, the latter exhibits higher success rate in all tasks except LaMP-

5. This suggests that employing the generated output in retrieval

selection can have a substantial impact on the performance.

Looking back to the results in Table 3, the post-generation re-

trieval selection model (RSPG-Post) performs better than the pre-

generation selection model (RSPG-Pre) on six out of seven datasets;

Optimization Methods for Personalizing Large Language Models through Retrieval Augmentation SIGIR ’24, July 14–18, 2024, Washington, DC, USA.

Table 5: Studying the impact of ROPG algorithms on the end-to-end performance of our pipeline with retrieval model selection.
In this table, the superscript ∗ indicates significant improvement over w/o ROPG approach (𝑝 < 0.05).

Dataset Metric RSPG-Pre RSPG-Post Oracle
w/o ROPG w/ ROPG w/o ROPG w/ ROPG Lower-bound Upper-bound

LaMP-1: Personalized Citation Identification Accuracy ↑ 0.646 0.663
∗

0.644 0.672
∗

0.381 0.798

LaMP-2: Personalized Movie Tagging

Accuracy ↑ 0.403 0.405 0.425 0.430 0.296 0.468

F1 ↑ 0.311 0.314 0.330 0.339 0.216 0.380

LaMP-3: Personalized Product Rating

MAE ↓ 0.287 0.282 0.269 0.264 0.450 0.181

RMSE ↓ 0.595 0.585 0.577 0.568 0.772 0.462

LaMP-4: Personalized News Headline Generation

ROUGE-1 ↑ 0.189 0.190 0.191 0.203
∗

0.103 0.269

ROUGE-L ↑ 0.174 0.176 0.177 0.186
∗

0.098 0.243

LaMP-5: Personalized Scholarly Title Generation

ROUGE-1 ↑ 0.478 0.483
∗

0.475 0.480 0.388 0.548

ROUGE-L ↑ 0.428 0.431
∗

0.427 0.429 0.349 0.492

LaMP-6: Personalized Email Subject Generation

ROUGE-1 ↑ 0.426 0.426 0.394 0.433
∗

0.239 0.511

ROUGE-L ↑ 0.412 0.411 0.381 0.418
∗

0.228 0.492

LaMP-7: Personalized Tweet Paraphrasing

ROUGE-1 ↑ 0.449 0.450 0.448 0.461
∗

0.410 0.470

ROUGE-L ↑ 0.398 0.400 0.397 0.409
∗

0.361 0.417

LaMP-5 is the exception, which is explained by the results in Table 4.

RSPG-Pre consistently outperforms the baselines significantly in

all classification tasks (LaMP-1, LaMP-2, and LaMP-3) as well as in

LaMP-6. In the remaining datasets, RSPG-Pre achieves comparable

or superior results to the baselines, although the differences are not

statistically significant. Finally, RSPG-Post leads to the best person-

alized text generation performance on six out of seven datasets.

What is the method that results in the highest personalized
text generation performance? According to Table 3, RSPG-Post

performs best on six out of seven datasets (all but LaMP-5). Con-

triever, on the other hand, demonstrates the highest performance on

LaMP-5. The performance gains by RSPG-Post on all the remaining

six datasets are statistically significant, according to a two-tailed

paired t-test for generation and ordinal classification datasets and

McNemar test for binary and categorical text classification datasets.

What is the impact of ROPG algorithms on retrieval selec-
tion results? To investigate the impact of training personalized

retrievers using the proposed ROPG algorithms (i.e., both ROPG-

RL and ROPG-KD) on the end-to-end performance of the pipeline

with retrieval selection, we conduct an analysis by excluding the

fine-tuned retrievers from the retriever pool R. The outcomes of

this experiment along with the Oracle performance (both lower

and upper bound for retrieval selection) are reported in Table 5.

The results indicate that the models without ROPG in its retriever

pools achieve lower performance on all datasets in both pre- and

post-generation settings. The only exception is the RSPG-Pre re-

sults on LaMP-6, where including ROPG algorithms does not make

any significant impact. This suggests that our ultimate performance

gain is not just because of the retrieval selection models; Instead,

the retrieval optimization approaches presented in Section 4 are

effective in enhancing the end-to-end performance of the pipeline.

Finally, a comparison between our results and the Oracle per-

formance in Table 5 provides insight into the potential for fur-

ther improvements in retrieval selection. For instance, in LaMP-3

and LaMP-4, our best performing method only achieves 68.3% and

75.4% of the Oracle’s upper-bound, respectively. This suggests that

there are still substantial room for improvement. However, the

corresponding numbers for LaMP-1, LaMP-2, LaMP-5, LaMP-6,

and LaMP-7 are 84.2%, 91.8%, 88.1%, 84.7%, and 98.0%, respectively,

suggesting that our best performing retrieval selection method is

performing very close to the upper-bound performance.

7 CONCLUSIONS AND FUTUREWORK
This paper explored personalization of LLMs through a retrieval

augmentation pipeline with a focus on optimizing the retrieval com-

ponent. We introduced two solutions for optimizing ranking models

by soliciting personalized feedback from the language model, one

based on reinforcement learning where the reward function is de-

fined based on the personalized text generation quality, and another

based on knowledge distillation from the language model to the

retrieval model. Subsequently, we observed that personalization

tasks can benefit from different retrieval models, depending on

specific needs and requirements. Given this observation, we de-

veloped a pre-generation and a post-generation retriever selection

model. Evaluation on seven diverse personalization tasks from the

LaMP benchmark showed that our proposed methods outperform

competitive baselines on six out of seven datasets with statistically

significant improvements. Through careful ablation studies, we

demonstrate the impact of each component used our pipeline.

In this work, we solely focused on optimizing and selecting the

ranking models for LLM personalization. One limitation of this

work lies in the use of static templates for generating prompts for

the LLM. In the future, we aim at optimizing the prompt generation

component using the feedback obtained from the downstream LLM

performance. In addition, all datasets in the LaMP benchmark focus

on short text generation tasks. We will explore personalized long

text generation methods in the future.

ACKNOWLEDGMENT
This work was supported in part by the Center for Intelligent Infor-

mation Retrieval, in part by Lowe’s, in part by an Amazon Research

Award, Fall 2022 CFP, in part by an award from Google, and in part

by and award from Microsoft. Any opinions, findings and conclu-

sions or recommendations expressed in this material are those of

the authors and do not necessarily reflect those of the sponsor.

SIGIR ’24, July 14–18, 2024, Washington, DC, USA. Alireza Salemi, Surya Kallumadi, and Hamed Zamani

REFERENCES
[1] Xiang Ao, Xiting Wang, Ling Luo, Ying Qiao, Qing He, and Xing Xie. 2021. PENS:

A Dataset and Generic Framework for Personalized News Headline Generation.

In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Computational Linguistics, Online, 82–92.

https://doi.org/10.18653/v1/2021.acl-long.7

[2] Negar Arabzadeh, Maryam Khodabakhsh, and Ebrahim Bagheri. 2021. BERT-QPP:

Contextualized Pre-trained transformers for Query Performance Prediction. In

Proceedings of the 30th ACM International Conference on Information & Knowledge
Management (Virtual Event, Queensland, Australia) (CIKM ’21). Association for

Computing Machinery, New York, NY, USA, 2857–2861. https://doi.org/10.1145/

3459637.3482063

[3] Negar Arabzadeh, Xinyi Yan, and Charles L. A. Clarke. 2021. Predicting Ef-

ficiency/Effectiveness Trade-Offs for Dense vs. Sparse Retrieval Strategy Se-

lection. In Proceedings of the 30th ACM International Conference on Informa-
tion & Knowledge Management (Virtual Event, Queensland, Australia) (CIKM
’21). Association for Computing Machinery, New York, NY, USA, 2862–2866.

https://doi.org/10.1145/3459637.3482159

[4] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-

Document Transformer. arXiv:2004.05150 [cs.CL]

[5] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bailey, Fedor

Borisyuk, and Xiaoyuan Cui. 2012. Modeling the Impact of Short- and Long-Term

Behavior on Search Personalization. In Proceedings of the 35th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Portland,
Oregon, USA) (SIGIR ’12). Association for Computing Machinery, New York, NY,

USA, 185–194. https://doi.org/10.1145/2348283.2348312

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to

Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the 24th
International Conference on Machine Learning (Corvalis, Oregon, USA) (ICML
’07). Association for Computing Machinery, New York, NY, USA, 129–136. https:

//doi.org/10.1145/1273496.1273513

[7] D. Carmel and E. Yom-Tov. 2010. Estimating the Query Difficulty for Information
Retrieval (1st ed.). Morgan and Claypool Publishers.

[8] Hyung Won Chung et al. 2022. Scaling Instruction-Finetuned Language Models.

arXiv:2210.11416 [cs.LG]

[9] Gordon V. Cormack, Charles L A Clarke, and Stefan Buettcher. 2009. Reciprocal

Rank Fusion Outperforms Condorcet and Individual Rank Learning Methods.

In Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (Boston, MA, USA) (SIGIR ’09). Association
for Computing Machinery, New York, NY, USA, 758–759. https://doi.org/10.

1145/1571941.1572114

[10] BruceW. Croft, Stephen Cronen-Townsend, and Victor Lavrenko. 2001. Relevance

Feedback and Personalization: A Language Modeling Perspective. In DELOS
Workshop: Personalisation and Recommender Systems in Digital Libraries. http:

//citeseer.ist.psu.edu/453602.html

[11] Ronan Cummins, Joemon Jose, and Colm O’Riordan. 2011. Improved query

performance prediction using standard deviation. In Proceedings of the 34th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Beijing, China) (SIGIR ’11). Association for Computing Machinery, New

York, NY, USA, 1089–1090. https://doi.org/10.1145/2009916.2010063

[12] Suchana Datta, Debasis Ganguly, Mandar Mitra, and Derek Greene. 2022. A

Relative Information Gain-based Query Performance Prediction Framework with

Generated Query Variants. ACM Trans. Inf. Syst. 41, 2, Article 38 (dec 2022),

31 pages. https://doi.org/10.1145/3545112

[13] Shiran Dudy, Steven Bedrick, and Bonnie Webber. 2021. Refocusing on Rel-

evance: Personalization in NLG. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational

Linguistics, Online and Punta Cana, Dominican Republic, 5190–5202. https:

//doi.org/10.18653/v1/2021.emnlp-main.421

[14] Susan T. Dumais. 2016. Personalized Search: Potential and Pitfalls. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge Man-
agement (Indianapolis, Indiana, USA) (CIKM ’16). Association for Computing

Machinery, New York, NY, USA, 689. https://doi.org/10.1145/2983323.2983367

[15] Mohamed Farah and Daniel Vanderpooten. 2007. An Outranking Approach for

Rank Aggregation in Information Retrieval. In Proceedings of the 30th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Re-
trieval (Amsterdam, The Netherlands) (SIGIR ’07). Association for Computing Ma-

chinery, New York, NY, USA, 591–598. https://doi.org/10.1145/1277741.1277843

[16] Lucie Flek. 2020. Returning the N to NLP: Towards Contextually Personalized

Classification Models. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, Online,

7828–7838. https://doi.org/10.18653/v1/2020.acl-main.700

[17] Andrew Fowler, Kurt Partridge, Ciprian Chelba, Xiaojun Bi, Tom Ouyang, and

Shumin Zhai. 2015. Effects of Language Modeling and Its Personalization on

Touchscreen Typing Performance. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems (Seoul, Republic of Korea)

(CHI ’15). Association for Computing Machinery, New York, NY, USA, 649–658.

https://doi.org/10.1145/2702123.2702503

[18] Markus Freitag and Yaser Al-Onaizan. 2017. Beam Search Strategies for Neural

Machine Translation. In Proceedings of the First Workshop on Neural Machine
Translation, Thang Luong, Alexandra Birch, Graham Neubig, and Andrew Finch

(Eds.). Association for Computational Linguistics, Vancouver, 56–60. https:

//doi.org/10.18653/v1/W17-3207

[19] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-

janowski, Armand Joulin, and Edouard Grave. 2022. Unsupervised Dense Infor-

mation Retrieval with Contrastive Learning. Transactions on Machine Learning
Research (2022). https://openreview.net/forum?id=jKN1pXi7b0

[20] Gautier Izacard and Edouard Grave. 2021. Distilling Knowledge from Reader

to Retriever for Question Answering. In International Conference on Learning
Representations. https://openreview.net/forum?id=NTEz-6wysdb

[21] Aaron Jaech and Mari Ostendorf. 2018. Personalized Language Model for Query

Auto-Completion. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Association for Computational

Linguistics, Melbourne, Australia, 700–705. https://doi.org/10.18653/v1/P18-2111

[22] Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke

Zettlemoyer, Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. 2023.

Personalized Soups: Personalized Large Language Model Alignment via Post-hoc

Parameter Merging. ArXiv abs/2310.11564 (2023). https://api.semanticscholar.

org/CorpusID:264289231

[23] Ekaterina Khramtsova, Shengyao Zhuang, Mahsa Baktashmotlagh, Xi Wang,

and Guido Zuccon. 2023. Selecting which Dense Retriever to use for Zero-Shot

Search. arXiv:2309.09403 [cs.IR]

[24] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. CoRR abs/1412.6980 (2014). https://api.semanticscholar.org/CorpusID:

6628106

[25] Cheng Li, Mingyang Zhang, Qiaozhu Mei, Weize Kong, and Michael Bendersky.

2023. Automatic Prompt Rewriting for Personalized Text Generation. ArXiv
abs/2310.00152 (2023). https://api.semanticscholar.org/CorpusID:263333908

[26] Cheng Li, Mingyang Zhang, Qiaozhu Mei, Yaqing Wang, Spurthi Amba Hom-

baiah, Yi Liang, and Michael Bendersky. 2023. Teach LLMs to Personalize

- An Approach inspired by Writing Education. ArXiv abs/2308.07968 (2023).

https://api.semanticscholar.org/CorpusID:260926523

[27] Pan Li and Alexander Tuzhilin. 2019. Towards Controllable and Personalized

Review Generation. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics,

Hong Kong, China, 3237–3245. https://doi.org/10.18653/v1/D19-1319

[28] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.

In Text Summarization Branches Out. Association for Computational Linguistics,

Barcelona, Spain, 74–81. https://aclanthology.org/W04-1013

[29] David E. Losada, Javier Parapar, and Alvaro Barreiro. 2018. A rank fusion ap-

proach based on score distributions for prioritizing relevance assessments in

information retrieval evaluation. Information Fusion 39 (2018), 56–71. https:

//doi.org/10.1016/j.inffus.2017.04.001

[30] Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley. 2019.

Generating Personalized Recipes from Historical User Preferences. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, Hong Kong, China, 5976–

5982. https://doi.org/10.18653/v1/D19-1613

[31] Pierre-Emmanuel Mazaré, Samuel Humeau, Martin Raison, and Antoine Bordes.

2018. Training Millions of Personalized Dialogue Agents. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Brussels, Belgium, 2775–2779. https://doi.org/10.

18653/v1/D18-1298

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositionality.

In NIPS ’13. 3111–3119.
[33] Fatemehsadat Mireshghallah, Vaishnavi Shrivastava, Milad Shokouhi, Taylor

Berg-Kirkpatrick, Robert Sim, and Dimitrios Dimitriadis. 2022. UserIdentifier:

Implicit User Representations for Simple and Effective Personalized Sentiment

Analysis. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, Seattle, United States, 3449–3456.

https://doi.org/10.18653/v1/2022.naacl-main.252

[34] Frederic Morin and Yoshua Bengio. 2005. Hierarchical Probabilistic Neural

Network Language Model. In AISTATS ’05. 246–252.
[35] Sheshera Mysore, Zhuoran Lu, Mengting Wan, Longqi Yang, Steve Menezes, Tina

Baghaee, Emmanuel Barajas Gonzalez, Jennifer Neville, and Tara Safavi. 2023.

PEARL: Personalizing Large LanguageModelWriting Assistants with Generation-

Calibrated Retrievers. https://api.semanticscholar.org/CorpusID:265213422

[36] Maxim Naumov et al. 2019. Deep Learning Recommendation Model for Person-

alization and Recommendation Systems. arXiv:1906.00091 [cs.IR]

[37] Rabia Nuray and Fazli Can. 2006. Automatic ranking of information retrieval

systems using data fusion. Information Processing & Management 42, 3 (2006),

https://doi.org/10.18653/v1/2021.acl-long.7
https://doi.org/10.1145/3459637.3482063
https://doi.org/10.1145/3459637.3482063
https://doi.org/10.1145/3459637.3482159
https://arxiv.org/abs/2004.05150
https://doi.org/10.1145/2348283.2348312
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://arxiv.org/abs/2210.11416
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.1145/1571941.1572114
http://citeseer.ist.psu.edu/453602.html
http://citeseer.ist.psu.edu/453602.html
https://doi.org/10.1145/2009916.2010063
https://doi.org/10.1145/3545112
https://doi.org/10.18653/v1/2021.emnlp-main.421
https://doi.org/10.18653/v1/2021.emnlp-main.421
https://doi.org/10.1145/2983323.2983367
https://doi.org/10.1145/1277741.1277843
https://doi.org/10.18653/v1/2020.acl-main.700
https://doi.org/10.1145/2702123.2702503
https://doi.org/10.18653/v1/W17-3207
https://doi.org/10.18653/v1/W17-3207
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=NTEz-6wysdb
https://doi.org/10.18653/v1/P18-2111
https://api.semanticscholar.org/CorpusID:264289231
https://api.semanticscholar.org/CorpusID:264289231
https://arxiv.org/abs/2309.09403
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:263333908
https://api.semanticscholar.org/CorpusID:260926523
https://doi.org/10.18653/v1/D19-1319
https://aclanthology.org/W04-1013
https://doi.org/10.1016/j.inffus.2017.04.001
https://doi.org/10.1016/j.inffus.2017.04.001
https://doi.org/10.18653/v1/D19-1613
https://doi.org/10.18653/v1/D18-1298
https://doi.org/10.18653/v1/D18-1298
https://doi.org/10.18653/v1/2022.naacl-main.252
https://api.semanticscholar.org/CorpusID:265213422
https://arxiv.org/abs/1906.00091

Optimization Methods for Personalizing Large Language Models through Retrieval Augmentation SIGIR ’24, July 14–18, 2024, Washington, DC, USA.

595–614. https://doi.org/10.1016/j.ipm.2005.03.023

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. Curran Associates Inc., Red Hook, NY, USA.

[39] Hongjin Qian, Xiaohe Li, Hanxun Zhong, Yu Guo, Yueyuan Ma, Yutao Zhu,

Zhanliang Liu, Zhicheng Dou, and Ji-Rong Wen. 2021. Pchatbot: A Large-Scale

Dataset for Personalized Chatbot. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Virtual
Event, Canada) (SIGIR ’21). Association for Computing Machinery, New York,

NY, USA, 2470–2477. https://doi.org/10.1145/3404835.3463239

[40] Chris Richardson, Yao Zhang, Kellen Gillespie, Sudipta Kar, Arshdeep Singh,

Zeynab Raeesy, Omar Zia Khan, and Abhinav Sethy. 2023. Integrating Summa-

rization and Retrieval for Enhanced Personalization via Large Language Mod-

els. ArXiv abs/2310.20081 (2023). https://api.semanticscholar.org/CorpusID:

264805263

[41] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,

and Mike Gatford. 1994. Okapi at TREC-3. In Text Retrieval Conference. https:

//api.semanticscholar.org/CorpusID:3946054

[42] H. Roitman, S. Erera, and B. Weiner. 2017. Robust Standard Deviation Estimation

for Query Performance Prediction. In Proceedings of the 2017 International ACM
SIGIR Conference on the Theory of Information Retrieval (ICTIR ’17). 245–248.

[43] Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Za-

mani. 2023. LaMP: When Large Language Models Meet Personalization.

arXiv:2304.11406 [cs.CL]

[44] A. Shtok, O. Kurland, D. Carmel, F. Raiber, and G. Markovits. 2012. Predicting

Query Performance by Query-Drift Estimation. ACM Transactions on Information
Systems 30, 2 (May 2012).

[45] ShayanA. Tabrizi, Azadeh Shakery, Hamed Zamani, andMohammadAli Tavallaei.

2018. PERSON: Personalized information retrieval evaluation based on citation

networks. Information Processing & Management 54, 4 (2018), 630–656. https:

//doi.org/10.1016/j.ipm.2018.04.004

[46] Sebastian Vincent, Rowanne Sumner, Alice Dowek, Charlotte Blundell, Emily

Preston, Chris Bayliss, Chris Oakley, and Carolina Scarton. 2023. Personalised

Language Modelling of Screen Characters Using Rich Metadata Annotations.

arXiv preprint arXiv:2303.16618 (2023).
[47] Dingmin Wang, Qiuyuan Huang, Matthew Jackson, and Jianfeng Gao. 2023.

Retrieve What You Need: A Mutual Learning Framework for Open-domain

Question Answering. (March 2023). https://www.microsoft.com/en-

us/research/publication/retrieve-what-you-need-a-mutual-learning-

framework-for-open-domain-question-answering/

[48] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for

Connectionist Reinforcement Learning. Mach. Learn. 8, 3–4 (may 1992), 229–256.

https://doi.org/10.1007/BF00992696

[49] Yuwei Wu, Xuezhe Ma, and Diyi Yang. 2021. Personalized Response Generation

via Generative Split Memory Network. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics, Online, 1956–

1970. https://doi.org/10.18653/v1/2021.naacl-main.157

[50] Joern Wuebker, Patrick Simianer, and John DeNero. 2018. Compact Personalized

Models for Neural Machine Translation. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing. Association for Computational

Linguistics, Brussels, Belgium, 881–886. https://doi.org/10.18653/v1/D18-1104

[51] Gui-Rong Xue, Jie Han, Yong Yu, and Qiang Yang. 2009. User Language Model

for Collaborative Personalized Search. ACM Trans. Inf. Syst. 27, 2, Article 11 (mar

2009), 28 pages. https://doi.org/10.1145/1462198.1462203

[52] Sohee Yang and Minjoon Seo. 2020. Is Retriever Merely an Approximator of

Reader? arXiv:2010.10999 [cs.CL]

[53] Hamed Zamani and W. Bruce Croft. 2017. Relevance-based Word Embed-

ding. In Proceedings of the 40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (Shinjuku, Tokyo, Japan) (SI-
GIR ’17). Association for Computing Machinery, New York, NY, USA, 505–514.

https://doi.org/10.1145/3077136.3080831

[54] Hamed Zamani, W. Bruce Croft, and J. Shane Culpepper. 2018. Neural Query

Performance Prediction using Weak Supervision from Multiple Signals. In The
41st International ACM SIGIR Conference on Research &Development in Information
Retrieval (Ann Arbor, MI, USA) (SIGIR ’18). Association for ComputingMachinery,

New York, NY, USA, 105–114. https://doi.org/10.1145/3209978.3210041

[55] Hamed Zamani, Fernando Diaz, Mostafa Dehghani, Donald Metzler, and Michael

Bendersky. 2022. Retrieval-EnhancedMachine Learning. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Madrid, Spain) (SIGIR ’22). Association for Computing Machinery, New

York, NY, USA, 2875–2886. https://doi.org/10.1145/3477495.3531722

[56] Hansi Zeng, Surya Kallumadi, Zaid Alibadi, Rodrigo Nogueira, and Hamed

Zamani. 2023. A Personalized Dense Retrieval Framework for Unified In-

formation Access. In Proceedings of the 46th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (Taipei, Taiwan) (SI-
GIR ’23). Association for Computing Machinery, New York, NY, USA, 121–130.

https://doi.org/10.1145/3539618.3591626

[57] Kai Zhang, Fubang Zhao, Yangyang Kang, and Xiaozhong Liu. 2023. Memory-

Augmented LLM Personalization with Short- and Long-Term Memory Coordina-

tion. ArXiv abs/2309.11696 (2023). https://api.semanticscholar.org/CorpusID:

262083954

[58] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and

JasonWeston. 2018. Personalizing Dialogue Agents: I have a dog, do you have pets

too?. In Proceedings of the 56th AnnualMeeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,

Melbourne, Australia, 2204–2213. https://doi.org/10.18653/v1/P18-1205

[59] Shaoting Zhang, Ming Yang, Timothee Cour, Kai Yu, and Dimitris N. Metaxas.

2015. Query Specific Rank Fusion for Image Retrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence 37, 4 (2015), 803–815. https://doi.org/

10.1109/TPAMI.2014.2346201

[60] Hanxun Zhong, Zhicheng Dou, Yutao Zhu, Hongjin Qian, and Ji-Rong Wen. 2022.

Less is More: Learning to Refine Dialogue History for Personalized Dialogue

Generation. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, Seattle, United States, 5808–5820.

https://doi.org/10.18653/v1/2022.naacl-main.426

[61] Yun Zhou and W. Bruce Croft. 2007. Query performance prediction in web

search environments. In Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (Amsterdam,

The Netherlands) (SIGIR ’07). Association for Computing Machinery, New York,

NY, USA, 543–550. https://doi.org/10.1145/1277741.1277835

https://doi.org/10.1016/j.ipm.2005.03.023
https://doi.org/10.1145/3404835.3463239
https://api.semanticscholar.org/CorpusID:264805263
https://api.semanticscholar.org/CorpusID:264805263
https://api.semanticscholar.org/CorpusID:3946054
https://api.semanticscholar.org/CorpusID:3946054
https://arxiv.org/abs/2304.11406
https://doi.org/10.1016/j.ipm.2018.04.004
https://doi.org/10.1016/j.ipm.2018.04.004
https://www.microsoft.com/en-us/research/publication/retrieve-what-you-need-a-mutual-learning-framework-for-open-domain-question-answering/
https://www.microsoft.com/en-us/research/publication/retrieve-what-you-need-a-mutual-learning-framework-for-open-domain-question-answering/
https://www.microsoft.com/en-us/research/publication/retrieve-what-you-need-a-mutual-learning-framework-for-open-domain-question-answering/
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/2021.naacl-main.157
https://doi.org/10.18653/v1/D18-1104
https://doi.org/10.1145/1462198.1462203
https://arxiv.org/abs/2010.10999
https://doi.org/10.1145/3077136.3080831
https://doi.org/10.1145/3209978.3210041
https://doi.org/10.1145/3477495.3531722
https://doi.org/10.1145/3539618.3591626
https://api.semanticscholar.org/CorpusID:262083954
https://api.semanticscholar.org/CorpusID:262083954
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.1109/TPAMI.2014.2346201
https://doi.org/10.1109/TPAMI.2014.2346201
https://doi.org/10.18653/v1/2022.naacl-main.426
https://doi.org/10.1145/1277741.1277835

	Abstract
	1 Introduction
	2 Related Work
	3 Notations and Task Formulation
	4 Learning to Retrieve for Personalizing LLMs
	4.1 Retrieval Optimization for Personalized Generation using Reinforcement Learning
	4.2 Retrieval Optimization for Personalized Generation using Knowledge Distillation
	4.3 Retrieval Model Architecture

	5 Retrieval Model Selection for Personalizing LLMs
	6 Experiments
	6.1 Experimental Setup
	6.2 Empirical Results

	7 Conclusions and Future Work
	References

