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ABSTRACT
In information retrieval, domain adaptation is the process of adapt-

ing a retrieval model to a new domain whose data distribution is

different from the source domain. Existing methods in this area

focus on unsupervised domain adaptation where they have access

to the target document collection or supervised (often few-shot)

domain adaptation where they additionally have access to (limited)

labeled data in the target domain. There also exists research on

improving zero-shot performance of retrieval models with no adap-

tation. This paper introduces a new category of domain adaptation

in information retrieval that is as-yet unexplored. Here, similar

to the zero-shot setting, we assume the retrieval model does not

have access to the target document collection. In contrast, it does

have access to a brief textual description that explains the target

domain. We define a taxonomy of domain attributes in retrieval

tasks to understand different properties of a source domain that can

be adapted to a target domain. We introduce a novel automatic data

construction pipeline that produces a synthetic document collec-

tion, query set, and pseudo relevance labels, given a textual domain

description. Extensive experiments on five diverse target domains

show that adapting dense retrieval models using the constructed

synthetic data leads to effective retrieval performance on the target

domain.

1 INTRODUCTION
The effectiveness of neural information retrieval (IR) models has

been well-established in recent years [9, 13, 22]. However, these

models have primarily demonstrated strong performance in settings

where the training and test data follow a similar data distribution

[34]. When well-performing neural models developed for one test

collection, e.g., MS MARCO [7], are applied to a substantially dif-

ferent one, the results are often worse than those produced by

much simpler bag-of-words models such as BM25 [31]. This poses a

problem in real-world applications, where access to large, domain-

specific training data is limited. To address this issue, a group of

methods known as “domain adaptation” have been developed.
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There are various approaches to domain adaptation in informa-

tion retrieval, as summarized in Table 1. In the zero-shot setting, the

assumption is that the model has been trained on a large-scale test

collection in a source domain, but no data from the target domain

is available during training. It is worth noting that in the zero-shot

setting, there is essentially no adaptation taking place, as the model

is simply being tested on the target domain. In contrast, unsuper-

vised domain adaptation models assume that the target document

collection is available for adaptation. The few-shot setting takes

this further and assumes that a small set of query-document pairs

with relevance labels on the target domain is available, allowing

the retrieval model to be adapted to the target.

In this work we introduce a new category of domain adapta-

tion methods for neural information retrieval, which we refer to

as “domain adaptation with description.” Studying this problem is

not only interesting from an academic perspective, but also has

potential applications in several real-world scenarios, where the

target collection and its relevance labels are not available at training

time. For example, these may not be available yet or at all or, even if

they were, target domain owners may be hesitant to provide them

for various reasons such as legal restrictions. There are also appli-

cations with privacy concerns, for instance in the case of medical

records or where the data contains personally identifiable informa-

tion. Another example can be found when a competitive advantage

is involved, as potential use of the data may benefit competitors.

Therefore, if an organization lacks the resources for training neu-

ral IR models in-house and desires to outsource the process, they

should be able to provide a high-level textual description that out-

lines the task and characteristics of the data in a general manner.

Our approach then allows the organization to convey the neces-

sary information to a third party without compromising sensitive

information or violating legal restrictions.

In this paper, we investigate the task of domain adaptation for

information retrieval (IR) tasks by utilizing target domain descrip-

tions. We propose a taxonomy for the task and analyze the various

ways and attributes by which a domain can be adapted. We differ-

entiate our task from similar studies that have been conducted in

recent years and explain the limitations of existing technologies. To

address these limitations, we propose a novel pipeline that utilizes

the domain descriptions to construct a synthetic target collection

and generate queries and pseudo relevance labels to adapt the initial

ranking model trained on a source domain. Our approach takes

advantage of state-of-the-art instruction-based language models to

1
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Table 1: Different categories of domain adaptation in information retrieval.

Adaptive Retrieval Setting 𝑞-𝑑-𝑟 triplets in 𝐷1 𝑞-𝑑-𝑟 triplets in 𝐷2 Target Collection Extra Information

Zero-shot retrieval ✔ ✗ ✗ None

Unsupervised domain adaptation ✔ ✗ ✔ None

Supervised (few-shot) domain adaptation ✔ ✔† ✔ None

Domain adaptation with description ✔ ✗ ✗ a textual description of the target domain
‡

†
often only a small amount of training data is available. ‡ domain description can be a single sentence describing the target domain.

extract the properties of the target domain based on its given tex-

tual description. We show that a retrieval-augmented approach for

domain description understanding can effectively identify various

properties of each target domain, including the topic of documents,

their linguistic attributes, their source, etc. The extracted properties

are used to generate a seed document using generative language

models and then an iterative retrieval process is employed to con-

struct a synthetic target collection, automatically.

Following prior work on unsupervised domain adaptation [39],

we automatically generate queries from our synthetic collection

based on the query properties extracted from the target domain

description. We then generate pseudo relevance labels for each

query given an existing cross-encoder reranking model and use

the created data for adapting dense retrieval models to the target

domain. Extensive experiments on five diverse target collections,

ranging from financial question answering to argument retrieval for

online debate forums, demonstrate the effectiveness of the proposed

approach for the task of domain adaptation with description. In

summary, the main contributions of this work include the following.

• Introducing the novel task of domain adaptation with de-

scription for information retrieval.

• Proposing an automatic data construction pipeline from

each target domain description.

• Proposing a taxonomy of domain attributes in information

retrieval that should be identified for effective adaptation.

• Studying a retrieval-augmented approach based on state-

of-the-art language models for extracting the attributes in

our taxonomy from domain descriptions.

• Introducing an effective implementation of the proposed

pipeline for synthetic document collection construction,

query generation, and pseudo labeling.

• Significantly outperforming existing baselines that can be

applied to the task of domain adaptation with description

on five diverse retrieval benchmarks.

2 RELATEDWORK
This work is related to the domain adaptation as well as prompt-

based language model literature. Here, we review prior work in

this area and highlight the contributions of our work.

2.1 Domain Adaptation in Neural IR
Research in this area can be categorized into two main groups: su-

pervised and unsupervised. In supervised (often few-shot) domain

adaptation, the assumption is that labeled data is available in the

source domain and a limited amount of labeled data is available in

the target domain. This problem can be formulated as a few-shot

learning scenario, as demonstrated by Sun et al. [33]. A common

approach within this category is transfer learning, which utilizes a

pre-trained model from the source domain and fine-tunes it on the

target domain using a small set of labeled data. This approach has

been shown to improve model performance by allowing the model

to learn the specific characteristics of the target domain [11].

The unsupervised setting assumes that access to target docu-

ments is available, but queries and relevance labels are not. Wang

et al. [39] proposed a generative pseudo-labeling approach for this

scenario. They generated synthetic queries, from documents and

applied a re-ranking based pseudo labeling approach for each query

and document pair. Then, the model was fine-tuned using the gener-

ated query-document pairs. Zhu andHauff [46] proposed an answer-

aware strategy for domain data selection, which selects data with

the highest similarity to the new domain. The source data examples

were sorted based on their distance to the target domain center,

and the most similar examples were chosen as pseudo in-domain

data to re-train the question generation model. Additionally, they

presented two confidence modeling methods, namely, generated

question perplexity and BERT fluency score, which emphasized la-

bels that the question generation model was more confident about.

Recently, Gao et al. [12] introduced a zero-shot dense retrieval

model for adaptations by using a generative model to generate

hypothetical documents relevant to the query. These documents

were used as queries and, with the use of pre-trained Contriever

[15], documents from the target domain were retrieved.

2.2 Prompt-based Language Models
Language models have been widely used in information retrieval

(IR) and natural language processing (NLP) applications due to

their ability to accurately represent text. They are machine learning

models that are trained to predict the likelihood of a sequence

of words. Currently, the state-of-the-art approach is to use large

transformer-based language models, such as BERT [11], GPT [28],

and T5 [29]. An evolving technique for training these models is

called “prompting.” GPT-3 [5] is an example of a successful language

model that was trained using this technique. Prompting refers to

using language models to generate text by providing the model

with a “prompt,” which is a short text that serves as a starting point

for the model’s generation. The idea behind prompting is to provide

the model with a specific context or task, so that it can generate

text that is more focused and coherent.

Prompts can be used for few-shot learning. To be more specific,

language models can be fine-tuned for specific tasks using a small

amount of task-specific data, such as a few examples or instruc-

tions. These type of models are called instruction-tuned language

models. They include T0 [32], InstructGPT [25], and T𝑘-Instruct

[41]. Instruction-tuned models are promising in that they make it

possible to fine-tune language models on new tasks with minimal

2
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data. InstructGPT [25] argues that it is more effective and truthful

than GPT-3 at following user intention.

In this context, the term “instruction” is distinct from “descrip-

tion” as used in this paper. In previous research, the term “instruc-

tion” has been used interchangeably with “intention” and is closely

related to the concept of user intent in the field of IR. For exam-

ple,
1
it was found that if GPT-3 prompted to explain the moon

landing to a 6-year-old, it outputs the completion of the prompt

text, while InstructGPT generates a more accurate and appropriate

response that actually explains moon landing with simple word-

ing. This is attributed to their training – GPT-3 predicts the next

word, while InstructGPT employs techniques such as reinforcement

learning from human feedback for fine-tuning the model to better

align with user instructions. Other recent research has focused on

fine-tuning language models to follow instructions using academic

NLP datasets such as FLAN [42] and T0 [32]. However, all these

instruction-based language models are currently limited in their

ability to perform complex, multi-step tasks, as opposed to the

high-level task-oriented approach used in this study.

Instruction-tuned language models have been effectively applied

to various NLP tasks, but have received less attention in the field

of IR. This is due to the challenge of casting a retrieval task into

the sequence-to-sequence format typically used by these models,

as it requires encoding a large corpus of documents. Concurrent

to our work Asai et al. [1] proposed a retrieval method that explic-

itly models a user’s search intent by providing natural language

instruction. They concatenated the query with the instruction, en-

coding it as the query embedding, and then computed the cosine

similarity between query and document pairs. Gao et al. [12] used

InstructGPT to encode a query with its instruction and generated

a hypothetical document, which they later used as the query to

improve dense retrieval. While we use both of these ideas in our

baselines, our approach in defining the task differs, significantly.

In both of the aforementioned papers, the authors simply concate-

nated the instruction to the query. However, this approach is limited

to handling atomic commands that improve alignment with human

intentions, such as “write an answer to this question.” These types

of instructions are distinct from high-level overviews of complex

tasks that require multiple steps to complete, such as our task.

3 METHODOLOGY
In this section, we explain the problem formulation and a taxon-

omy of domain attributes that can be used to understand domain

descriptions. Such domain understanding component can produce

attribute values for a synthetic corpus construction model that uses

a large language model to generate one seed document with these

attributes and then performs an iterative retrieval process from a

heterogeneous collection such as the Web for collection creation.

The constructed collection will be then used to generate queries

and pseudo relevance labels that are aligned with the properties

of the target domain, as extracted by our domain understanding

component. This pipeline leads to a synthetic training set that can

be used to adapt a dense retrieval model to the target domain.

1
https://openai.com/blog/instruction-following/#moon

3.1 Problem Formalization
Let 𝑀 be a retrieval model that is trained on the source domain

𝐷1. Moreover, let𝑇 be the textual description of the target retrieval

domain𝐷2, where𝐷2 ≠ 𝐷1. The goal is to adapt the retrieval model

𝑀 to the target domain 𝐷2 and obtain the retrieval model𝑀 ′ that
performs effectively on𝐷2. Assume that𝑊 is a large-scale collection

of heterogeneous (diverse) documents, such as a Web collection,

that can be used as an external resource as required. This large-scale

collection can be used for synthetic collection construction for any

given target domain description.

3.2 A Taxonomy of Domain Attributes in IR
The term “domain” is used quite loosely in NLP and IR and defined in

myriad ways [27]. It is commonly used to describe a type of corpus

that is “coherent”, such as a specific topic or linguistic register

[26]. However, the concept of domain has evolved in recent years,

leading to ongoing research in this area. For example, there is a

distinction between “canonical” data (e.g., edited news articles) and

“non-canonical” data (e.g., social media), and models trained on

one type may not perform well on the other. There is an ongoing

debate over what constitutes a “domain” in the field of information

retrieval (IR), and whether subdomains exist within a larger domain.

This uncertainty makes it difficult to tackle the domain adaptation

problem and develop a universal algorithm, as domain shifts are

specific to each case and models may not perform robustly when

transferred from one case to another.

In order to clarify the different stances on the definition of a

“domain” we have developed a taxonomy for domains and their

attributes in the context of IR. Therefore, we define a domain based

on the set of attributes defined in our taxonomy. This taxonomy can

be used to develop general-purpose domain adaptation solutions

as it enumerates the possible ways in which two domains can be

different. We argue that every retrieval task is composed of three

variables: query, documents, and relevance notion. We propose

that attributes related to these three categories together define a

retrieval domain. In other words, for any domain 𝐷 , we define a

set of attributes {𝑎1, 𝑎2, · · · , 𝑎𝑛}, where each attribute 𝑎𝑖 is either

related to the properties of query, document, or relevance. Through

careful exploration of many different retrieval tasks, including the

ones in the BEIR benchmark [34] and the ones organized by TREC
2

and CLEF
3
evaluation campaigns over the last few decades, we com-

pile a taxonomy that includes seven query-level attributes, seven

document-level attributes, and one attribute denoting the relevance

notion. The attributes, their definition, and examples are presented

in Table 2. In the interest of space, do not list them here again. We

argue that if the value of at least one attribute belonging to any of

the three categories changes, a domain shift has occurred. We high-

light the asymmetric nature of query and document attributes that

presents unique challenges for domain adaptation in IR compared

to NLP tasks. Finally, we note this taxonomy can be used to see

what attributes differ between domains and that we can leverage

those for effective adaptation.

2
https://trec.nist.gov/

3
https://www.clef-initiative.eu/

3

https://trec.nist.gov/
https://www.clef-initiative.eu/
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Figure 1: The proposed pipeline for training dense retrieval models for a given domain description.

Table 2: A taxonomy of attributes that define an information retrieval task.

Retrieval Attribute Attribute Definition Example Attribute Values

Q
u
e
r
y
A
t
t
r
i
b
u
t
e
s

Query topic
*

a subject matter or theme of the users’ search request medical, financial, climate, etc

Query linguistic features syntactic characteristics of the query formal, informal, technical, etc

Query language a language used by the user to make requests for information English, Spanish, etc

Query structure the structure of the query used by the user structured, semi-structured, unstructured, SQL, etc

Query modality the query modality text, text and image, uni-modal, multi-modal, etc

Query format type of the query submitted by the user (especially from IR

perspective)

keyword queries, tail queries, tip-of-tongue queries, etc

Query context any metadata that exists around the query conversational search, session search, from adult users vs kids

D
o
c
u
m
e
n
t
A
t
t
r
i
b
u
t
e
s Document topic the main subject that the document collection covers medical, financial, etc

Document linguistic features syntactic characteristics of the documents formal, informal, technical, etc

Document language the language used to express the content of the documents English, Spanish, etc

Document structure the structure of the documents in the collection structured, semi-structured, unstructured, table, knowledge

base, etc

Document modality the document modality text, text and image, uni-modal, multi-modal, etc

Document format the format of the document (especially from IR perspective) passages, long documents, questions, etc

Document source the specific source that the documents come from Wikipedia, Twitter, Quora, etc

Relevance notion the criteria that make the documents relevant to the query topical relevance, containing the correct answer, paraphrasing,

containing the counterargument, etc

*
This is often referred to as the “domain”, but we use the term “topic” to avoid confusion.

3.3 Domain Description Understanding
As discussed in Section 1, clients may be reluctant to provide actual

target domain data. However, providing a high-level description

of the data is usually feasible. At the time of this research, no

dataset that includes descriptions of retrieval tasks were known

to us. Concurrently, [1, 12] provided instructions for some IR test

collections. However, we started this research prior to their work

being submitted to arXiv (Dec 2022) and as noted in Section 2.2,

the instructions they use provide more fine-grained information on

human intentions, in line with what was referred to as “narratives”

in the TREC 2004 Robust Track [35]. That being said, in our problem,

we need a description of the retrieval task that includes information

on the appearance of the corpus and queries, in addition to user

intentions, and how relevance is defined for that task. To obtain

these descriptions, we gave 15 diverse IR collections from the BEIR

benchmark [34] to three IR experts (not the authors of this paper)

and asked them to explain the retrieval task for each.We asked them

to revise the differences of opinion during a brainstorming session;

they shared their explanations and worked together to reach a

single description for each collection, which we refer to as 𝑇 in

our formalization. After the descriptions are finalized, we provide

the same people with the taxonomy we have defined in Table 2,

and ask them to annotate the descriptions based on the taxonomy

attribute. This annotation results in the gold labels of attribute

values based on our taxonomy for each dataset. We provide one

dataset description and its annotation in Table 3 for the reference.
4

We argue that a proper understanding of the description has a

significant impact on adaptation. If the model understands the value

of each attribute in the taxonomy, it knows when a domain shift has

occurred andwhat attributes need to be adapted for the entiremodel

to be adapted. Therefore, our domain description understanding

component focuses on predicting the values of attributes defined

in our taxonomy. Since the value of the attributes can be open-

ended text rather than defined options, the best architectural choice

is a text generation model that takes the domain description as

input and generates the value of the attributes as output. Therefore,

we adopt a state-of-the-art prompt-based text generation model

𝐹 to perform the task, i.e., ChatGPT. We instruct the model to get

the description of the domain and extracts the value of attributes

introduced in the taxonomy.
5

4
We will release all collected domain descriptions and annotations upon acceptance of

this paper.

5
After some rounds of trial and error, we landed on the following instruction, 𝐼 as

the best performing one for our task: “For each defined retrieval task in the Passage,

find the values related to the relevance notion (e.g. topically relevant, contains the

4
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Table 3: An example of a retrieval task description and its annotated attributes from our taxonomy.

Target Collection Arguana

Description of the re-
trieval task

Given an argument passage as a query, the task is to retrieve passages from online debate portals that contain its

counterarguments

Description annota-
tion

relevance notion: counterargument ■ query topic: NA ■ query linguistic features: NA ■ query language: NA ■ query

structure: unstructured ■ query modality: unimodal ■ query format: argument passage ■ document topic: NA ■
document linguistic features: NA ■ document language: NA ■ document structure: unstructured ■ document modality:

unimodal ■ document format: argument passage ■ document source: online debate portals

In addition to the instruction, we include up to three examples

from the most similar collections to the target domain by retrieval

augmentation. Let 𝑅(𝑇,𝐶 ′) denote a retrieval model (SBERT in

our case) that takes the target domain description and a collection

of textual descriptions of different domains (𝐶 ′). The description
understanding function 𝐹 takes the instruction 𝐼 , the retrieved

examples, and domain description 𝑇 , and outputs the values of

attributes introduced in taxonomy. Formally: 𝐹 (𝐼 ,𝑇 , 𝑅(𝑇,𝐶 ′)) =
{𝑎′

1
, 𝑎′

2
, · · · , 𝑎′𝑛} where 𝑛 = 15.

3.4 Synthetic Target Data Construction
As depicted in Figure 1, once we identify the domain attributes of

our taxonomy for the target domain (i.e., domain description under-

standing), we propose to build a synthetic training set based on the

generated attribute values. This consists of three steps: synthetic

document collection construction, synthetic query generation, and

pseudo-labeling. In the following we describe each of these steps.

Our data construction approach is presented in Algorithm 1.

3.4.1 SyntheticDocumentCollectionConstruction. One naive
approach to synthesizing the collection is to generate documents

one by one using sequence-to-sequence models. In preliminary

experiments, we observed that many state-of-the-art and free-to-

use sequence-to-sequence models such as the latest version of T𝑘-

Instruct [41], are not sufficient to generate meaningful documents

given our target domain descriptions. Instead, they generate pas-

sages containing words from our instructions, rather than generat-

ing a document with the provided attributes.

It can be argued that with the rise of black-box generative lan-

guage models like ChatGPT, this issue will be reduced. However,

it is important to note that these models are not free to use. At

the time of submitting this paper, ChatGPT was not yet available

through an API, so we used the next best available large language

model, text-davinci-003, the latest version of GPT-3 from Ope-

nAI. OpenAI charges customers based on the cumulative number

of tokens in the input and output, at a rate of $0.02 per 1K tokens. If

we consider an average passage to be 300 tokens, the minimum cost

answer, references of a paper, paraphrase, evidence for the claim, etc) as well as the

following query and document attributes: query topic (e.g. medical, scientific, financial,

mathematical, adult, etc); query linguistic features (e.g. formal, informal, etc); query

language (e.g. english, french, etc); query structure (e.g. unstructured, semi-structured,

structured, etc); query modality (e.g. text, image, video, etc); query format (e.g. keyword

query, tail query, question, claim, argument, passage, etc); document topic (e.g. medical,

scientific, financial, mathematical, adult, etc); document linguistic features (e.g. formal,

informal, etc); document language (e.g. english, french, etc); document structure (e.g.

unstructured, semi-structured, structured, etc); document modality (e.g. text, image,

video, etc); document format (e.g. passage, long document, question, etc); document

source (e.g. StackExchange, wikipedia, reddit, youtube, twitter, facebook, quora, etc).

If the value of each attribute cannot be inferred, return NA”

Algorithm 1 Our Synthetic Data Creation Approach

1: Input (a)𝑇 : a target domain description; (b)𝑊 : a large, diverse,

and heterogeneous collection (such as the Web); (c)𝑀𝜃 : a dense

retrieval model trained on the source domain; (d)𝑀 : an effective

teacher model for pseudo labeling; (e) 𝑁 : the desired size of

synthetic collection ; (f) 𝑘 : the iterative retrieval list size; (g) 𝑘 ′:
the number of generated queries per document.

2: Output A dense retrieval model𝑀 ′ for the target domain.

3: 𝑎1, 𝑎2, · · · , 𝑎15 ← DescriptionUnderstanding(𝑇 )
4: 𝑞attr ← {𝑎1, 𝑎2, · · · , 𝑎7}
5: 𝑑attr ← {𝑎8, 𝑎9, · · · , 𝑎14}
6: 𝑟attr ← {𝑎15}
7: 𝑆

seed
← DocumentGen(𝑑attr)

8: 𝐶 ← ∅
9: repeat
10: 𝑑 ← 𝑆

seed
.𝑝𝑜𝑝 ()

11: 𝐷 ← Retrieve(query = 𝑑, collection =𝑊, count = 𝑘)
12: 𝐶 ← 𝐶 ∪ 𝐷
13: 𝑆

seed
← 𝑆

seed
∪ 𝐷

14: until |𝐶 | < 𝑁

15: 𝑄 ←QueryGen(𝐶,𝑞attr, 𝑟attr, 𝑘 ′)
16: 𝑅 ← PseudoLabeling(𝐶,𝑄, 𝑟attr, 𝑀)
17: 𝑀 ′ ← argmin𝜃 L(𝑀𝜃 , {𝑄,𝐶, 𝑅})
18: return𝑀 ′

to generate a corpus like MS MARCO (consisting of 8M passages)

would be $12,000. This assumes the model only takes the domain

description with no example as input and generates one passage in

line with the target domain description.

It is worth mentioning that our preliminary experiments showed

that the text-davinci-003model was unable to generate a desired

passage even with three examples in the prompt. We were able

to generate good quality passages with ChatGPT, but it may be

even more expensive once available through the API. Additionally,

these models cannot perform a sequence of tasks step by step (e.g.

curating a collection then queries, etc.). They may miss some parts

of the sequence or do it all at once (generating documents and

queries simultaneously), causing the automation of the training

retrieval model to be difficult.

To overcome all these obstacles, we propose an iterative doc-

ument selection process (i.e., lines 7-14 in Algorithm 1). We first

generate a document based on the domain attributes we extracted

from the target domain description 𝑇 . We call this generated docu-

ment a seed document. We find that ChatGPT is the only language

model that could successfully generate a related document given

our document attributes. We tried T5, T𝑘-Instruct, and GPT-3 and
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they could not generate a document with the given attributes. In-

stead, they generate a text using the words in the given instruction

which is not sufficient for effective domain adaptation. We then

run an iterative retrieval process using BM25 and a BERT-based

cross-encoder reranking model trained on the source domain [24].

It retrieves 𝑘 documents (we empirically observe that 𝑘 should be

set to a small value often less than 50) in response to the seed doc-

ument and then adds all the retrieved documents to the seed set.

Again another document from the seed set is selected and another

𝑘 documents are retrieved. This process repeats until we reaches a

collection 𝐶 with a desired synthetic collection size (𝑁 ).

3.4.2 SyntheticQuery Generation. In line 15 of Algorithm 1,

we generate 𝑘 ′ queries per document in the constructed document

collection 𝐶 . To this aim, we train instruction-based 𝑇5 on MS

MARCO for query generation. It is similar to the docT5query [23],

but also takes takes query and relevance properties of the target

domain as input. Therefore, it learns to generate queries with the

given properties. The model is trained with a maximum likelihood

objective as follows:

−
∑︁
𝑘

log 𝑃 (𝑞𝑘 |𝑞𝑖<𝑘 , 𝑞attr, 𝑟attr)

where 𝑞𝑘 is 𝑘th output query token, 𝑞attr is the extracted values for

query attributes in the taxonomy, and 𝑟attr is the extracted values

for relevance attribute. We use beam search with the size of 𝑘 ′.

3.4.3 Pseudo Labeling. Research on weak supervision by [10,

44] showed that we can use existing retrieval models to annotate

documents for a given query set and train student models based

on the annotated data. Recently, this approach has been found

effective in unsupervised domain adaptation [39]. We use a cross-

encoder re-ranking model based on BERT [24] that is trained on

MS MARCO (our source domain) as a teacher model and annotate

documents through soft labeling: the output scores are used as

labels. Let 𝐷𝑞 ⊂ 𝐶 be a set of documents that should be annotated

for query 𝑞 by the pseudo-labeler. We construct 𝐷𝑞 as follows:

• 𝐷𝑞 includes the document that 𝑞 was generated from.

• 𝐷𝑞 includes 25 documents from the top 100 documents

retrieved by BM25.

• 𝐷𝑞 includes 25 documents from the top 100 documents

retrieved by the dense retriever𝑀𝜃 .

3.5 Dense Retrieval Adaptation
Given the constructed training set with pseudo-labels, we use the

following listwise loss function for adapting the dense retrieval

model𝑀𝜃 to the target domain. We used Contriever [15] (an unsu-

pervised dense retrieval model trained using contrastive learning)

that is fine-tuned on MS MARCO as our𝑀𝜃 . Let 𝐷𝑞 ⊂ 𝐶 be the set

of documents annotated for query 𝑞 ∈ 𝑄 through pseudo-labeling.

We use the following listwise loss function for each query 𝑞:∑︁
𝑑,𝑑′∈𝐷𝑞

1{𝑦𝑇𝑞 (𝑑) > 𝑦𝑇𝑞 (𝑑 ′)}|
1

𝜋𝑞 (𝑑)
− 1

𝜋𝑞 (𝑑 ′)
| log(1+𝑒𝑦

𝑆
𝑞 (𝑑′)−𝑦𝑆𝑞 (𝑑) )

where 𝜋𝑞 (𝑑) denotes the rank of document 𝑑 in the result list pro-

duced by the student dense retrieval model, and 𝑦𝑇𝑞 (𝑑) and 𝑦𝑆𝑞 (𝑑)
respectively denote the scores produced by the teacher and the

student models for the pair of query 𝑞 and document 𝑑 . This knowl-

edge distillation listwise loss function is inspired by LambdaRank

[6] and is also used by Zeng et al. [45] for dense retrieval distillation.

In addition, we take advantage of the other passages in the batch

as in-batch negatives. Although in-batch negatives resemble ran-

domly sampled negatives that can be distinguished easily from

other documents, it is efficient since passage representations can

be reused within the batch [16].

4 EXPERIMENTS
This section describes our datasets, experimental setup, and results.

4.1 Tasks and Data
For evaluating our domain adaptation solution, we chose the target

collections to be as diverse as possible within the public test collec-

tions in the BEIR benchmark. Below we provide brief explanations

of these collections. For the sake of consistency and comparability

of the results, we adopt the collection variations provided by the

BEIR benchmark [34].

Source Domain. As the source domain, we focus on passage

retrieval provided by the MS MARCO collection [7]. It is the largest

passage retrieval collection available to the public, and it covers

a wide variety of topics. As the standard practice on zero-shot

learning offered by BEIR benchmark, most of baselines models have

been pre-trained on this dataset, as our source domain. It contains

8.8 M passages and an official training set of 532,761 query-passage

pairs collected from the Bing search log. Queries often have only

one relevant passage per query, and the relevant label is binary.

Target Retrieval Task 1: Bio-Medical IR. Our first target re-
trieval task focuses on retrieving scientific documents for biomed-

ical queries. We use the collection provided by the TREC Covid

Track in 2020 (TREC-COVID) [36], which is an ad-hoc retrieval

task based on scientific documents related to the Covid-19 pan-

demic offered by the CORD-19 corpus [40]. Similar to Thakur et al.

[34], we use the July 16, 2020 version of CORD-19 collection as the

target corpus, and the final cumulative judgments with query de-

scriptions from the original task as test queries. The test collection

consists of 50 test queries and a corpus of 171K documents.

Target Retrieval Task 2: Financial Question Answering. Our
second task studies answer passage retrieval in response to natural

language questions in the financial domain. We use the FiQA-2018

Task 2 [21] (FiQA) that focused on answering questions based

on personal opinions. The document collection was created by

crawling posts on StackExchange under the Investment topic from

2009-2017, which serves as the corpus with 57K documents. The

test set consists of 648 queries.

Target Retrieval Task 3: Argument Retrieval. This task ex-

plores ranking argumentative texts from a collection based on rele-

vance to a given query on various subjects. We use the ArguAna
dataset [37] which has passage-level queries. The goal is to retrieve

the most suitable counterargument for a given argument. The col-

lection was collected from online debate portals. There are 1,406

argument queries in the dataset and the corpus size is 8.67K.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Dense Retrieval Adaptation using Target Domain Description SIGIR ’23, July 23–27, 2023, Taipei, Taiwan.

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Domain adaptation results in terms of NDCG@10 and Recall@100. Bold numbers indicate the highest value in each
column (excluding Oracle). The superscript ∗ denotes statistically significant improvements compared to all the baselines with
respect to a two-tailed paired t-test with Bonferroni correction (𝑝_𝑣𝑎𝑙𝑢𝑒 < 0.05).

Model TREC COVID FiQA SciFact ArguAna Quora
NDCG@10 R@100 NDCG@10 R@100 NDCG@10 R@100 NDCG@10 R@100 NDCG@10 R@100

BM25 0.688 0.498 0.253 0.539 0.690 0.908 0.471 0.942 0.807 0.973

ANCE 0.652 0.457 0.295 0.581 0.511 0.816 0.418 0.934 0.852 0.987

SBERT 0.477 0.072 0.257 0.542 0.537 0.846 0.425 0.945 0.855 0.988

Contriever 0.273 0.172 0.245 0.562 0.649 0.926 0.379 0.901 0.835 0.987

Contriever-FT 0.596 0.407 0.329 0.656 0.677 0.947 0.446 0.977 0.865 0.993

HyDE 0.593 0.414 0.273 0.621 0.691 0.964 0.466 0.979 - -

ANCE - Cond. Query 0.640 0.459 0.294 0.575 0.518 0.813 0.406 0.932 0.843 0.980

Contriever-FT - Cond. Query 0.596 0.409 0.336 0.652 0.667 0.949 0.445 0.966 0.866 0.980

Ours 0.737∗ 0.481 0.344∗ 0.684∗ 0.695∗ 0.957 0.497∗ 0.967 0.881∗ 0.995

Oracle 0.752 0.515 0.368 0.699 0.744 0.970 0.529 0.973 0.885 0.984

CE Reranker 0.757 0.498 0.347 0.539 0.688 0.908 0.311 0.942 0.825 0.973

Table 5: Ablation Study in terms of NDCG@10 and Recall@100. Bold numbers indicate the highest value in each column
(excluding Oracle). The superscript ▼ denotes statistically significant performance degrade compared to our method (the first
row of the table). Significance is identified using a two-tailed pair t-test with Bonferroni correction (𝑝_𝑣𝑎𝑙𝑢𝑒 < 0.05).

Model TREC COVID FiQA SciFact ArguAna Quora
NDCG@10 R@100 NDCG@10 R@100 NDCG@10 R@100 NDCG@10 R@100 NDCG@10 R@100

Ours 0.737 0.481 0.344 0.684 0.695 0.957 0.497 0.967 0.881 0.995
Ours w/o pseudo-labeling 0.691

▼
0.473 0.336

▼
0.671

▼
0.687

▼
0.907

▼
0.477

▼
0.919

▼
0.852

▼
0.963

▼

Ours w/o seed document generation 0.688
▼

0.399
▼

0.310
▼

0.660
▼

0.630
▼

0.874
▼

0.441
▼

0.882
▼

0.822
▼

0.919
▼

Ours w/o interactive synthetic corpus creation 0.704
▼

0.478 0.343 0.638
▼

0.662
▼

0.935
▼

0.481
▼

0.954 0.841
▼

0.993

Target Retrieval Task 4: Duplicate Question Retrieval. : The
aim of duplicate question retrieval is to detect repeated questions

asked on community question-answering (CQA) forums. We use

the Quora dataset that consists of 522,931 unique questions in

corpus and 10,000 test queries.

Target Retrieval Task 4: Fact Checking. Fact checking in-

volves verifying a statement against a large pool of evidence. It

requires knowledge of the statement and the ability to analyze mul-

tiple documents. In a retrieval setting, the query is a claim, and we

attempt to retrieve documents that confirms or refutes the claim.

We use the SciFact collection [38] that consists of 300 scientific

claims as test queries and 5K paper abstracts as the corpus.

Constructing the heterogeneous Collection𝑊 : As explained
in Section 3.1,𝑊 is a heterogeneous collection of documents from

which our model selects documents to synthesize the target re-

trieval corpus. To create this collection, we ensure that there is no

document leakage between the target retrieval tasks and𝑊 . We

create𝑊 by putting together the documents from MS MARCO [7],

SciDocs [8], NFCorpus [4], Touche-2020 [2], and CQADupStack

[14]. This results in a collection with 9M+ documents.

4.2 Experimental Setup and Evaluation Metrics
We implemented and trained our models using TensorFlow.

6
The

network parameters were optimized using Adam [17] with linear

scheduling and the warmup of 4000 steps. The learning rate was

selected from [1 × 10−6, 1 × 10−5] with a step size of 1 × 10−6. The
batch size was set to 128. We set 𝑘 to 30, 𝑁 to 10,000, and 𝑘 ′ to 5 (see

6
http://tensorflow.org/

Algorithm 1).We use the BERT [11] with the pre-trained checkpoint

made available from Contriever-FT [15] as the initialization. Hyper-

parameter selection and early stopping was conducted based on the

performance in terms of MRR on the MSMARCO validation set. For

query generation we use the T5 model from [23]. As the re-ranking

teacher model for pseudo labeling, we use a BERT cross-encoder,

similar to [24]. For domain description understanding, we use three

examples in the ChatGPT instruction.

Following BEIR [34], we use normalized discounted cumulative

gain of the top 10 retrieved documents (NDCG@10) and the recall of

the top 100 retrieved documents (Recall@100) as evaluation metrics

in our experiments. We use a two-tailed paired t-test for identifying

statistically significant performance differences using Bonferroni

correction with 95% confidence (i.e., 𝑝_𝑣𝑎𝑙𝑢𝑒 < 0.05).

4.3 Results and Discussion
We gauge the effectiveness of our method against the following

baselines:

(1) BM25 [31]: a simple yet effective term matching retrieval

method that evaluates and ranks a group of documents

based on the presence of query terms regardless of their

position in each document.

(2) ANCE [43]: a bi-encoder dense retrieval model that con-

structs hard negatives from an Approximate Nearest Neigh-

bor (ANN) index of the corpus based on the model’s rep-

resentations. Consistent with previous works, we used

RoBERTa [19] as the base language model that is trained

on MS MARCO for 600K steps for our experiments.

7
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(3) SBERT [30]: another dense retrieval baselines that uses

BERT that employs Siamese and Triplet network architec-

tures to generate sentence embeddings.

(4) Contriever [15]: an unsupervised dense retrieval model that

learns adaptive representation during pre-training through

contrastive learning.

(5) Contriever-FT [15]: the Contriever model that is fine-tuned

on MS MARCO training set. This is a state-of-the-art zero-

shot transfer learning model.

(6) HyDE [12]: it utilizes GPT-3 to generate a hypothetical doc-

ument. Then it uses Contriever to retrieve from the corpus

with the hypothetical document as the query. This work has

been proposed concurrent to our work (December 2022).

Note that HyDE’s performance on Quora is not available.

(7) ANCE - Cond Query: following Asai et al. [1], which is

another concurrent work to ours (December 2022), we con-

catenate the domain description with the query in ANCE

so the query encoder is aware of the domain description.

(8) Contriever-FT - Cond Query: this is similar to the last base-

line, but users Contriever-FT as the dense retrieval model.

Note that there are several other approaches that have been

proposed for domain adaptation in IR that were not considered

as baseline in our work. Some of them use the target domain col-

lection for adaptation, such as QGen [20] or GPL [39], which is

not available in our problem setting. Some other approaches are

not dense retrieval models. Some other approaches, such as InPars

[3], use few shot labeled data for data generation. Thus, all these

categories are out of the scope of this work, however, as a source of

reference we include the following approaches in our result table:

(1) Oracle: this is our proposed approach that, instead of docu-

ment collection construction, uses the target domain col-

lection for query generation.

(2) CE Reranker: this is a BERT-based cross-encoder reranker

trained on MS MARCO, which reranks the top 100 docu-

ments retrieved by BM25. Since this is not a dense retrieval

model, we excluded it from our baselines and report its

results as a point of reference.

The results are reported in Table 4. We observe that dense

retrieval baselines have difficulties surpassing the BM25 perfor-

mance on TREC COVID, SciFact, and ArguAna datasets in terms of

NDCG@10 in a zero-shot setting. This demonstrates the difficulty

of dealing with distribution shift in neural information retrieval.

HyDE that uses GPT-3 for generating hypothetical documents for

test queries performs well in terms of Recall@100 on SciFact and

ArguAna datasets. The proposed approach outperforms all dense

retrieval baselines in terms of NDCG@10 in all collections. These

improvements are statistically significant in all cases. It also better

than its counterparts in terms of Recall@100 on FiQA and Quora.

Interestingly, our approach is the only dense retrieval model that

can beat BM25 on TREC COVID and ArguAna. This demonstrates

the effectiveness of our data creation pipeline.

The performance gap between the Oracle model and the base-

lines is often less than 10%, confirming the quality of the synthetic

corpus our model creates. The Oracle model performs better than

the proposed approach in all cases, except for Recall@100 on Quora.

Note that the Oracle model does not necessarily provide upper-

bound results, it just uses the target domain collection instead of

synthetic collection construction. This results suggest that it is

likely to construct a collection that dense retrieval models benefit

from for adaptation, even more than the actual target collection.

Our model outperforms the cross encoder reranker model in terms

of Recall@100 in all cases, except for TREC COVID. It even out-

performs the reranking model in terms of NDCG@10 on SciFact,

ArguAna, and Quora.

Ablation Study. To demonstrate the impact of each design

decision we made in our pipeline, we ablate each major component

in our model and report the results in Table 5. We first exclude the

pseudo-labeling component and we observe statistically significant

performance drop in nearly all cases. In the second ablation study,

we exclude the seed document generation and use the domain

instruction itself as the query to retrieve documents from𝑊 and

construct the collection 𝐶 . This leads to even larger performance

drop. Our last ablation focuses on converting the iterative collection

construction part to a single retrieval run (i.e., retrieving 10000

documents in response to the seed document). We observe that

in this case, some collections hurt more than others. For example,

performance drop on Quora is more significant than FiQA and

TREC COVID. But generally speaking, the iterative process leads

to a better performance.

Evaluating the Quality of the Synthetic Corpus Construc-
tion Approach. To provide a deeper look into the quality of the

corpus that we construct in our model, we take the union of𝑊

and all the target domain collections listed above. We then run our

synthetic corpus construction experiment to see the accuracy of

the model in retrieving the documents that actually belong to the

target corpus. We report the average performance in Figure 2. In the

left plot, we vary the number of generated seeds by ChatGPT and

we observe that a single seed document is sufficient and including

more documents degrades the accuracy of constructed collection.

In the middle plot, we vary the number of retrieved documents per

query (i.e., 𝑘 in Algorithm 1) and observe that the model shows

a relatively stable performance compared to various values of 𝑘 ,

however, smallest value led to the poorest performance. In the last

experiment, we increase the synthetic corpus size from 1000 to 5000

and observe that the accuracy of reconstructing document from

the actual target domain decreases. However, this performance

decrease is not substantial, and the accuracy is still higher than 48%

when selecting 5000 documents. This is another signal to show that

the proposed approach for synthetic corpus construction performs

effectively.

Analyzing the Domain Description Understanding Compo-
nent. As described in Section 3.3, we provided three IR experts

(not the authors of this work) with all 15 public collections in the

BEIR benchmark, and asked them to come up with a description for

each retrieval task associated with each collection in a collaborative

session. We later presented them with the our taxonomy and asked

them to annotate the descriptions accordingly. The input of the

description understanding model is the task description, in addition

to arbitrary choice of examples, and the output is expected to be

the value of taxonomy attributes.
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Figure 2: Sensitivity of our iterative corpus creation process to different parameters in terms of average accuracy.

Table 6: Retrieval description understanding results for each attribute in our taxonomy. We use ROUGE-L and Exact Match
(EM) in addition to manual annotation to evaluate the model. Average results across 15 datasets are reported.

Instruction Only Instruction + 1 Example Instruction + 2 Examples Instruction + 3 Examples

Retrieval Attribute ROUGE-L EM Manual ROUGE-L EM Manual ROUGE-L EM Manual ROUGE-L EM Manual

Q
u
e
r
y
A
t
t
r
i
b
u
t
e
s

Query topic 0.800 0.800 0.800 0.711 0.666 0.733 0.733 0.733 0.733 0.733 0.733 0.733

Query linguistic features 0.600 0.600 0.600 0.800 0.800 0.800 0.866 0.866 0.866 0.866 0.866 0.866

Query language 0.666 0.666 0.667 1.000 1.000 1.000 0.866 0.866 0.866 1.000 1.000 1.000

Query structure 0.099 0.066 0.133 0.866 0.866 0.800 0.933 0.933 0.933 1.000 1.000 1.000

Query modality 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Query format 0.662 0.533 0.733 0.822 0.733 0.800 0.811 0.733 0.933 0.866 0.866 1.000

D
o
c
u
m
e
n
t
A
t
t
r
i
b
u
t
e
s

Document topic 0.666 0.666 0.733 0.733 0.733 0.733 0.733 0.733 0.800 0.800 0.800 0.800

Document linguistic features 0.800 0.800 0.800 0.800 0.800 0.800 0.866 0.866 0.866 0.933 0.933 0.933

Document language 0.266 0.266 0.266 0.800 0.800 0.800 0.800 0.800 0.800 0.866 0.866 0.866

Document structure 0.066 0.066 0.066 0.733 0.733 0.733 0.933 0.933 0.933 1.000 1.000 1.000

Document modality 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Document format 0.377 0.200 0.533 0.677 0.600 0.866 0.800 0.800 0.867 0.711 0.666 0.800

Document source 0.836 0.800 0.866 0.826 0.533 0.866 0.893 0.666 0.933 0.933 0.733 0.933

Relevance notion 0.524 0.133 0.466 0.689 0.533 0.800 0.701 0.533 0.666 0.807 0.733 0.866

Average 0.454 0.400 0.619 0.818 0.771 0.843 0.852 0.819 0.871 0.894 0.871 0.914

Considering we cast the problem of description understand-

ing to a sequence-to-sequence format, following the literature, we

used ROUGE-L [18] and Exact Match as our evaluation metrics.

ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation) is a

commonly used evaluation metric in NLP for summarization tasks,

measuring overlap between n-grams in reference summaries and

the generated summary. The "L" refers to the longest common sub-

sequence. ROUGE-L scores range from 0 to 1, with 1 being a perfect

match. Exact Match (EM) measures the percentage of predictions

that exactly match the ground truth, with 1 being a perfect match

and 0 no match. Since the task is generative, automatic metrics may

not be sufficient, so three annotators manually labeled the outputs

of each model, scoring 1 if desirable and 0 if not. Final labels were

decided through majority voting.

Table 6 presents the results of ChatGPT for domain description

understanding. We made sure that the model is not benefiting from

any session data, by initiating a new session for each experiment.

Each cell displays the average of scores for a particular attribute

across 15 collections. The last row reflects the overall performance

of each setting based on the average of all attributes. As expected,

the highest performance is mostly achieved with Instruction and

3 examples is given. The reason is that the model receives more

examples, thus has a better chance of encountering similar cases. As

Table 6 illustrates, the results of the manual metric highly correlate

with the automatic metrics, except for the query and document

modality attributes in the instruction only setting. We observe

that in this setting, modality attributes resulted in 0.00 with the

automatic metrics, but they resulted in 1 in manual annotation.

After looking into results, we figured the disparity is because ground

truth labels the modality feature as uni-modal, multi-modal, etc. but

the sequence-to-sequence model labels it differently, e.g. text. This

issue resolves after seeing one example in prompt. We also observe

that query and document structure attributes resulted in a close-to-

zero performance in the instruction-only setting. This may be due

to the fact that in our instruction, we only provided the model with

examples of values for these attributes. However, these attributes

have been implicitly mentioned in the domain descriptions, and

some in-domain knowledge is necessary to interpret the structure

or modality of the task. Again, the performance would significantly

improve after seeing only one example. Note that all datasets within

the BEIR benchmark are unstructured, so the model may repeat

the only label it has given as example for structure and modality

attributes.

Further, we observe that relevance notion is one of the hardest

attributes to predict. This makes sense because usually, understand-

ing what constitutes relevance requires a deep understanding of

the task, which these models currently lack. A deep dive into the

results showed us that in many cases, the model generalizes the

query attributes to the document attributes, especially in cases that

are not explicitly described. For example, if the query topic attribute
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was predicted as “medical,” the model may generalize it to the doc-

ument topic as well. However, we know that IR features are not

necessarily symmetric. A medical query could request information

from a heterogeneous corpus such as the Web, and the symmetric

assumption makes data synthesis unrealistic.

5 CONCLUSIONS AND FUTUREWORK
This paper introduced a new category of domain adaptation meth-

ods for neural information retrieval and proposed a pipeline that

leverages target domain descriptions to construct a synthetic target

collection, generate queries, and produce pseudo-relevant labels.

The results of experiments conducted on five diverse target col-

lections demonstrated that our proposed approach outperforms

existing dense retrieval baselines in such a domain adaptation sce-

nario. This work holds the potential for practical applications where

the target collection and its relevance labels are unavailable, while

preserving privacy and complying with legal restrictions. Future

work involves incorporating additional domain-specific informa-

tion, such as data source and language, and evaluating its concep-

tualizing ability with more implicit descriptions.
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