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ABSTRACT
This paper studies a category of visual question answering tasks,

in which accessing external knowledge is necessary for answering

the questions. This category is called outside-knowledge visual

question answering (OK-VQA). A major step in developing OK-

VQA systems is to retrieve relevant documents for the given multi-

modal query. Current state-of-the-art asymmetric dense retrieval

model for this task uses an architecture with a multi-modal query

encoder and a uni-modal document encoder. Such an architecture

requires a large amount of training data for effective performance.

We propose an automatic data generation pipeline for pre-training

passage retrieval models for OK-VQA tasks. The proposed approach

leads to 26.9% Precision@5 improvements compared to the current

state-of-the-art asymmetric architecture. Additionally, the proposed

pre-training approach exhibits a good ability in zero-shot retrieval

scenarios.

CCS CONCEPTS
• Information systems→ Information retrieval; Question an-
swering; Multimedia and multimodal retrieval; • Computing
methodologies→ Computer vision.
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1 INTRODUCTION
Outside-knowledge visual question answering (OK-VQA) [27] is a

category of visual question answering tasks in which answering

the given natural language question about an image requires access

to external information. In OK-VQA retrieval tasks, queries are
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Figure 1: An example OK-VQAquestion. Answering this ques-
tion requires external knowledge.
Image © nsfmc, https://www.flickr.com/photos/subliminal/589841807

multi-modal (text and image) and the retrieval corpus is often uni-

modal, consisting of text documents. To shed more light on this,

Figure 1 presents an example of the queries in this task. It can be

observed that answering the question ‘how far can this animal

jump?’ requires an understanding of the entity (i.e., the cat) in

the image, but this information may not be sufficient. In this case,

accessing a knowledge source containing information about the

animal in the picture and its abilities can facilitate answering the

question. The extensive range of practical implementations for OK-

VQA isworth noting. Consider the scenarios where individuals, who

are patrons of e-commerce platforms, capture images of products or

specific components and pose queries about them Salemi et al. [36].

Similarly, within the educational domain, students can interrogate

an image from their textbook by asking questions Salemi et al. [36].

Moreover, users can leverage OK-VQA by photographing visual

signs or artwork and inquiring about their significance or historical

background. These instances merely scratch the surface of the

diverse application potential of OK-VQA.

Lately, Salemi et al. [36] introduced a symmetric architecture

for multi-modal retrieval and compared it with the previous state-

of-the-art asymmetric architectures introduced by Qu et al. [29].

Despite the significantly better performance of the symmetric ar-

chitecture, the fact that this architecture needs access to a caption

generator at the inference time makes it costly to use in real-time.

Consequently, the main emphasis of this research paper is placed

https://doi.org/10.1145/3578337.3605137
https://doi.org/10.1145/3578337.3605137
https://www.flickr.com/photos/subliminal/589841807
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on asymmetric architecture, unveiling a novel methodology for en-

hancing the training of superior asymmetric retrievers. Importantly,

this approach effectively curtails the necessity of caption gener-

ation solely to the training phase, sparing it from being required

during inference time.

Qu et al. [29] demonstrates that supervised asymmetric dense

retrieval models with multi-modal query encoder and uni-modal

document encoder lead to state-of-the-art passage retrieval perfor-

mance for OK-VQA tasks. However, it requires large-scale manually

labeled training data which is expensive and time consuming to ob-

tain. Inspired by the prior research on text retrieval based on weak

supervision [7, 48, 49] and Inverse Cloze Task (ICT) pre-training

[4], this paper introduces a novel pipeline for automatic generation

of training data for OK-VQA tasks. This data generation pipeline

requires no manually labeled OK-VQA data. It first obtains an image

corpus (e.g., MS COCO [23]) and generates captions for the images.

Each caption is then used as a query to retrieve text passages from

Wikipedia. We then select some noun phrases from each passage as

potential answers and generate a question for each of them using a

fine-tuned language model. To reduce the noise introduced into the

pre-training data, we design a question-answering model and filter

out questions for which the model cannot produce a close enough

answer. This process leads to a large-scale dataset with about 4.6

million question-image pairs for OK-VQA tasks. The generated data

can then be used for pre-training dense retrieval models for OK-

VQA tasks. To the best of out knowledge, this is the first attempt to

automatic generation of data for OK-VQA tasks.

Our experiments on the OK-VQA passage retrieval dataset [27,

29] demonstrate that training dense retrieval models using the pro-

posed data generation pipeline leads to 40.2% Precision@5 improve-

ments in a zero-shot setting compared to competitive baselines.

We also show that pre-training state-of-the-art supervised dense

retrieval models improves state-of-the-art performance by 26.9%

in terms of Precision@5. The obtained improvements are statis-

tically significant in all cases. Further analysis suggests that the

proposed pre-trained model that is fine-tuned only on 25% of the

OK-VQA supervised data outperforms the model that is trained on

100% of the supervised data without pre-training. Moreover, the

performance of the pre-trained model becomes relatively stable

after observing 50% of the supervised training data. Therefore, the

proposed pre-training procedure reduces the need to large-scale

manually labeled training sets.

In summary, the major contributions of this work include:

(1) Introducing the first automatic data generation pipeline for

outside-knowledge visual question answering tasks.

(2) Improving the current state-of-the-art asymmetric passage re-

trieval models in both zero-shot and supervised settings.

(3) Providing extensive result analysis to better understand the

impact of pre-training on OK-VQA performance.

To foster research in this area, we release our generated dataset,

our data creation pipeline, and our learned model parameters.
1

1
The data and code are available at https://github.com/alirezasalemi7/pretraining-

multimodal-dense-retriever-for-okvqa

2 RELATEDWORK
Multi-Modal Dense Passage Retrieval. Multi-modal dense re-

trieval can be defined in different categories based on where the

multi-modality takes place. Themulti-modality can be in the queries,

with a corpus of uni-modal documents, which enables the under-

lying information need to be expressed through a multi-modal

representation [27]. Our work fits into this category with queries

comprised of images with corresponding questions, and uni-modal

textual passages in the corpus. Another line of work has been fo-

cusing on multi-modal documents in the corpus, such as a mix of

textual, tabular, or visual information, while the query is expressed

in one modality [13, 25, 39]. In another setting, both queries and

documents can be multi-modal, for example where the answer to

a query about an image contains multiple modalities [38]. Cross-

modal retrieval is also partly related to multi-modal retrieval, where

both queries and documents are uni-modal but they come from

different modalities [15, 30].

Outside-Knowledge Visual Question Answering. In standard

visual question answering (VQA) [2], the answer lies in the image;

however, in outside-knowledge visual question answering (OK-

VQA) [27], the image and question are jointly used to find the

answer to the question from an external knowledge source [29].

That being said, retrieving relevant passages to a query, which

consists of an image and a question about it, plays an essential role

in this task [29]. Previous work [10, 12, 26, 37, 46] mostly utilizes

knowledge graphs as a source of external information; however,

the lack of a complete and easily updatable knowledge source is

challenging [1, 41]. Therefore, following Qu et al. [29] and Salemi

et al. [36], we focus on retrieving passages from Wikipedia as the

knowledge source.

Previous work mostly evaluates OK-VQA based on the answer

generation quality [6, 10–12, 26, 37, 46, 47]; however, following

Qu et al. [29], we only investigate the retrieval performance in

the aforementioned task. In contrast with Salemi et al. [36], which

focuses on designing a symmetric architecture for OK-VQA retrieval

and answer generation, we investigate the data generation and

augmentation methods to train the proposed asymmetric retriever

architecture by Qu et al. [29] with no labeled training data.

Pre-Training Dense Passage Retrievers. In recent years, pre-

training transformers [43] using semi- and self-supervised tasks

has become a standard approach for achieving strong performance

in natural language and vision tasks [8, 9, 24]. Moreover, retrieval-

specific pre-training tasks, such as Inverse Cloze Task (ICT) [4],

have been shown to be effective for uni-modal retrieval. Recently,

a multi-modal variant of ICT has been proposed by Lerner et al.

[21], in which queries are question-image pairs, and documents are

passage-image pairs. However, our work focuses on the case that

passages are only textual, while queries consist of question-image

pairs.

The research by Changpinyo et al. [5] is perhaps the closest work

to ours, in which the authors focus on pre-training models for VQA

tasks, which is by nature different from OK-VQA. Changpinyo et al.

[5] only generates questions from the image captions due to the

nature of VQA, in which the answers lie in the image. In contrast,

we use captions to retrieve a relevant passage to the image and

https://github.com/alirezasalemi7/pretraining-multimodal-dense-retriever-for-okvqa
https://github.com/alirezasalemi7/pretraining-multimodal-dense-retriever-for-okvqa
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generate questions from that passage to ensure that answering

them requires external knowledge.

3 PROBLEM STATEMENT
While multi-modal retrieval can be defined in different ways as

mentioned in section 2, this paper only focuses on multi-modal

scenarios where the query (𝑄, 𝐼 ) consists of the question 𝑄 about

the image 𝐼 , and the corpus𝐶 from which relevant passages should

be selected is only textual.

Suppose 𝑇 = {(𝑄1, 𝐼1, 𝐴1, 𝑅1), ..., (𝑄𝑁 , 𝐼𝑁 , 𝐴𝑁 , 𝑅𝑁 )} represents
the training set for multi-modal retrieval in this paper. Each training

sample in 𝑇 consists of a question 𝑄𝑖 written in natural language,

an image 𝐼𝑖 , a set of answers 𝐴𝑖 to the question 𝑄𝑖 , and a set of

relevant passages 𝑅𝑖 that contains the answer to 𝑄𝑖 . In more detail,

the answer set 𝐴𝑖 might contain more than one answer to the

question, which are syntactically different but semantically the

same (|𝐴𝑖 | ≥ 1). Additionally, each question and image might have

more than one related passage (|𝑅𝑖 | ≥ 1 and 𝑅𝑖 ⊆ 𝐶).
Themain task in this paper is to use training set𝑇 to train a dense

retriever that takes query (𝑄, 𝐼 ) as input and retrieves 𝐾 passages

that are relevant to the query from the corpus 𝐶 (|𝐶 | ≫ 𝐾 ). In this

paper, we introduce a pipeline for generating weakly supervised

data, similar to the proposed problem definition, to first pre-train

the model on the weakly supervised generated data and then fine-

tune the pre-trained on the task’s data. The following sections

explain our proposed pipeline for this purpose.

4 THE PROPOSED PRE-TRAINING PIPELINE
Automatic data generation for (pre-)training neural models for

text retrieval and question answering has proven to be effective.

For instance, Dehghani et al. [7] introduced weak supervision in

information retrieval by utilizing an existing unsupervised retrieval

model as a weak labeler. Zamani and Croft [49] provided theoretical

justification on when and why weak supervision lead to strong and

robust improvements. Wang et al. [44] used a similar approach for

adapting well-trained retrieval models to an unseen target domain.

More recently, Chang et al. [4] used Inverse Cloze Task for pre-

training text retrieval models and Bonifacio et al. [3] used large-

scale language models, such as GPT [31], for data generation. All

these approaches are developed for text retrieval tasks.

For multi-modal tasks, Changpinyo et al. [5] focused on pre-

training models for visual question answering (VQA) tasks, which

is fundamentally different fromOK-VQA. Changpinyo et al. [5] only

generates questions from the image’s caption due to the nature of

VQA, in which the answers lie in the image (e.g., asking about the

color of an object in the image). VQA is not an information-seeking

task; thus, this approach cannot be applied to OK-VQA.

This section introduces our data generation pipeline for pre-

training dense passage retrieval models for OK-VQA tasks.

4.1 Automatic Data Generation for Pre-training
Figure 2 depicts an overview of our automatic data generation

pipeline for pre-training multi-modal dense passage retrieval mod-

els. We start with an image and use an automatic image captioning

model to produce a textual description of the image. We then re-

trieve𝑀 passages from a large collection, such as Wikipedia, given

the image caption as the query. We then extract a set of potential

short answers from the retrieved passages. For each potential an-

swer, we generate a question using a sequence-to-sequence model.

We later filter out low quality questions. A negative selection com-

ponent is also developed to produce data for optimizing retrieval

models. The outcome of our pipeline is a set of data instances,

each represented as (𝑄𝑖 , 𝐼𝑖 , 𝐴𝑖 , 𝑅𝑖 , 𝑁𝑖 ), where𝑄𝑖 is a question about

the image 𝐼𝑖 , 𝐴𝑖 is the answer to the question 𝑄𝑖 , 𝑅𝑖 is a relevant

passage to the question, and 𝑁𝑖 is a hard negative passage for the

question 𝑄𝑖 . In the following sections, we explain the procedure of

generating each component in detail.

Matching Images and Passages usingCaptions. For each image

in the MS COCO [23] training set (8̃2K images), we aim at retrieving

𝑀 passages. Therefore, designing retriever 𝑅𝑖𝑚𝑔2𝑡𝑒𝑥𝑡 , which takes

an image as input and retrieves a set of related passages from corpus

𝐶), is required. We use a Wikipedia dump with 11M passages as the

corpus 𝐶 .2 We retrieve𝑀 = 5 passages for each image.

While some models, such as CLIP [30] and ALIGN [15], are

designed to act as 𝑅img2text, for simplicity and without losing gen-

erality, we use BM25 [35] as 𝑅img2text, in which we use a textual

description of the image to retrieve a set of passages. To calculate

the similarity score between the image 𝐼 and the passage 𝑃 , we use

the following formula: 𝑆𝑅 (𝐼 , 𝑃) = 𝑆𝐵𝑀25 (𝜙𝐼→𝑇 (𝐼 ), 𝑃), where 𝜙𝐼→𝑇

is a modality converting module that takes an image and generates

a textual description for it.

Generating a description of an image can happen in several

ways. For instance, the textual label of objects in an image can be

used to describe the image using text. This approach suffers from

two issues: 1) object labels are limited to a pre-defined set, and 2)

labeling objects in images in large scale is costly. Conversely, using

captions as the image description resolves the mentioned issues by

generating an open-ended textual description of an image and using

the large-scale available image-caption data on the web. That being

said, we use ViT-GPT [19], a transformer-based [43] image-to-text

model, to generate a caption for each image. ViT-GPT is trained on

the images and captions provided by MS COCO [23] dataset using

a cross-entropy loss function. Once the model is trained, we freeze

the model’s parameters and use it in inference mode.

Selecting Potential Answer Phrases from Retrieved Passages.
Investigating the OK-VQA dataset shows that approximately 80%

of the answers in this dataset are noun phrases. Following this

observation, we use noun phrases in the retrieved passages as

potential answers. This approach has been previously used by Lee

et al. [20]. In more detail, we use spaCy
3
to extract noun phrases

from passages. We consider all noun phrases as potential answers,

except those that have a pronoun or determiner (e.g., "a", "an", and

"the") in their subtrees. This is because pronouns and determiners

usually refer to a specific word in the passage (i.e., co-references),

and we would like to select “standalone” answer phrases.

Question Generation and Filtering. The next step in the pre-

training data generation pipeline is generating a question for each

selected answer phrase. Suppose𝑀𝑄𝐺 (𝐴, 𝑃) is a question generator

2
ThisWikipedia dump is available at: https://ciir.cs.umass.edu/downloads/ORConvQA/

all_blocks.txt.gz

3
https://spacy.io/

https://ciir.cs.umass.edu/downloads/ORConvQA/all_blocks.txt.gz
https://ciir.cs.umass.edu/downloads/ORConvQA/all_blocks.txt.gz
https://spacy.io/
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Figure 2: The proposed data generation pipeline for pre-training OK-VQA models.

that takes passage 𝑃 and the answer phrase𝐴 as input and generates

a question 𝑄 whose answer is 𝐴. To implement 𝑀𝑄𝐺 , following

Ushio et al. [42], we feed the passage 𝑃 and the potential answer

phrase 𝐴 to T5-large [32] and instruct the model to generate a

question. To this aim, we utilize SQuAD v1.1 [34] dataset for fine-

tuning this question generation model. For each training sample

in the SQuAD v1.1 dataset, the answer is surrounded with <hl>
token, and the passage with the surrounded answer is fed to T5.

The cross-entropy loss is used for training the model:

𝐿𝑄𝐺 = −
|𝑄 |∑︁
𝑖

log 𝑃 (𝑦𝑖 |𝑦𝑘<𝑖 ; 𝑃 ′) (1)

where 𝑦𝑖 is the 𝑖
th

token in the question 𝑄 , and 𝑃 ′ is the passage 𝑃
with <hl> surrounding tokens

4
.

As a reference on the quality of the question generation model,

we evaluate it on the test set of SQuAD [34] and it achieves a BLEU-

4 [28] score of 27.21 and rouge-L [22] of 54.13. To further reduce the

amount of noise in the generated pre-training data, we filter out the

questions that a question-answering model cannot answer. Suppose

𝑀𝑄𝐴 (𝑄, 𝑃) is a question-answering model, which takes the ques-

tion 𝑄 and the passage 𝑃 as inputs and generates or selects an an-

swer phrase. Finally, we only select the generated questions that sat-

isfy the following condition: Rouge-1(𝐴,𝑀𝑄𝐴 (𝑀𝑄𝐺 (𝐴, 𝑃), 𝑃)) >
𝑇 , where Rouge-1 is the rouge-1 score [22], 𝐴 is the potential an-

swer from the passage 𝑃 , and 𝑇 is a threshold for the similarity

of the potential answer and the answer selected by the question-

answering model. We use 𝑇 = 0.5 in our experiments.

To implement 𝑀𝑄𝐴 , we use a RoBERTa-base [24] that is fine-

tuned for answer span selection trained on the SQuAD dataset.

The model is trained based on the log-likelihood of predicting the

correct start and end tokens. For selecting the answer span, the

span with the highest 𝑃 (𝑆𝑖 |𝑃 ;𝑄) + 𝑃 (𝐸 𝑗 |𝑃 ;𝑄) is selected where

𝑃 (𝑆𝑖 |𝑃 ;𝑄) shows the probability of the 𝑖th token being the start

of the span and 𝑃 (𝐸 𝑗 |𝑃 ;𝑄) shows the probability of the 𝑗 th token

being the end of the span. As a reference, this question-answering

model achieves a F1 score of 82.91% and exact match of 79.87% on

the test set of SQuAD v2 dataset [33].
5

4
The checkpoint for this question-generation model is available at: https://huggingface.

co/lmqg/t5-large-squad-qg

5
The checkpoint for this question-answering model is available at: https://huggingface.

co/deepset/roberta-base-squad2

Negative Passage Sampling. Using hard negatives and their qual-
ity plays an essential role in the final performance of dense passage

retrieval models [17]. For each generated question, we retrieve pas-

sages using BM25. We choose the highest scored passage that does

not contain the answer 𝐴 as the negative passage.

Summary. The proposed pipeline leads to 4,621,973 question-

image pairs from 82,783 unique images of MS COCO [23]. The

average question, passage, and answer length in the created dataset

are 9.6 ± 3.0, 187.2 ± 105.7 and 2.3 ± 1.2 words, respectively.

4.2 Dense Retrieval Model
The nature of the multi-modal retrieval task that we attempt to

solve in this paper requires the bi-encoder dense passage retriever

to encode queries in multi-modal semantic space and to encode

passages in textual semantic space. We use an asymmetric state-of-

the-art dense passage retrieval for OK-VQA tasks proposed by Qu

et al. [29]. It uses an asymmetric dense passage retriever with the

multi-modal query encoder 𝐸𝑀𝑀 and the textual passage encoder

𝐸𝑇 . Then, the relevance score is calculated as follows: 𝑆 ((𝑄, 𝐼 ), 𝑃) =
𝐸𝑀𝑀 (𝑄, 𝐼 ) ·𝐸𝑇 (𝑃), where · denotes the inner product. Following Qu
et al. [29], we implement 𝐸𝑇 using the representation of the [CLS]
token provided by a BERT-base [8] model. Similarly, we utilize the

representation of the [CLS] token generated by LXMERT [40], a

vision-language model pre-trained with various vision-language

tasks.

To train the retriever, we use a contrastive loss as follows:

𝐿𝐷𝑅 = − log

𝑒𝑆 ( (𝑄,𝐼 ),𝑃𝑝𝑜𝑠 )

𝑒𝑆 ( (𝑄,𝐼 ),𝑃𝑝𝑜𝑠 ) +∑
𝑃 ′∈Pneg 𝑒

𝑆 ( (𝑄,𝐼 ),𝑃 ′ )
(2)

where 𝑃𝑝𝑜𝑠 is a positive (relevant) passage and Pneg is a set of

negative passages for the question-image pair (𝑄, 𝐼 ). In addition to

the selected negative passages, we use in-batch negatives, in which

all the positive and negative passages of other queries in the same

training batch are considered as negative passages to the query. We

use the Faiss library [16] for indexing and efficient dense retrieval.

5 EXPERIMENTS
This section discusses the datasets, experiments, and results ob-

tained in this paper.

https://huggingface.co/lmqg/t5-large-squad-qg
https://huggingface.co/lmqg/t5-large-squad-qg
https://huggingface.co/deepset/roberta-base-squad2
https://huggingface.co/deepset/roberta-base-squad2
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Table 1: Passage retrieval performance on the OK-VQA dataset [27]. The superscript ∗ denotes statistically significant improve-
ment compared to all baselines based on two-tailed paired t-test with Bonferroni correction (𝑝 < 0.05).

Model
Zero-Shot Performance Supervised Performance

Validation Test Validation Test
MRR@5 P@5 MRR@5 P@5 MRR@5 P@5 MRR@5 P@5

BM25 0.2450 0.1668 0.2528 0.1642 0.2565 0.1772 0.2637 0.1755

Dense-BERT 0.0709 0.0382 0.0726 0.0375 0.4555 0.3155 0.4325 0.3058

BERT-LXMERT 0.0744 0.0376 0.0665 0.0345 0.4704 0.3364 0.4526 0.3329

Pre-trained BERT-LXMERT 0.3716∗ 0.2629∗ 0.3364∗ 0.2303∗ 0.5557∗ 0.4195∗ 0.5603∗ 0.4274∗

% rel. imp. w.r.t. the best baseline 51.6% ↑ 57.6% ↑ 33.0% ↑ 40.2% ↑ 17.5% ↑ 20.4% ↑ 21.2% ↑ 26.9% ↑

5.1 Experimental Setup
Dataset. In our experiments, we use the OK-VQA passage retrieval

dataset [29], an extension to the OK-VQA dataset [27]. This dataset

aims at evaluating passage retrieval tasks for outside-knowledge vi-

sual question answering tasks. This dataset contains 9009 questions

for training, 2523 questions for validation, and 2523 for testing. As

the retrieval collection, it uses the same Wikipedia dump that we

use during pre-training (11M passages).

Pre-training and Fine-tuning setups. In order to pre-train the

multi-modal dense passage retriever, we use a batch size of 32 on

four RTX8000 GPUs, each with 49GB of GPU memory and a total

of 256GB of RAM, which results in an effective batch size of 128.

We utilize the Adam optimizer [18] with a learning rate of 10
−5
.

A linear learning rate scheduler with 10% of total training steps

as warmup steps is used for pre-training. Additionally, gradient

clippingwith a clipping value of 1.0 is used in the training procedure.

The maximum length of passages and queries for each encoder is

384 and 20 tokens, respectively. We only train the model for one

epoch on the pre-training data to avoid overfitting.

For fine-tuning on the OK-VQA training set, we follow the same

training setup, but we use two epochs and a batch size of 4 on each

GPU for a fair comparison with previous work [29], which results

in an effective batch size of 16.

Baselines and Terms of Comparison. We compare our models

with the following baselines. (1) BM25: a baseline that only uses the
question as the query and retrieves passages using BM25. (2)Dense-
BERT: a dense retrieval baselines similar to DPR [17] that uses

questions as queries and is trained using the same training objective

as ours. (3) BERT-LXMERT: a state-of-the-art asymmetric dense

retrieval model [29] that uses the exact same architecture as we

introduced in Section 4.2. This baseline is basically our model but

without being pre-trained using the generated data.

Evaluation. Following Qu et al. [29], we use mean reciprocal rank

(MRR) and precision with ranking cut-off of 5 as evaluation metrics.

We use the two-tailed paired t-test with Bonferroni correction as the

statistical significance test (𝑝 < 0.05). Since the OK-VQA dataset

does not provide relevant judgment for passages, we assume a

passage is identified to be positive if it contains an exact match

(case insensitive) of a ground truth answer [29].

Figure 3: Learning curve for ‘Pre-trained BERT-LXMERT’ on
the OK-VQA test set. The orange line shows the performance
of the BERT-LXMERT model without pre-training that is
fine-tuned on 100% of the supervised OK-VQA training data.

5.2 Results
This section presents our experimental results and analyzes the

model performance to better demonstrate the impact of pre-training

on OK-VQA performance.

Zero-Shot Performance. In the first set of experiments, we eval-

uate the zero-shot capabilities of the models. In this setting, the

BM25 baseline uses the default parameters (𝑘1 = 1.2, 𝑏 = 0.75),

and the baselines with BERT and LXMERT use the parameters

learned through their (vision-) language model pre-training. The

‘Pre-trained BERT-LXMERT’ model is trained on the data that we

automatically generated. The results are reported in Table 1. BM25

demonstrates the strongest zero-shot performance. This suggests

that the initialized parameters of BERT and LXMERT are not suit-

able for retrieval tasks. This is inline with findings by previous work

on text retrieval [14, 50]. The proposed pre-training pipeline sig-

nificantly outperforms all the baselines and leads to 33% and 40.2%

MRR@5 and P@5 improvements compared to BM25, respectively.

Supervised Performance. In the second set of experiments, we

fine-tune the same models on the OK-VQA training set. All neural

models use the same training procedure. The BM25 parameters are

tuned through exhaustive grid search where 𝑘1 ∈ [0.5, 1.5] and
𝑏 ∈ [0.2, 0.8] with a step size of 0.2. Themodel with the bestMRR@5
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Figure 4: MRR@5 for the fine-tuned BERT-LXMERT model
with and without pre-training for different question cate-
gories. The percentages on top of the bars indicate relative
improvements compared to the model without pre-training.

on the validation set is selected. The selected parameters are 𝑘1 =

1.1, 𝑏 = 0.4. In Table 1, we observe that, as expected, all neural

models largely benefit from fine-tuning on the OK-VQA training

set and substantially outperform BM25. Fine-tuning BERT-LXMERT

that is pre-trained using the proposed data generation pipeline leads

to 21.2% MRR@5 and 26.9% P@5 improvements compared to BERT-

LXMERT without pre-training (i.e., the current SOTA model on

passage retrieval for OK-VQA [29]).

Learning Curve. We hypothesize that the proposed pre-training

pipeline reduces the need for large-scale supervised training data,

which is often difficult or expensive to obtain. To validate this hy-

pothesis, we fine-tuned our pre-trained model using 25%, 50%, 75%,

and 100% of the supervised data randomly sampled from the OK-

VQA training set. The results are plotted in Figure 3. For the sake of

space, the performance based on MRR@5 on the OK-VQA test set is

reported. Other curves follow a similar behavior. The dashed orange

line in the figure shows the performance of the BERT-LXMERT

model without pre-training that is trained on 100% of the OK-VQA

training set. The curve demonstrates that our pre-trained model

outperforms the model without pre-training by only observing 25%

of supervised training data. Moreover, the performance of the pre-

trained model becomes relatively stable after observing 50% of the

supervised data, which shows that pre-training retrieval models

for OK-VQA reduces the need for supervised data.

Result Analysis. To have a deeper understanding of the proposed

pre-training impact on OK-VQA tasks, Figure 4 presents MRR@5

obtained by the fine-tuned BERT-LXMERT model with and without

pre-training for each question category. The categories are bor-

rowed from the OK-VQA [27] dataset.
6
We observe that pre-training

improves the OK-VQA performance on all question categories, how-

ever, the improvements are not the similar across categories. It can

be seen that the highest improvement is achieved for the “sports

6
The categories include “Plants & Animals (PA),” “Science & Tech (ST),” “Sport &

Recreation (SR),” “Geography & History & Language & Culture, (GHLC)” “Brands &

Companies & Products (BCP),” “Vehicles & Transportation (VT),” “Cooking & Food

(CF),” “Weather & Climate (WC),” “People & Everyday Life (PEL),” “Objects & Material

& Clothing (OMC),” and “Other (O).”

& recreation” category (56.6%), while the lowest improvement is

observed for the “weather & climate” category (4.86%). The reason

is that we use the MS COCO dataset [23] as the image collection for

automatic creation of our pret-training data and MS COCO does

not include any category related to “weather & climate,” “science

& Tech,” and “Geography & History & Language & Culture”. As a

result, the extent of improvement is smaller for these categories in

the OK-VQA dataset. On the other hand, a considerable proportion

of images in the MS COCO dataset are related to the categories

such as “Sport & Recreation,” “People & Everyday Life,” and “Plants

& Animals” that observe the highest improvements. This analysis

demonstrates that including the nature of data included in the au-

tomatic data creation pipeline directly impact the downstream OK-

VQA performance, and including images from underrepresented

categories is likely to further improve the performance.

6 CONCLUSIONS AND FUTUREWORK
This paper introduced a pipeline for pre-training dense retrievers

for OK-VQA tasks. The proposed pipeline started from an image

collection and paired each image with a passage from a knowledge

source. Then, a question generation model was used to generate

questions for all possible answers to the questions about the image

and the passage. Finally, low-quality questions were filtered out, and

negative samples for the remaining questions were selected. Our

experiments suggest statistically significant improvements com-

pared to state-of-the-art asymmetric dense retrieval performance

for OK-VQA tasks.

Even though our results show consistent improvement in the

OK-VQA dataset, there might be some other kinds of knowledge-

intensive VQA datasets, such as FVQA [45], that this pre-training

approach needs to be revised. In the future, we intend to extend

our data generation pipeline to other knowledge-intensive vision-

language tasks. This paper also limits multi-modality to multi-

modal queries and textual passages. Providing a solution for re-

moving the mentioned limitations can be investigated in future

work.
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